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Abstract. To parameterize continuous functions for evolutionary learn-
ing, we use kernel expansions in nested sequences of function spaces of
growing complexity. This approach is particularly powerful when dealing
with non-convex constraints and discontinuous objective functions.
Kernel methods offer a number of beneficial properties for parameteriz-
ing continuous functions, such as smoothness and locality, which make
them attractive as a basis for mutation operators. Beyond such practi-
cal considerations, kernel methods make heavy use of inner products in
function space and offer a well established regularization framework. We
show how evolutionary computation can profit from these properties.
Searching function spaces of iteratively increasing complexity allows the
solution to evolve from a simple first guess to a complex and highly re-
fined function. At transition points where the evolution strategy is con-
fronted with the next level of functional complexity, the kernel frame-
work can be used to project the search distribution into the extended
search space. The feasibility of the method is demonstrated on challeng-
ing trajectory planning problems where redundant robots have to avoid
obstacles.
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1 Introduction

The problem of learning continuous functions when dealing with discontinuous
objective functions or non-trivial task constraints is tackled in this paper. This
is a very general learning problem. For example, it arises naturally when deal-
ing with robotic plants, typically controlled in joint angle space (configuration
space), under constraints formulated in Cartesian task space. In this setup, the
problem of planning a trajectory towards a target position while avoiding obsta-
cles is considered.

Collision-free movement of robots from an initial position to a goal state in
an environment with obstacles is one of the challenging problems in robotics. It
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can be decomposed into two parts; kinematics of the movement, and control. In
situations where a strict separation of these two movement aspects is feasible
(when movements are relatively slow), most planning problems involving obstacle
avoidance are due to kinematics only, while the problem of trajectory following
can be decoupled. When planning a trajectory in a typical robotic application,
joint and link positions need to be expressed in joint angle (or translations)
coordinates. From a dynamics point of view, these positions are functions of
joint torques (or forces) applied to the joints by a controller. In contrast—when
decoupling planning and control—the plan can be computed first in a much
simpler kinematic model, and the job of the controller is reduced to following
the planned trajectory as closely as possible. This allows to solve the inverse
kinematics and inverse dynamics problems separately.

In many approaches the two problems are merged into one, where no explicit
motion plan is generated first and the dynamic control is executed based on the
inputs from the environment and the goal [23, 14, 12, 9, 19, 32]. Several authors
focus just on planning [1] and leave the control problem to well established
algorithms for optimal control [21, 22]. The present study is in line with this
approach.

Solving inverse kinematics optimally becomes intractable when the environ-
ment contains obstacles—the complexity of the problem is exponential in the
configuration space degrees of freedom. Both problems get even more complex
when the environment changes over time (e.g., there are moving targets or obsta-
cles). In such cases, rather than solving the inverse problems analytically, various
heuristic approaches are being used [5, 7], such as roadmaps [2, 17], cell decom-
position [20], potential fields [18], or other dynamical systems approaches [16].
Hayashi [15] presents a method in which the joint angles are represented by a
continuous function of time and the joint index, generating smooth movement
plans. In such approaches overfitting is a potential issue and low solution com-
plexity becomes an important goal.

Here, kernel expansions are used to represent the trajectory explicitly as a
continuous function of time. Kernel-based learning algorithms [4, 26, 30] have
found widespread use in machine learning, especially inspired by the support
vector machine algorithm [6, 29]. The general methodology has been extended
from binary classification to a wide variety of learning problems, ranging from
supervised and unsupervised learning to elaborate statistical tests. Kernel meth-
ods offer easy-to-handle representations of continuous functions. At the same
time, regularization is omnipresent in kernel approaches with the principal role
of overfitting avoidance. These methods typically come with convex loss func-
tions. Thus, efficient training schemes are available, and the uniqueness of the
solution allows for a thorough mathematical analysis.

In the present study we leave this solid ground and explore learning of kernel
representations under less standard conditions, particularly in non-convex learn-
ing problems with discontinuous objective functions, where most established
training algorithms break down. The problem is resolved by employing evolu-
tionary algorithms, a class of methods known to handle such challenges well.
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When dealing with kernel methods, evolution strategies are of special interest,
because they are designed for search and optimization in real-valued parameter
spaces. State-of-the-art evolutionary strategies for black box optimization [24, 3,
8, 13, 31] provide robust and scalable techniques for pursuing global optima.

Modern, flexible, and easy to implement natural evolution strategies [31, 28,
27, 11, 10, 25] are used as search algorithms for kernel representations of con-
tinuous functions of a single variable (time). The efficiency is demonstrated on
the problem of finding kinematic plan representations for redundant robot arms
movement. Such arms are controlled in joint-angle space, which has a highly non-
trivial, non-linear relationship to the three-space configuration of the different
limbs and the end-effector.

Our method can be summarized as follows (refer to figure 1 for an illustra-
tion of the overall process): The algorithm iterates over a sequence of finite-
dimensional, nested, kernel-based function spaces that—in the limit—exhaust
the space of continuous functions. An evolution strategy is used to search the
current sub-space for a trajectory solving a planning task at hand. For this pur-
pose an individual consists of coefficients defining multiple continuous functions,
one per degree of freedom, representing the joint angles progression over the
(pre-specified) time course. This trajectory is transformed into Euclidean three-
space by applying simple forward kinematics. The evolutionary search is subject
to non-linear, non-convex constraints and a (potentially) discontinuous fitness
function, as follows: A simulation of the trajectory in a forward kinematics model
is run for each individual. The position of the robot as well as collisions of the
robot with itself and with obstacles are recorded. Finally, (violations of) the
constraints and the fitness value are computed from this data. For example, the
fitness function for a reaching task can be the distance of the gripper position at
the end of the movement from a target location plus a regularization term (the
squared norm of the trajectory in a function Hilbert space). A collision indicates
a constraint violation, and thus an infeasible individual.

This paper is organized as follows. The next section provides a short intro-
duction to evolution strategies, with an emphasis on a modern class of algorithms
called natural evolution strategies. The use of kernel methods in machine learn-
ing is discussed in section 3. A new method for kernel-based evolutionary learning
of trajectories is introduced in section 4. The method comprises an incremen-
tal search scheme based on increasing the kernel representation complexity. It
uses a slick algorithm that gradually extends the covariance matrix of the search
distribution. The method generalizes to evolutionary learning of any continu-
ous function. Experiments with a redundant arm in Euclidean two-space and a
human-like 7 DOF arm in Euclidean three-space are described in section 5. The
paper concludes with section 7.

2 Evolution Strategies

Evolution Strategies (ES) are evolutionary algorithms specialized for search and
optimization in real vector spaces. There exists a wide variety of ES in the liter-
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C([0,1])

Fig. 1. Illustration of the methodology introduced in this paper. A nested sequence of
kernel-based function spaces of growing complexity (left) is searched successively with
an evolution strategy (middle). Each individual encodes a continuous trajectory for the
robot arm (right). The fitness function reflects how well the candidate trajectory suits
the task, while the constraints are evaluated by means of collision detection.

ature, refer to [24, 3, 8] for a comprehensive introduction. In canonical form, ES
generate their offspring by Gaussian mutations, but other parametric families
of search distributions have also been investigated. The different strategies vary
widely w.r.t. their selection and recombination schemes. In population-based
variants (µ, λ) selection is common, and recombination is often performed glob-
ally among all surviving individuals, such as in CMA-ES [13]. However, elitism
in the form of hill-climbers and steady-state selection are common as well.

