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Abstract. A generic way to extend generalization bounds for binary
large-margin classifiers to large-margin multi-category classifiers is pre-
sented. The simple proceeding leads to surprisingly tight bounds showing
the same Õ(d2) scaling in the number d of classes as state-of-the-art re-
sults. The approach is exemplified by extending a textbook bound based
on Rademacher complexity, which leads to a multi-class bound depend-
ing on the sum of the margin violations of the classifier.

1 Introduction

The generalization performance of binary (two-class) large-margin classifiers is
well analysed (e.g., [1–8]). The theory of generalization bounds for multi-class
support vector machines (multi-class SVMs) follows the route already paved by
the analysis of the binary case, for instance, in the work of Guermeur [9, 10].

In this note, we link the analysis of binary and multi-class large margin
classifiers explicitly. A straightforward technique to generalize bounds for binary
learning machines to the multi-class case is presented, which is based on a simple
union bound argument. The next section introduces the classification framework
and extensions of large-margin separation to multiple classes. Section 3 proves
our main result showing how to derive bounds for multi-category classification
based on bounds for the binary case. In Section 4 we apply the proposed method
to a textbook result based on Rademacher complexity. The newly derived bound
is discussed with respect to different multi-class SVM formulations.

2 Large-margin Multi-category Classification

We consider learning a hypothesis h : X → Y from training data

S =
(

(x1, y1), . . . , (xℓ, yℓ)
)

∈
(

X × Y
)ℓ

,



where X and Y are the input and label space, respectively. We restrict our
considerations to the standard case of a finite label space (however, there exist
extensions of multi-class SVMs to infinite label spaces, e.g., [11]). We denote the
cardinality |Y | by d ∈ N. Without loss of generality we assume Y = {1, . . . , d}
in the sequel. We presume all data points (xn, yn) to be sampled i.i.d. from a
fixed distribution P on X × Y . Then the goal of learning is to map the training
data to a hypothesis h with as low as possible risk (generalization error)

R(h) =

∫

X×Y

1(h(x) 6=y) dP (x, y) . (1)

Here, the 0-1 loss is encoded by the indicator function 1(h(x) 6=y) of the set
{(x, y) ∈ X × Y |h(x) 6= y}.

All machines considered in this study construct hypotheses of the form

x 7→ argmax
c∈Y

[

〈wc, φ(x)〉+ bc
]

, (2)

where φ : X → H is a feature map into an inner product spaceH, w1, . . . , wd ∈ H
are class-wise weight vectors, and b1, . . . , bd ∈ R are class-wise bias/offset values.
The most important case is that of a feature map defined by a positive definite
kernel function k : X × X → R with the property k(x, x′) = 〈φ(x), φ(x′)〉.
For instance, we can set φ(x) = k(x, ·), in which case H is the corresponding
reproducing kernel Hilbert space [12]. We presume that the argmax operator in
equation (2) returns a single class index (ties may, e.g., be broken at random).
We define the vector-valued function f : X → R

d by f = (f1, . . . , fd) with
fc = 〈wc, φ(·)〉 + bc for c ∈ {1, . . . , d}. Then h(x) = argmaxc∈Y fc(x) and, to
ease the notation, we define R(f) to be equal to the corresponding R(h).

For a binary classifier based on thresholding a real-valued function f : X → R

at zero we define the hinge loss Lhinge(f(x), y) = max{0, 1− y · f(x)}, a convex
surrogate for the 0-1 loss used in equation (1). The expression y · f(x) is the
(functional) margin of the training pattern (x, y). The hinge loss measures the
extent to which a pattern fails to meet a target margin of one. There are different
ways to extend this loss to multiple classes. Large-margin classification based on
the decision function (2) can be interpreted as highlighting differences between
components fc(x). This is because the difference fc(x)−fe(x) indicates whether
class c is preferred over class e in decision making. Accordingly, two canonical
extensions of the hinge loss to the multi-class case f : X → R

d are the sum loss

Lsum(f(x), y) =
∑

c∈Y \{y}

[

Lhinge

(

1

2

(

fy(x)− fc(x)
)

, 1

)]

and the maximum loss

Lmax(f(x), y) = max
c∈Y \{y}

[

Lhinge

(

1

2

(

fy(x)− fc(x)
)

, 1

)]

.



These losses are arranged so that in the binary case d = 2 they reduce to the
hinge loss. We denote the corresponding risks by

Rtype(f) =

∫

X×Y

Ltype(f(x), y) dP (x, y)

and the empirical risk for a sample S =
(

(x1, y1), . . . , (xℓ, yℓ)
)

by

Rtype
S (f) =

1

ℓ

ℓ
∑

i=1

Ltype(f(xi), yi) ,

where the superscript “type” is generic for “hinge”, “sum”, or “max”.