Typical ES are well suited to follow a ‘global trend’ of the fitness function
f : Rd → R. They identify (local) optima efficiently and with arbitrarily high
precision. This requires a continuous adaptation of the search strategy param-
eters to the local characteristics of the problem at hand. The most important
parameters to adapt are center and scale of the search distribution, while adap-
tation of the full covariance matrix has become state-of-the-art [13, 31]. Strategy
adaptation, making mutations that have proven advantageous more probable in
the future, is performed either actively or passively by means of mutation and
selection.

Important aspects of evolution strategies are self-adaptation of the search
strategy and invariance under certain transformations of the search space and
the fitness function. Most evolution strategies are (up to initialization) invariant
under translation and scaling, but often also rotations, or even all affine linear
transformations. In addition, rank-based selection makes modern ES invariant
under monotone fitness transformations.

Natural Evolution Strategies (NES) [31, 28, 27, 11, 10, 25] have been derived
as population-based variants and as hill-climbers from the simple and powerful
principle to adapt the search distribution in order to optimize (here, minimize)
expected fitness by means of natural gradient descent. This general paradigm can
be applied to all kinds of search distributions. Gaussians with different subsets of
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adaptive parameters have been treated in the literature, such as adaptation of the
full covariance matrix [31, 28, 27, 11, 10] and diagonal covariance matrices [25].

In each generation the population-based NES algorithm samples λ ∈ N indi-
viduals zk ∼ N (z | θ), k ∈ {1, . . . , λ}, i.i.d. from its Gaussian search distribution,
which is parametrized by θ = (µ,Σ), with the goal to minimize a fitness function
f : Rn → R. Let p(z | θ) denote the density of the Gaussian with parameters θ.
Then, the expected fitness under the search distribution is

J(θ) = Eθ[f(z)] =

∫
f(z) p(z | θ) dz .

The gradient w.r.t. the parameters can be rewritten as

∇θJ(θ) =∇θ
∫
f(z) p(z | θ) dz

=Eθ [f(z) ∇θ log (p(z | θ))] ,

(see [31] for the full derivation) from which we obtain the Monte Carlo estimate

∇θJ(θ) ≈ 1

λ

λ∑
k=1

f(zk) ∇θ log (p(zk | θ))

of the search gradient. The key step then consists in replacing this gradient,
pointing into the direction of (locally) steepest descent w.r.t. the given parametriza-
tion, by the natural gradient

∇̃θJ = F−1∇θJ(θ) ,

where F = E
[
∇θ log (p (z|θ))∇θ log (p (z|θ))>

]
is the Fisher information matrix;

leading to a straightforward scheme of natural gradient descent for iteratively
updating the search distribution

θ ← θ − η∇̃θJ = θ − ηF−1∇θJ(θ) ,

with learning rate parameter η. The sequence of 1) sampling an offspring popu-
lation, 2) computing the corresponding Monte Carlo estimate of the fitness gra-
dient, 3) transforming it into the natural gradient, and 4) updating the search
distribution, constitutes one generation of NES.

Fitness shaping [31] is used to normalize the fitness values by shaping them
into rank-based utility values uk ∈ R, k ∈ {1, . . . , λ}. For this purpose the
individuals are ordered by fitness, with z1:λ denoting the best and zλ:λ denoting
the worst offspring.

Then the “fitness-shaped” gradient

∇θJ =

λ∑
k=1

uk · ∇(θ) log (p(zk:λ | θ))
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is used to update the parameters of the search distribution. Typically, the utility
values are either non-negative numbers that sum to one, or are shifted to zero
mean. The most important role of rank-based fitness shaping is to render the
algorithm invariant under monotonic (rank preserving) transformations of the
fitness values. The standard fitness shaping function is

uk =
max

(
0, log(λ2 + 1)− log(i)

)∑n
j=1 max

(
0, log(λ2 + 1)− log(j)

) − 1

λ
.

Algorithm 1: The xNES Algorithm

Input: d ∈ N, F : Rd → R, µ ∈ Rd, σ > 0, B ∈ Rd×d with det(B) = 1
while stopping condition not met do

for i ∈ {1, . . . , λ} do
si ← N (0, I)
zi ← µ + σB · si

end
sort {(si, zi)} with respect to F (zi)
gδ ←

∑n
i=1 ui · si

GM ←
∑n
i=1 ui · (sis

T
i − I)

gσ ← tr(GM)/d
GB ← GM − gσ · I
µ← µ + ηµ · σB · gδ

σ ← σ · exp(ησ/2 · gσ)
B← B · exp(ηB/2 ·GB)

end

An efficient scheme for Gaussian distributions with fully adaptive covariance
matrix called xNES, see algorithm 1, has been derived in [11]. The algorithm
maintains a Gaussian search distribution N (µ, σ2BBT ), with center µ ∈ Rn
global step size σ > 0, and shape matrix B. The determinant of the transfor-
mation B is kept constantly at one, such that the complete scale information
is bundled in the step size σ. The parameter vector is then composed of µ, σ,
and B. The decisive technique to turn the natural gradient update into a com-
putationally tractable algorithm is to perform all updates in local coordinates.
At the same time the matrix exponential is used to encode the positive definite
symmetric covariance matrix in an unconstrained way: a vector δ and a symmet-
ric matrix M define local (exponential) coordinates around the current search
distribution (µ, σ,B), given by

(δ,M) 7→ (µ + σBδ, σ2B exp(M)BT ) .

It turns out that in these coordinates the Fisher matrix is the identity matrix,
which saves its computation (or estimation), as well as its inversion, and the plain
(Euclidean) gradient in these coordinates coincides with the natural gradient. It



Kernel Representations for Evolving Continuous Functions 7

remains to compute ∇θ log (p(z | θ)) in these coordinates for the current search
distribution, which is encoded by δ = 0 and M = 0. We obtain the surprisingly
simple formulas ∇δ log(p(z|δ,M)) = s and ∇M log(p(z|δ,M)) = 1

2 (ssT − I),
where s is the standard normally distributed vector corresponding to z (see al-
gorithm 1). The covariance term is split into the trace of the second expression,
corresponding to the scale variable σ, and its orthogonal complement, corre-
sponding to the shape variable B (refer to [11] for details). Putting everything
together results in algorithm 1.

The corresponding hill-climber variant (1+1)-xNES primarily differs in its
step size adaptation rule [10]. Success-based utility values (which are rank-based
in the sense of (1+1) selection) are used to implement a success-based self-
adaptation rule, resulting in a behavior close to Rechenberg’s 1/5-rule [24].

Both the population-based xNES and the hill-climber (1+1)-xNES come with
good default settings for population size and learning rates, depending only on
the search space dimension. In this sense, they are completely parameter free
and applicable to black box problems.

3 Kernel-based Machine Learning

A kernel-based learning algorithm operates on an architecture that is linear
in its parameters: Let {f1, . . . , fn} be a fixed set of basis functions, then f =∑n
i=1 αi · fn is linear in the coefficients α ∈ Rn, while suitably chosen basis

functions allow to add the necessary level of complexity to the model.

Typically, classic linear algorithms like linear regression or principal com-
ponent analysis can be extended to this type of linear function architecture.
Besides standard vector space operations, most such algorithms require only an
inner product. The resulting learning problem is often convex in α, allowing for
its efficient solution even in high-dimensional cases. All Hilbert space operations
on f : addition, scalar multiplication, and inner products, can be expressed in
terms of linear combinations of inner products of the basis functions fi. Thus,
only a finite number of “basis” inner products needs to be known, which are
collected in the Gram matrix K ∈ Rn×n with entries Kij = 〈fi, fj〉. The result-
ing learning algorithm is then formulated for the coefficients α, and it depends
on the basis functions only in terms of the positive semi-definite “kernel” Gram
matrix K.

The basis functions fi usually originate from a kernel function k : X×X → R
given ‘training’ data {x1, . . . , xn}, by defining fi(·) = k(·, xi). For an input space
X and a positive definite kernel function k : X × X → R, Mercer’s theorem
ensures the existence of an only implicitly defined feature (Hilbert) space H and
a feature map φ : X → H, such that the kernel k(x, x′) = 〈φ(x), φ(x′)〉 computes
the inner product of the features. Alternatively one can start from an embedding
into a Hilbert space with given inner product and define the kernel function as
k(x, x′) := 〈φ(x), φ(x′)〉. In this study we are interested in learning functions,
and thus an only implicitly defined (function) feature space is not helpful. Thus,
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we will rely on the latter approach starting from a given set of basis functions
with explicitly defined inner product thereon.

Kernel methods are typically non-parametric, since the set of basis functions
in use scales naturally with the data at hand. In learning, this high flexibility
comes at the danger of easily overfitting the training data. The standard counter
measure is regularization, which is most commonly achieved by augmenting the
objective function of the learning problem with a so-called complexity penalty.
The penalty is introduced by minimizing the squared norm ‖f‖2 of the function
f in the Hilbert space. For a fixed set of basis functions with kernel matrix K
and a function f with coefficient vector α the squared norm can be written as
‖f‖2 = αTKα. This relation demonstrates also how computations in the infi-
nite dimensional function Hilbert space can be expressed by finite computations
based on pairwise inner products of basis functions.

4 Learning Continuous Functions

Consider learning continuous functions f : [0, 1] → R, f ∈ C([0, 1]) based on
minimizing a cost or fitness function F : C([0, 1]) → R. The space C([0, 1]) of
continuous functions on the unit interval is an infinite dimensional vector space.
This space is often augmented with the inner product

〈f, g〉 =

∫ 1

0

f(t) g(t) d t . (1)

In most circumstances the parameter t is interpreted as time. Our method im-
mediately generalizes from the unit interval to R or even to Rn or subspaces
thereof.1 In fact, it is one of the strengths of kernel methods that the very same
proceeding can be generalized to any domain X. Our problem also requires to
evolve functions f : [0, 1] → Rd with multiple components, which amounts to
evolving d real-valued functions f (1), . . . , f (d) in parallel with the fitness function
being defined on C([0, 1])d.

4.1 Indirect Kernel Encoding

Why should the function be represented as a kernel expansion? In contrast to
many other evolutionary search and learning tasks there is no direct encod-
ing of the problem available, since (1) the search space is infinite dimensional
and would thus require an infinitely long chromosome, and (2) even if this was
possible, continuity of the solution would be hard to maintain in such a repre-
sentation. This forces the use of an indirect encoding. Many such encodings are
well established in the machine learning literature, such as feed-forward neural
networks and kernel expansions, which are both known as universal function
approximators. Other simple choices are polynomials or Fourier expansions.

1 Care has to be taken that the function space is restricted to L2 functions, that is,
functions of finite norm.
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However, using a chromosome of fixed finite length to encode elements of
an infinite dimensional function space is conceptually unsatisfactory, since the
choice of the subspace remains necessarily arbitrary. The issue is resolved by
defining a nested sequence of growing subspaces, which encompass the full search
space. For this purpose, let {f1, f2, . . . } be a basis of a dense subspace of the
function space C([0, 1]), and let (n`)`∈N be a sequence of natural numbers tending
to infinity. Then

F` = span
(
f1, . . . , fn`

)
⊂ C([0, 1]) (2)

is a sequence of finite-dimensional subspaces with the property that the union

∞⋃
`=1

F` (3)

of all of the nested subspaces is dense in C([0, 1]).
The resulting evolutionary search works in epochs, corresponding to the dif-

ferent subspaces. During the search, the sequence of spaces is traversed, starting
with relatively simple low-dimensional F` for small `. The low dimensionality
n` of the initial search spaces greatly simplifies the job of the evolution strategy
to come up with a coarse initial guess and to put the ES on track towards the
optimum. Then, during the process, the algorithm transitions iteratively to more
and more complex search spaces, increasing the epoch index ` in order to reach
a sufficient level of detail. This added flexibility allows for a controlled iterative
refinement process, guiding the evolutionary search along a path of solutions of
increasing complexity towards the optimum.

Sometimes the right task granularity is known in advance. Then it may be
feasible to use this fixed representation instead. However, the beauty of our
approach is that it eventually reaches the necessary complexity in any case.

Starting the search in relatively low-dimensional search spaces has a strong
regularization effect. However, as the dimension of the search space grows it
becomes more important to further regularize the solution. We use the stan-
dard two-norm penalty

∑d
i=1 ‖f (i)‖2 over all components of the function for this

purpose.
The choice of basis functions fi is arbitrary to some extent. Natural choices

are polynomials (either monomials or a Legendre basis), or Fourier basis func-
tions. However, these choices are global in the sense that changing the corre-
sponding coefficient affects the resulting function in the whole unit interval. For
the purpose of evolving first a coarse approximation of the function and adding
details in later stages it is more intuitive to use a basis that allows for local
modifications. Therefore Gaussian kernels are employed, ranging from relatively
broad to arbitrarily peaked (and therefore localized) function primitives. This
property of Gaussians is important in this context, because the effect of coeffi-
cient mutation is local, and often advantageous.

At each level of complexity ` a growing number of more and more peaked
basis functions is centered on positions on an equidistant grid, see figure 2. The
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algorithm starts with the minimal number of two basis functions at the positions
0 and 1. At each transition each interval between two basis functions is split in
half, and the new kernel width is chosen equal to the refined grid distance. This
leaves us with 2`−1+1 additional basis functions per level of complexity, resulting
in a total of n` = 2` − 1 + ` ∈ O(2`) basis functions. The basis functions are
centered on the basis points bi,` = i · σ` for i ∈ {0, 1, . . . , 2`−1} with σ` = 21−`,
and have the form

f(n`−1+i)(t) = exp

(
− (t− bi,`)2

2σ2
`

)
= exp

(
−2(2`−3) · (t− bi,`)2

)
. (4)

With this choice the number of basis functions grows exponentially over the
epochs. At first glance this may seem to cause computational problems. However,
note that other families with polynomial growth of the number of basis functions
can be used. Moreover, fast growth of the number of bases allows the algorithm
to arrive quickly at the required accuracy. An equivalent point of view is that
it takes only a logarithmic number of epochs to arrive at the number of basis
functions required for solving a given task.