3 Extending Bounds to Multi-category Classification

Our analysis relies on the basic insight that there are d − 1 distinct possible
mistakes per example (x, y), namely preferring class c ∈ Y \ {y} over the true
class y. Each of these mistakes corresponds to one binary problem (having a
decision function with weight vector wy − wc) indicating the specific mistake.
One of these mistakes is sufficient for wrong classification, and no “binary”
mistake at all implies correct classification. Then, a union bound over all mistakes
gives the multi-class generalization result based on established bounds for binary
classifiers. Assume that we have a bound of the following generic form:

Assumption 1 With probability 1 − δ over randomly drawn training sets S of
size ℓ the risk R(fbin) of a binary classifier derived from a function fbin ∈ F

bin

is bounded by

R(fbin) ≤ Bbin
(

ℓ,Rhinge
S (fbin), C(Fbin), δ

)

,

where F
bin is a space of functions X → R. The function C measures the com-

plexity of the function class F
bin in a possibly data-dependent manner (i.e., it

may implicitly depend on properties of the training data, typically in terms of
the kernel Gram matrix).

Then we have:

Theorem 1 Under Assumption 1, with probability 1 − δ over randomly drawn

training sets S ∈
(

X × {1, . . . , d}
)ℓ
, the risk R(f) of a multi-class classifier

derived from the function f = (f1, . . . , fd) : X → R
d, f ∈ F, using the decision

rule (2) is bounded by

R(f) ≤
∑

1≤c<e≤d

(

ℓ(c,e)

ℓ
+

1√
ℓ

√

log(d(d− 1))− log δ

2

)

·Bbin

(

ℓ(c,e),Rhinge

S(c,e)

(

1

2
(fc − fe)

)

, C(F(c,e)),
δ

d(d− 1)

)

, (3)



where S(c,e) =
{

(x, y) ∈ S
∣

∣ y ∈ {c, e}
}

is the training set restricted to examples

of classes c and e, ℓ(c,e) =
∣

∣S(c,e)
∣

∣ denotes its cardinality, and the pairwise binary
function classes are defined as

F
(c,e) =

{

1

2
(fc − fe)

∣

∣

∣

∣

f = (f1, . . . , fd) ∈ F

}

.

Proof. Following the line of arguments above, the general case of d-category
classification with f = (f1, . . . , fd) ∈ F can be reduced to the binary case via
the inequality

R(f) ≤
∑

1≤c<e≤d

[P (y = c) + P (y = e)] · R
(

1

2
(fc − fe)

)

≤
∑

1≤c<e≤d

R
(

1

2
(fc − fe)

)

,

where R
(

1
2 (fc − fe)

)

refers to the risk of 1
2 (fc−fe) solving the binary classifica-

tion problem of separating class c from class e. Comparing the left to the right
term of the above inequality for the risk gives the immediate result

R(f) ≤
∑

1≤c<e≤d

Bbin

(

ℓ(c,e),Rhinge
S(c,e)

(

1

2
(fc − fe)

)

, C
(

F
(c,e)

)

,
2δ

d(d− 1)

)

,

where we have split the probability δ over the samples into d(d − 1)/2 equal
chunks. This is conservative, since pairs of classes are highly dependent.

This bound can be refined by taking class-wise probabilities into account.
By applying the Hoeffding bound we derive that P (y = c) + P (y = e) is upper
bounded by

ℓ(c,e)

ℓ
+

1√
ℓ

√

log(d(d− 1))− log δ

2

with a probability of 1− δ′/2 with δ′ = 2δ/(d(d− 1)). That is, this bound holds
simultaneously for all d(d−1)/2 pairs of classes with a probability of 1−δ/2. ⊓⊔

The pairwise complexity terms C(F(c,e)) can be replaced with the complexity
measure

C(F) = max
1≤c<e≤d

C
(

F
(c,e)

)

for R
d-valued functions. Depending on the structure of the underlying binary

bound Bbin the sum over all pairs of classes can be further collapsed into a
factor of d(d− 1)/2, for instance by taking the maximum over the summands.



4 Example: A Bound Based on Rademacher Complexity

Theorem 1 can be used to obtain a variety of generalization bounds when com-
bined with the wealth of results for binary machines that can be brought in a form
of Assumption 1. This section will consider an textbook generalization bound
derived for binary SVMs and measuring function class flexibility by Rademacher
complexity. The result will then be discussed w.r.t. two multi-class extensions
of SVMs. Such a comparison can be performed with different goals in mind.
On the one hand, a unifying analysis covering many different multi-class SVM
types is desirable. On the other hand, one would like to see differences in the
performance guarantees for different machines that may indicate superiority of
one machine over another. We attempt to highlight such differences. This is in
contrast to other studies such as the influential work in [9], where the goal was
unification and, therefore, to make differences between machines invisible.

4.1 Extending a Binary Bound Based on Rademacher Complexity

We begin by stating the result for binary machines, in which the Rademacher
complexity of real-valued functions is bounded based on the kernel Gram matrix
K of the data:

Theorem 2 Fix ρ > 0 and let Fbin be the class of functions in a kernel-defined
feature space with norm at most 1/ρ. Let S be a training set of size ℓ, and fix
δ ∈ (0, 1). Then with probability of at least 1− δ over samples of size ℓ we have
for fbin ∈ F

bin

R(fbin) ≤ Bbin = Rhinge
S (fbin) +

4

ℓρ

√

tr(K) + 3

√

log(2/δ)

2ℓ
,

where K is the kernel Gram matrix of the training set.