When integrating over the whole real line the inner product of each pair of
these basis functions can be computed analytically. However, this is not the case
for the domain [0, 1], but it can easily be approximated numerically. A simple
approximation is given by the expression

〈f, g〉 ≈ 1

T + 1

T∑
t=0

f(t/T ) · g(t/T ) , (5)

which has the advantage to be positive semi-definite by itself. This approximation
is a natural choice if time needs to be discretized anyway, for other purposes.

The above formula (5) together with the basis functions (4) is employed in
all experiments presented in the remainder of this paper.
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4.2 An Illustrative Example

Let us have a look at a simple, yet non-trivial example. Consider planning a
trajectory of a mobile robot in a room with obstacles. A (non-convex) room
layout is depicted in figure 3. Our simplified robot is modeled as a point in
this room, and it can move freely into any direction. Its trajectory is a curve
f : [0, 1] → R2, mapping time to position (any time interval can be re-mapped
to the unit interval). Thus, in this example the d = 2 functions to be found
correspond directly to the position of the robot in the plane.

The solution space is restricted by the condition f(0) = x0, since the initial
position x0 of the robot is given. Our goal is to reach a target location at the
end of the movement with an “as simple as possible” trajectory. This goal is
expressed by the fitness function

F (f) = ‖f(1)− xtarget‖+ λ · 〈f, f〉 ,

where λ > 0 is a regularization constant. Also, the point f(t) is supposed to
avoid hitting a wall for all times t ∈ [0, 1]. Note that in this example the walls
form highly non-convex constraints. Checking this condition amounts to collision
detection, so in practice the condition is checked at discrete points in time, say,
at t ∈ {0, 0.01, 0.02, . . . , 1}.

Fig. 3. Illustration of the example task of
trajectory planning for a mobile “point”
robot. The dotted circle indicates the start-
ing position, and the goal is to find a contin-
uous curve to the target location, indicated
by the solid circle. The gray areas are ob-
stacles (walls).

The constraint f(0) = x0 could be
handled by a further term in the fit-
ness function. However, since the ini-
tial configuration is known it is eas-
ier to encode this term into the ba-
sis functions. W.l.o.g. let us assume
that x0 = (0, 0). Then we modify all
basis functions fi(t) by subtracting a
constant, resulting in the new basis
functions f̃i(t) = fi(t) − fi(0). This
way we obtain the property f̃i(0) = 0,
and thus f(0) = 0. There are two rea-
sons for not handling the goal posi-
tion in a similar way: First, an encod-
ing that enforces reaching the target
all the time will result in a very large
fraction of all solutions to be infeasi-
ble, and second, in the more involved
robotic setups in the next section this
would require solving the inverse kine-
matics problem.

The constraints (avoiding the
walls) can be handled in many dif-
ferent ways. A simple solution is
the “death penalty” strategy, which
amounts to discarding (and thus never
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selecting) infeasible individuals. For elitist selection this is equivalent to adding
a huge (or infinite) penalty term to the fitness function, which turns the fitness
into a discontinuous function.

In our example the number of real-valued functions is d = 2. The search
starts in the first epoch with two coefficients for the widest Gaussian kernels
resulting in an only four-dimensional search space of curves. The result of the
first epoch is depicted in figure 4 (left). Two observations are in place: The
space F1 is too inflexible to solve the problem, and the relatively few, simple
basis functions force the trajectory to be very regular at this stage. The current
solution is not good enough for our needs, so the algorithm proceeds with the
next epoch, adding more peaked basis functions.

It takes the algorithm five epochs to solve the problem with high accuracy.
This amounts to 25 + 5 − 1 = 36 coefficients per function, and 2 · 36 = 72
coefficients in total. The result is shown in figure 4 (right). The final trajectory
plan is obviously more complex than the coarse initial plan, but it is not over-
complicated. Note that the objective term ‖f(1) − xtarget‖ does not keep the
trajectory from evolving all kinds of bumps in the time interval [0, 1), just by
chance, as a by-product of the randomized search. However, the regularization
term is an elegant way of avoiding such correct but overly complex solutions.

Now let us pretend that we knew beforehand that five epochs, or 36 basis
function, are sufficient for this task. What happens if we run only epoch number
five of the algorithm, starting from scratch? We observe two properties of the
resulting trajectories: First, the trajectories found are indeed much more com-
plex, since the process does not profit from the implicit regularization of starting
with the best solution from the previous epoch. This issue could be fixed by in-
creasing the complexity penalty λ in the fitness function. But more importantly,
the algorithm converges into a local optimum in about 50% of the runs, that is,
it does not reach the target location. Thus, iteratively increasing the solution
complexity stabilizes the search process.

4.3 Covariance Matrix Extension

Search in a fixed subspace F` is relatively straightforward, once an indirect
kernel-based function encoding is fixed. At the end of each epoch the evolution
strategy has identified a (local) optimum in this space. If the corresponding
function is not a sufficiently good solution to the problem at hand then the
search space needs to be extended to the next subspace F`+1. Since the subspaces
are nested we can reuse previously accumulated knowledge by performing a
“warm-start” of the search. Projecting individuals and even the mean of the
search distribution from F` into the extended subspace F`+1 is rather trivial;
the corresponding coefficient vectors can simply be padded with zeros.

From an evolutionary algorithms point of view the transition from a set
{f1, . . . , fn} to an extended set {f1, . . . , fn, fn+1, . . . , fN} of basis functions is
a non-trivial step. In this situation the coefficient vector α = (α1, . . . , αn) is
extended to α′ = (α1, . . . , αN ), and thus the xNES search distribution needs
to be extended to the new coefficients. Let µ ∈ Rn, σ > 0 and B ∈ Rn×n
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Fig. 4. Left: best trajectory found in the first epoch; right: solution of the problem,
found in epoch five. Both trajectories seem to come dangerously close to the wall,
which could be avoided by adding a further penalty term for a safety distance to the
fitness function. This term is omitted here for simplicity. Also, the trajectory could
be shorter, but again, we ignored several reasonable goals in order to keep the fitness
function clean and simple.

denote distribution mean, standard deviation, and normalized covariance factor
of the search distribution over α, and let µ′ ∈ RN , σ′, and B′ ∈ RN×N denote
the extended parameters, describing a search distribution over the extended
coefficient vector α′.

Three different approaches for extending the search distribution are consid-
ered. The seemingly most näıve approach is to reset the search distribution to a
radially symmetrical shape, which amounts to setting the normalized covariance
factor B′ to the identity matrix of dimension N . This approach can be reasonable
under the assumption that the information contained in the search distribution
by the end of the previous epoch is of no or very limited use, for example, be-
cause the search distribution encoded by B was too much tailored towards fine
tuning. However, the scale σ can be preserved, or truncated to plausible limits.

Alternatively, the evolved covariance matrix for the old coefficients can be
kept, which leaves us with the problem of filling in the new entries of the ma-
trix B′. One seemingly canonical way of extending the search distribution is to
pick the parameters that minimize the Kullback-Leibler divergence (or any other
distance measure) between the old and the extended search distribution. How-
ever, because the old distribution can be represented exactly with the new set
of coefficients this would amount to not using the new components at all, which
does not result in additional flexibility. Instead, we need a compromise between
preserving learned knowledge encoded in the current search distribution, and
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extending the search to new directions. The simplest extension takes the form

B′ =

(
B 0
0 I

)
, (6)

where I denotes the identity matrix of appropriate dimension. However, the pre-
viously available and the extended basis functions are not independent. Although
we can not know the coupling of old and extended coefficients that will result
in optimal progress of the ES on the current fitness function, we can take the
structure of the basis functions themselves into account. Ideally, the extension
of the search distribution should have the following properties:

1. The distribution center (encoding the currently best solution in (1+1)-xNES)
should not change.

2. The covariance of the extended distribution, projected to the subspace spanned
by the previously available directions, should also be preserved.

3. In the newly available subspace orthogonal to the previously available direc-
tions the covariance matrix should be a multiple of the unit matrix, such as
σ2I.

These properties involve a decomposition into orthogonal subspaces and thus
involve the inner product. The non-trivial assumption here is that the Hilbert
space structure induced by the kernel framework allows for a useful problem
decomposition. Note that the simpler strategy of extending the covariance factor
with the unit matrix makes a different assumption, namely that the covariance
matrix restricted to the space spanned by the new basis functions should be σ2I.
However, this space is usually not orthogonal to the search space of the previous
epoch. Property 3 requires a uniform extension only in the subspace orthogonal
to the space in which self-adaptation has already taken place.

The following text thoroughly describes the technical details of fulfilling prop-
erty 3. As usual in kernel methods, all computations needed to extend the covari-
ance matrix can be expressed in terms of inner products of the basis functions.
Let K ∈ RN×N denote the kernel Gram matrix with entries Kij = 〈fi, fj〉,
collecting all pairwise inner products. The matrix is split into the sub-matrices

K =

(
Koo Koe

Keo Kee

)
,

where o and e indicate old indices {1, . . . , n} and extended indices {n+1, . . . , N},
respectively. Let further Φ = (f1, . . . , fN ) denote the collection of basis func-
tions, thought of as “column” feature vectors, and let Φo and Φe denote the
corresponding sub-matrices, split into old and extended basis functions. Then
we have K = ΦTΦ, Koe = ΦTo Φe, and so on.

The split of the function space F ′ = span(f1, . . . , fN ) into F = span(f1, . . . , fn)
and its orthogonal complement F⊥ can be expressed by means of the orthogonal
projection Π : F ′ → F ′ onto F , Π(f) = Φo(Φ

T
o Φo)

−1ΦTo f . This linear mapping
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written in matrix notation becomes Π = Φo(Φ
T
o Φo)

−1ΦTo .2 The corresponding
projection for the coefficients α is π : RN → RN , π(α) = Φ−1ΠΦα. We rewrite

π = Φ−1 ·Π · Φ
= Φ−1 · Φo(ΦTo Φo)−1ΦTo · Φ
=
[
(ΦTΦ)−1 · (ΦTΦ)

]
· Φ−1 · Φo(ΦTo Φo)−1ΦTo · Φ

= (ΦTΦ)−1 · ΦTΦo · (ΦTo Φo)−1 · ΦTo Φ

= K−1 ·
(

Koo

Keo

)
·K−1oo ·

(
Koo Koe

)
.

The matrices Π and π allow to represent the two different sub-spaces involved
in properties 2 and 3. The old search space is the image of the projection, and
the component of a vector orthogonal to the old subspace is the vector itself
minus its projection.

Let us introduce the basis functions f̄i = fi−Π(fi) for the extended indices,
which are projected to F⊥. Thus, the vectors {f̄n+1, . . . , f̄N} span the orthogonal
complement of the old search space. Then properties 2 and 3 in the above list
indicate that the covariance matrix w.r.t. coefficients β of the basis functions
{f1, . . . , fn, f̄n+1, . . . , f̄N} should be chosen as

Σ′ =

(
Σ 0
0 σ2I

)
.

The coefficients β are linearly related to α′ by β = Mα′, with the matrix

M =

(
2I 0
0 I

)
− π .

Hence, the extended covariance matrix for the coefficients α′ is given by

Σ′ = (M−1)T ·Σ′ · (M−1) ,

which amounts to the update

B′ =

(
B 0
0 I

)
· (M−1) (7)

of the normalized covariance matrix factor.
This covariance matrix extension is the canonical choice in the sense of prop-

erties 2 and 3. It can be computed relatively straightforward with simple matrix
operations involving the kernel Gram matrix K, the old covariance factor B,
and the scaled unit matrix σ2I on the new components.

When adapting multiple functions simultaneously, there is no direct struc-
tural connection between coefficients of kernels corresponding to different com-
ponents. Thus, when evolving a function f : [0, 1] → Rd for d > 1, the kernel

2 For any (not necessarily square) matrix M we write M−1 for the Moore-Penrose
pseudo-inverse.
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matrix K may be replaced by a d-fold block diagonal matrix with the kernel
Gram matrix in each block. However, depending on the task, the connection
between different components may be clear, in which case this general scheme
should be modified accordingly.

4.4 Switching between Epochs and Representations

A principled ES for search in the nested spaces F` should provide an automated
way of deciding when to switch from an underlying representation to the next
more complex one. Intuitively, this should happen whenever better progress can
be made on an extended set of basis functions, and at the latest when the
evolution strategy converges.

The only reasonable switching criteria that can be derived from the sequence
of fitness values, success rates, or the internal state of the ES are related to
convergence. Such criteria are typically used as stopping conditions. For example,
the algorithm is stopped when the step size σ of xNES falls below some value
σmin, or the number of fitness evaluations exceeds a threshold N0. When dealing
with nested search spaces the algorithm moves on to the next representation
instead of stopping.

The resulting switching behavior is not necessarily the best possible. It may
be advantageous to switch the representation earlier in order to avoid the possi-
bly long convergence phase. Thus, we want the algorithm to switch to the next
more complex representation as soon as this pays off. It is virtually impossible
to find a good switching point by just looking at the history of fitness values or
success rates. Instead one can use a trial-and-error procedure, which comes at
the cost of a few additional fitness evaluations: Every T generations of the ES
we sample a set of λext points from the current search distribution, but extended
to the next set of basis functions. We obtain fitness values {f ext1 , . . . , f extλext

} for
the extended representation, and {f cur1 , . . . , f curλext

} for the current search distri-
bution, by projecting the search points back to the current set of basis functions.
The question whether the extended fitness values systematically outperform the
current ones can be answered based on the confidence score of a one-sided Mann-
Whitney U-test (also known as Wilcoxon rank sum test), with null hypothesis
f ext ≥ f cur. The algorithm decides to switch to the extended set of basis func-
tions if the null hypothesis is rejected at a confidence level of p0, indicating that
the extended representation makes consistently better progress, or if the global
step size σ falls below a critical threshold σ0, indicating convergence of the ES.