This result can be derived following the proof of Theorem 4.17 by [3]. Application
of inequality (3) yields the following generalization bound:

Corollary 1 Let S ∈
(

X × {1, . . . , d}
)ℓ

be a training set. Fix ρ > 0, and let Fρ

be the class of Rd-valued functions in a kernel-defined feature space with semi-
norm at most 1/ρ w.r.t. the semi-norm ‖f‖ = max

{

1
2‖fc−fe‖

∥

∥ 1 ≤ c < e ≤ d
}

.

With probability 1− δ over randomly drawn training sets S ∈
(

X ×{1, . . . , d}
)ℓ
,

the risk R(f) of a multi-class classifier using the decision rule (2) is bounded by

R(f) ≤
∑

1≤c<e≤d

(

ℓ(c,e)

ℓ
+

1√
ℓ

√

log(d(d− 1))− log δ

2

)

·
[

Rhinge

S(c,e)

(

1

2
(fc − fe)

)

+
4

ℓ(c,e)ρ

√

tr(K(c,e)) + 3

√

log(2d(d− 1)/δ)

2ℓ(c,e)

]

,

where K(c,e) denotes the ℓ(c,e) × ℓ(c,e) kernel matrix restricted to examples of
classes c and e.



With tr(K(c,e)) ≤ tr(K) this bound reads in (not fully simplified) Õ-notation

R(f) ∈ Õ

(

d(d− 1)

2

(

4

ρ · ℓ ·
√

tr(K) +Rsum
S (f)

))

, (4)

with the same separation of complexity and empirical risk terms as in the binary
bound.4

4.2 Sum vs. Maximum of Margin Violations

There is no canonical extension of the binary SVM [13, 14] to multiple classes.
Several slightly different formulations have been proposed, most of which reduce
to the standard binary SVM if d = 2.

The all-in-one methods proposed independently Weston and Watkins [15],
Vapnik ([1], Section 10.10), and by Bredensteiner and Bennett [16] turned out
to be equivalent, up to rescaling of the decision functions and the regularization
parameter C > 0. The method is defined by the optimization problem

min
1

2

d
∑

c=1

〈wc, wc〉+ C · Rsum
S (f) .

An alternative multi-class SVM was proposed by Crammer and Singer [17]. It
also takes all class relations into account simultaneously and solves a single
optimization problem, however, penalizing the maximal margin violation instead
of the sum:

min
1

2

d
∑

c=1

〈wc, wc〉+ C · Rmax
S (f)

Are there theoretical arguments to prefer one formulation over the other? In
[18], the empirical risk of multi-class SVMs is upper bounded in terms of the
empirical maximum risk Rmax. This is an almost trivial result, because the hinge
loss (and therefore the maximum loss) is, per construction, an upper bound on
the 0-1-loss. Based on this bound it has been argued that the SVM proposed by
Crammer and Singer has advantages compared to the formulation by Weston
and Watkins because it leads to lower values in the bounds.

We do not find this argument convincing. The empirical error is only a weak
predictor of the generalization error, and measuring these errors with different
loss functions is a meaningless comparison. The question which hypothesis has
lower 0-1-risk cannot be decided on this basis, but only by comparing general-
ization bounds.

When looking at the bound newly derived above we find that it depends on
the sum-loss term Rsum

S (f). Thus, one may argue that it is a natural strategy
to minimize this quantity directly instead of the max-loss.

4 The Õ (soft O) notation ignores logarithmic factors, not only constant factors. That
is, f(ℓ) ∈ Õ(g(ℓ)) iff f(ℓ) ∈ O(g(ℓ) logκ g(ℓ)) for some κ.



In general, comparing different machines by means of generalization bounds
can be misleading for a number of reasons. The most important is that we are
only dealing with upper bounds on the performance, and a better performance
guarantee does give a guarantee for better performance.

5 Discussion

The proposed way to extend generalization bounds for binary large-margin clas-
sifiers to large-margin multi-category classifiers is very simple, compared to tak-
ing all pairwise interactions between classes into account at once, and it has a
number of advantageous properties. It is versatile and generic in the sense that
it is applicable to basically every binary margin-based bound. Compared to the
underlying bounds we pay the price of considering the worst case over d(d−1)/2
pairs of classes. However, also the state-of-the-art results obtained in [9] exhibit
the same Õ(d2) scaling in the number of classes. In any case this term does not
affect the asymptotic tightness of the bounds w.r.t. the number of samples. The
same argument, put the other way round, implies that the asymptotic tightness
of a bound for binary classification carries over one-to-one to the multi-class
case. This implies that binary and multi-class learning have the same sample
complexity.

It is straightforward to extend our result to loss functions based on general
confusion matrices. Future work may include applying the proposed procedure
to more sophisticated bounds for binary classifiers.
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