The parameters T , λext, and p0 have to be chosen carefully. We propose
to set the constants to conservative values, because switching between levels of
complexity works only in one direction. Missing an opportunity to switch is not
dramatic, because most probably the switch will then happen after only T further
iterations. However, increasing the complexity too early during the optimization
may seriously impair performance. In the experiments, it turns out that such an
automated switching technique is indeed hard to adjust, and that in practice it
is easier to rely solely on convergence detection, which also saves the additional
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Algorithm 2: Epoch-based search with iterative refinement of the repre-
sentation.
Input: sequence of basis functions (fi)i∈N,

sequence of cardinalities (n`)`∈N,
solution dimension d,
initial search point µ ∈ Rd·n` ,
initial step size σ,
fitness function F ,
convergence criterion, e.g. a threshold,
covariance matrix extension mechanism Extend(), e.g., equation (7).

epoch counter: `← 1
B← I
while stopping condition not met do

iterate xNES: (µ, σ,B)← xNES(µ, σ,B, F )
if convergence (e.g., σ < threshold) then

// start next epoch:
`← `+ 1

µ←
(
µ
0

)
∈ Rd·n`

optionally truncate the range of sigma: σ ← max{σ, σ0}
extend the covariance matrix factor: B← Extend(B)

end

end
return µ

fitness evaluations. The epoch-based algorithm for search in infinite-dimensional
function spaces is summarized in algorithm 2.

4.5 Comparison to Alternative Methods

Depending on the context there are many different ways to represent and learn
continuous functions. The method of choice depends in particular on properties
of the objective function and of eventual constraints. Our approach is partic-
ularly useful if alternative, more efficient techniques such as analytic solutions
of regression problems, gradient-based methods, or convex optimization are not
applicable. Thus, our method is targeted at non-smooth or even discontinuous
objective functions and at non-convex constraints. It is even applicable if no ana-
lytic expression for the constraints is available at all. Simple constraint handling
techniques for evolutionary algorithms, such as resampling and the death-penalty
strategy, require only that the feasibility of a search point can be queried (e.g.,
by a call to a function returning a boolean, similar to the fitness function return-
ing a real number). In such situations most standard methods are not applicable
at all, leaving direct search as the only option.

The problem of trajectory planning while avoiding collisions with arbitrary
obstacles is of exactly this type. The feasible region is in general non-convex,
which can be expressed either with non-convex constraints or with a discontin-
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uous objective function. A robot arm configuration is a function of the joint
angles, and therefore trajectory planning naturally takes place in joint angle
coordinates. On the other hand, obstacles are represented in task coordinates
(typically three-space), and no analytic expression is available in joint angle (con-
figuration) space. The two spaces are connected by the kinematics of the robot,
which is a unique and simple-to-compute mapping in the forward direction (joint
angles to task space configuration), but inverse kinematics is in general non-
unique and much harder to compute. Also, collision detection in task-space is
typically conceptually simple and computationally cheap. Our approach requires
only forward kinematics and collision detection.

Dynamical systems approaches, such as the potential field method, are a
popular alternatives for trajectory planning. One advantage is that such methods
can naturally work online. The potential field dynamics can be defined either
in configuration space or in task space. When planning in configuration space,
the obstacles need to be transformed into joint angle representations, such that
appropriate repellers can be placed. In a non-trivial robotics scenario this is
generally infeasible. Dynamics in task space are easy to define. This has the
disadvantage that a large share of the complexity of path planning is left to
a sub-module that translates movements of the end-effector in task space into
joint angles. This amounts to continuously solving (at least a linearized version
of) the inverse kinematics problem.

Another conceptual distinction to online methods is as follows: Online meth-
ods find exactly one trajectory, by computing the best control output in each
step, typically without ever making a “global” movement plan. Our offline method
does make such a global movement plan, at the expense of searching a possibly
large number of trajectories. These offline simulated trajectories can be thought
of as “mental trials”, and execution starts only once a sufficiently good plan is
identified. Of course, this offline planning paradigm requires a certain level of
continuity of the environment. An online method is more suitable in scenarios
that require continuous adaptation of the movement plan during the movement
due to quickly or abruptly changing circumstances.

In the light of this discussion our method compares favorably for its minimal
prerequisites. However, depending on the application, it may be limited by its
computational needs for simulating a possibly large number of candidate trajec-
tories in a forward kinematics model, including collision detection, and by its
offline character.

5 Experiments

In this section, our method is evaluated on two different robot planning tasks.
Redundant robot arms consisting of a number of linked segments are placed in
environments with obstacles. The tasks challenge the algorithm with the diffi-
culty of handling the constraints, a problem that can equivalently be expressed
by a non-continuous fitness function, making evolutionary strategies interesting
candidates. The method generates solutions with arbitrary precision, from coarse
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functions represented by few kernels to fine solutions constructed from a large
number of kernels.

The complexity of the task can be tuned by adjusting the length of the kine-
matic chain of the arm as well as by placing an arbitrary number of obstacles in
the environment. The obstacles can make the problem really difficult by forming
a narrow, curved corridor in a high-dimensional search space that leads to the
optimal solution. This is the case in particular in joint space coordinates. The
mapping from joint angles to Cartesian task space is highly non-linear, espe-
cially for long kinematic chains. Thus, even obstacles with a relatively simple
structure in Cartesian space, such as boxes, result in highly curved and typically
non-convex boundaries of the feasible region in joint space.

The following sections introduce the robot models, the parameterization of
trajectories, collision detection, and the form of the fitness function. Then the
actual experiments and results are presented.

5.1 Arm Models

The first benchmark uses a kinematics-only variant of an octopus-like highly
redundant arm [33]. This two-dimensional plant allows for easy design of in-
teresting benchmarks, and both kinematics and collision detection are easy to
implement and very fast to compute. As already mentioned in the introduction
we focus on evolution of a kinematic plan, under the assumption that the actual
control, involving the dynamics of the arm, can be decoupled from this problem.
Using the kinematic simulation only reduces complexity of the simulation and
speeds up the objective function evaluation significantly.

The octopus arm consists of S = 8 segments, with (arbitrarily chosen) lengths

Λ =
(
0.9, 0.9, 0.8, 0.8, 0.7, 0.7, 0.6, 0.5

)
.

The kinematics of each joint are described by an initial position and upper and
lower joint limits. The initial positions are set to 0, and joints are limited to the
interval [−2.5, 2.5] (in radians). Given an anchor point x0 as well as joint angles
ξ1, . . . , ξS the positions of all joints can be computed recursively as

xn = xn−1 + Λn ·
(

cos(
∑n
i=1 ξi)

sin(
∑n
i=1 ξi)

)
. (8)

In a second experiment this setup is extended to a redundant humanoid robot
arm with seven degrees of freedom (7-DOF). A nice side effect of planning in
joint space is that our method works unchanged in three-space, without even
affecting its complexity.

The three-dimensional 7-DOF arm follows the typical humanoid setup of
three DOF in the shoulder, and two DOF in the elbow and the wrist, respectively,
with plausible human-like joint limits. In the (initial) zero position the arm
is spread out sideways, with the elbow slightly angled. Its kinematics can be
computed along the chain with the same recursive procedure as for the two-space
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arm, for example, by concatenating parameterized 4 × 4 affine transformation
matrices.

The initial configurations of the robot arms together with the task constraints
(obstacles) and target locations are illustrated in figure 5.

(a) (b)

Fig. 5. Environments and initial configurations in the different trajectory planning
tasks. The octopus arm (a) and the humanoid 7-DOF (b) arm are shown in their
initial configurations, with kinematic chains from left to right. In the left figure the
target position is indicated by the dot in the upper left. The target is moving forth and
back twice on a line during the second half of the time frame (see section 5.5). In the
three-dimensional figure on the right the target location is indicated by a little ball,
which is placed behind two big obstacles, such that the arm needs to reach through a
narrow slit in between.

5.2 Trajectory Parameterization

Trajectories are encoded as tuples of functions, with each joint angle being a
function of time t ∈ [0, 1]. This amounts to eight functions (eight joints) for the
octopus arm and seven functions for the 7-DOF humanoid arm.

The joint limits are a special type of constraint. They form a simple box
independent of the task in the joint angle space. Therefore, it is reasonable to
encode these constraints implicitly into the parameterization. We achieve this by
translating function values to joint angles with a sigmoid. For a function value
f , lower and upper limits Ll and Lu, and zero position angle ξ0, the joint angle
ξ is computed as

ξ = σ(f) =

ξ0 + (ξ0 − Ll) · tanh
(

f
ξ0−Ll

)
for f ≤ 0 ,

ξ0 + (Lu − ξ0) · tanh
(

f
Lu−ξ0

)
for f ≥ 0 .
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This piecewise defined sigmoid function makes sure that the joint angle is in the
zero position ξ0 for a function value of zero, and that the joint limits are only
reached in the limits of f = ±∞.

This property also allows for a simple encoding of the constraint that the
trajectory needs to start in the given initial arm configuration. It is reflected by
the following change in the basis functions: Instead of the Gaussians fi the shifted
Gaussians f ′i(t) = fi(t) − fi(0) are used, automatically fulfilling the property
f(0) =

∑n
i=1 αif

′
i(0) = 0 for all coefficient vectors α.

In summary, the indirect trajectory encoding is defined by the following chain
of computations:α1,1 . . . αS,1

...
...

α1,n . . . αS,n

 7→
f

(1)(t) =
∑n
i=1 α1,i

[
fi(t)− fi(0)

]
...

f (S)(t) =
∑n
i=1 αS,i

[
fi(t)− fi(0)

]
 7→

σ1(f (1)(t))
...

σS(f (S)(t))


In the first step the coefficients α are translated into functions f (i)(t) encoded as
kernel expansions in the basis functions fi(t)−fi(0) (which ensures f (i)(0) = 0).
In the second step the unconstrained function values are squeezed into the joint
limits with a sigmoid. The result is a trajectory ξ(t) in joint space. This joint-
space trajectory can be translated into an operational space trajectory x(t) by
means of the arm model (8).

5.3 Collision Detection

The search aims for movement plans without arm self-collisions and collisions
with obstacles. The arm as well as all obstacles are modeled as unions of simple
geometries. In the two-dimensional case of the octopus these are line segments,
and all geometries in the three-dimensional case are represented as capsules
(cylinders with rounded ends). Let S be the number of segments of the robot
arm, and let O be the number of simple geometries describing the obstacles.
Then a brute-force collision test takes O(S2 +O · S) operations. The number S
is bounded a priori, and the test scales linear in the number O of obstacles. In
our experiments this number is low enough such that the brute-force test of all
possibly colliding pairs is feasible (see also figure 5).

Time is discretized into 100 steps, and thus into 101 configurations at times
T = {0, 0.01, 0.02, . . . , 1}. Instead of much more complex continuous time colli-
sion detection, this discretization allows us to compute collisions only for fixed
configurations, which greatly increases computational efficiency and simplifies
the implementation.

5.4 Fitness Function

In the most general formulation the robots are supposed to reach with the tip
xS of the arm for a target location xtarget(t) within the time interval [ttarget, 1].
In the simplest case ttarget = 1 and xtarget is a single point. As mentioned before,
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the arm starts from a given initial configuration and it is supposed to avoid self-
collisions and collisions with obstacles during the whole time course. On top of
that the algorithm should avoid over-complex solutions. These goals are encoded
in the following form of the fitness function:

F =
∑
t∈T

[
γtarget · 1[ttarget,1](t) ·

∥∥xS(t)− xtarget(t)
∥∥

+

S∑
s1=1

(
s1−2∑
s2=1

Ca
(
d(As1(t), As2(t))

)
+

S∑
s2=s1+2

Ca
(
d(As1(t), As2(t))

))

+

S∑
s=1

O∑
o=1

Co
(
d(Mo, As(t))

)]

+γc ·
S∑
s=1

αTs Kαs

The coefficients γtarget and γc encode the relative importance of the different
sub-goals: reaching the target, avoiding collisions, and finding a low complexity
solution, respectively. The vectors xS(t) and xtarget(t) denote the positions of the
tip of the arm and the target. The arm segments are encoded as the sets As(t)
and the (in this case static) obstacles as Mo, with S and O denoting the number
of arm segments and obstacles. These sets are compared with the usual distance
function d(A,B) = min

{
‖a− b‖

∣∣ a ∈ A, b ∈ B} for compact sets A and B. The
vectors αs hold the coefficients encoding function number s ∈ {1, . . . , S} that
controls joint angle ξs. The discontinuous collision penalty function Ca takes a
value of 1010 at zero, indicating collision, and zero otherwise. The desire to stay
away from obstacles is encoded in the ramp shaped penalty function

Co(d) =


1010 for d = 0,

γ · (d0 − d) for 0 < d < d0,

0 otherwise.

The complexity control constant γc is setup such that the coefficients are typ-
ically kept within a range of about ±10, resulting in smooth trajectories. This
is an easy to check criterion. The evaluation of the fitness function requires the
execution of the plan on the kinematic model, including collision detection in
each time frame.

The (1+1)-xNES hill-climber is applied in all experiments. The draconic
collision penalty of 1010 effectively results in a restriction to feasible collision
free movements, because the fitness of any trajectory involving colliding poses
is far worse than the initial fitness of the motionless arm in its zero position
(corresponding to the starting point α = 0). Hence, in this setting constraint
handling via a fitness penalty and other established techniques—such as death
penalty constraint handling—are equivalent, and the discontinuity in fitness can
be translated one-to-one into the complicated task constraints in joint space



Kernel Representations for Evolving Continuous Functions 23

Algorithm 3: Robot simulation and fitness evaluation for the octopus
arm.
F ← 0
for s ∈ {1, . . . , S} do

f (s)(t) =
n∑
i=1

αi,s · [fi(t)− fi(0)]

σs(f) =

(ξ0)s + ((ξ0)s − (Ll)s) · tanh
(

f
(ξ0)s−(Ll)s

)
for f ≤ 0 ,

(ξ0)s + ((Lu)s − (ξ0)s) · tanh
(

f
(Lu)s−(ξ0)s

)
for f ≥ 0 .

F ← F + γc ·αs
TKαs

end
for t ∈ {0, 0.01, 0.02, . . . , 1} do

β ← 0
for s ∈ {1, . . . , S} do

ξ(s)(t)← σs
(
f (s)(t)

)
β ← β + ξs(t)

xs ← xs−1 + Λs ·
(

cos(β)
sin(β)

)
As ← line segment [xs−1(t),xs(t)]

end
F ← F + γtarget · 1[ttarget,1](t) ·

∥∥xS(t)− xtarget(t)
∥∥

F ← F +
S∑

s1=1

(
s1−2∑
s2=1

Ca
(
d(As1(t), As2(t))

)
+

S∑
s2=s1+2

Ca
(
d(As1(t), As2(t))

))
F ← F +

S∑
s=1

O∑
o=1

Co
(
d(Mo, As(t))

)
end
return F

posed by the obstacles. The whole process of function composition, joint limit
handling, forward kinematics, collision detection, and evaluation of the regular-
ized fitness function is summarized in algorithm 3.

5.5 Setup

The tasks for the two robot arms, consisting of initial configuration, obstacles,
and target location, are illustrated in figure 5.

The octopus arm faces a casing-like obstacle that keeps it from moving
straight (in joint space) to the target location. A second obstacle interferes with
movements close to the target. In the first half of the time frame the octopus
arm needs to reach the target location, avoiding the obstacles. In the second half
of the time frame the target starts to move, making two oscillation around its
initial position. The target location relative to the shoulder (anchor) point x0 of
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the octopus arm is given by

xtarget(t) =



(
0

3.5

)
for t ≤ 0.5,(

sin(8πt)

3.5

)
for t > 0.5.

The octopus arm first needs to contract and turn to reach the target location
around the obstacles. Then it needs to track the moving target as closely as
possible.

The humanoid 7-DOF arm is confronted with the task to reach to a target
location that is hidden behind two large wall-like obstacles. The only way to
reach the goal location is to carefully reach through a narrow slit in between the
two obstacles. The slit is in no way aligned with the robot’s joints. Thus, this
task requires a highly coordinated movements of different joints.

5.6 Results

The octopus arm trajectory in a typical run is shown in figure 6. In the first epoch
the algorithm quickly manages to move the arm towards the target, where the
obstacles force it to contract and turn in a controlled way. In a few trials it
reaches local optima with the arm trapped behind an obstacle in a nearly self-
colliding position. However, in the majority of runs the algorithm manages to
find a coarse initial movement plan towards the goal, while following the moving
target is far beyond the available solution complexity within the first epoch. In
later epochs, typically in epochs three or four, the fitness starts to improve again
considerably. At this time the solution space has become sufficiently rich to allow
for tracking the moving target. The trajectory becomes more and more refined,
finally following the moving target with convincing precision.

The second experiment demonstrates that our method is suitable for realistic
robots, and easily scales to this case. A typical trajectory is depicted in figure 7.
The algorithm managed to solve this problem in 9 out of 10 trials, which makes
multi-start strategies nearly superfluous. The solution is consistently found al-
ready at the first level of complexity, with only two coefficients per joint. A
very good approximation is already available after around 1.000 fitness evalua-
tions, which takes around one second on a standard laptop. Thus, the method
is feasible for real-time planning.

In both experiments we observed differences in fitness between trials due to
random effects introduced by the evolution strategy. The experiments indicate
that these effects exceed the impact of the methods used for switching between
epochs and extending the covariance matrix. We found nearly no impact of the
different strategies for extending the covariance matrix, and any sufficiently con-
servative epoch switching strategy results in qualitatively equivalent trajectories.
Thus, in accordance with Occam’s razor, we rely on the simplest such strategy
in our experiments, as follows: We switch to the next epoch only when the evolu-
tion strategy converges, by checking whether the step size parameter falls below
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(a) (b)

(c) (d)

(e) (f)

Fig. 6. Following a moving target under obstacle avoidance constraints. Sub-figure (a)
shows the initial setup of the arm, with obstacles in place. The moving target, which
performs two sine wave movements during the second half of the time frame, is in the
upper left. To solve the task, the arm needs to contract first, then turn and extend
around the small obstacle, and finally follow the target with its tip. Sub-figures (b) to
(f) correspond to the solutions at the end of epochs 1 to 5, with the movement of the
arm depicted in shades of gray. The behavior changes qualitatively at epoch 4 because
the solution complexity becomes sufficiently rich to follow the moving target.
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a small threshold, in this case 10−14. For the next epoch we reset this parameter
to a more reasonable value of 10−8 and extend the covariance matrix factor with
the unit matrix.

(a) (b) (c)

(d) (e) (f)

Fig. 7. Trajectory planning for a 7-DOF robot arm. The goal of the robot (blue) is to
reach the target position (green), through the narrow slit between the obstacles (red).
Sub-figures (a) to (f) show time steps t ∈ {0, 0.25, 0.5, 0.75, 0.9, 1}.

6 Discussion

The results have a number of implications. First of all, we have shown that
iteratively increasing the solution complexity results in more robust solutions,
compared to starting with a (fixed) high complexity. Furthermore, increasing
the solution complexity in an iterative manner allows the method to figure out
the ‘right’ level of complexity for the problem at hand by itself.

The seemingly complex trajectory planning problem for the 7-DOF humanoid
arm can be solved with only two coefficients per joint. This illustrates the power
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of our parameterization of squashing a Gaussian kernel expansion with a sigmoid
function between the joint limits. For complex tasks the method indeed profits
from an increase in solution complexity.

We have found that the epoch switch and the covariance matrix extension
methods can be conservative and simple in practice. This relieves us from tuning
sensitive hyper-parameters. We conjecture that the reasons might be as follows:
Switching too late is better than switching too early, which is why a conservative
switching strategy is more important than an elaborate one. Furthermore, the
self-adaptation capability of the evolution strategy can make up for possible
sub-optimal covariance matrix extensions. This indicates that for robustness
and simplicity of implementation, relatively simple strategies should be used in
practice.

The xNES algorithm is designed to follow the global trend of the fitness
landscape and to quickly identify a (local) optimum. However, the trajectory
planning problem often results in highly multi-modal landscapes, where the arm
can get trapped behind an obstacle or in a self-collision. Thus, in principle, our
method should be combined with a technique dealing with local optima. In the
tasks investigated in this study this turns out to be superfluous, and in general
a simple restart strategy should be sufficient as long as the success probability
is sufficiently high.

Our method is a powerful tool for trajectory planning under constraints, such
as obstacle avoidance. The experiment with a humanoid 7-DOF arm model meets
real-time constraints, mostly because the solution can be well approximated at
the first level of complexity. However, being based on an evolutionary algorithm,
the method can easily be parallelized. Parallelism is even easier to exploit in a
multi-start strategy.

7 Conclusion

We propose a principled framework for evolutionary learning in the infinite di-
mensional search space of continuous functions on the unit interval. This is a
very general setting, with many potential applications. Evolutionary algorithms
allow for searching in the presence of discontinuous objective functions and/or
non-trivial task constraints.

The proposed method of exhausting (a dense subspace of) the space of con-
tinuous functions with a nested sequence of finite dimensional sub-spaces makes
evolutionary search tractable without loss of conceptual flexibility provided by
the full function space.

The method profits from the kernel framework in two ways: First, the squared
norm in function space is a natural regularizer avoiding over-complex solutions.
Second, the kernel framework provides a canonical way of extending the evolu-
tionary search distribution when iterating over a sequence of nested sub-spaces.

The trajectory planning experiments demonstrate the advantage of itera-
tively evolving gradually more complex function representations. For a flexible,
redundant arm in two-space and a 7-DOF robot arm in three-space the resulting
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evolution strategy successfully copes with difficult trajectory learning problems
involving moving targets and obstacle avoidance.
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