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Abstract—A major limitation in applying evolution strategies
to black box optimization is the possibility of convergence into
bad local optima. Many techniques address this problem, mostly
through restarting the search. However, deciding the new start
location is nontrivial since neither a good location nor a good
scale for sampling a random restart position are known. A black
box search algorithm can nonetheless obtain some information
about this location and scale from past exploration. The method
proposed here makes explicit use of such experience, through
the construction of an archive of novel solutions during the run.
Upon convergence, the most ‘“novel” individual found so far is
used to position the new start in the least explored region of
the search space, actively looking for a new basin of attraction.
We demonstrate the working principle of the method on two
multi-modal test problems.

keywords: evolution strategies, novelty search, restart strate-
gies, black-box optimization

I. INTRODUCTION

Modern Evolution Strategies (ESs; [3, 5, 15]) are power-
ful “black-box™ optimization algorithms that efficiently self-
adapt their search strategy (i.e. the mutation step sizes) to
local properties of the search space, and are invariant to
linear transformations and monotone scaling of the fitness
function. These features ensure high performance even on ill-
conditioned problems with steep optima and nearly flat fitness
plateaus.

However, the price to be payed for following the fitness
gradient efficiently at all scales is that most ESs converge to a
local minimum, after which no further progress can be made
because the mutation step sizes vanish. Therefore, additional
mechanisms are needed to continue the search in multi-modal
fitness landscapes. Restart strategies [1, 2, 6] offer a simple
and efficient mechanism for handling multi-modality that can
be easily applied to any evolutionary search algorithm.

Recently, Novelty Search (NS; [12, 13]) has been proposed
as a way to sustain evolutionary progress indefinitely. Unlike
standard evolutionary search, where selection is based on
a fixed objective or fitness function, in NS individuals are
selected based on their “novelty” with respect to the solutions
seen so far. The hope is that the process of continually search-
ing for novel individuals will lead to increasingly complex
solutions that, as a side-effect, eventually solve problems of
interest.

While this goal-independent approach is conceptually inter-
esting, its real potential for optimization seems to be in main-
taining diversity in the context of conventional evolutionary
search (i.e. fitness-based selection) [4].

In this paper, ideas from novelty search are used to provide
a principled restart strategy that allows ES to escape local
minima and continue making progress, while preserving scale
invariance. The approach is tested on two multi-modal test
problem: (1) a scaleable objective function where the length
of a fitness plateaus and the number of local optima can be
adjusted, and (2) the standard Rastrigin benchmark.

II. NATURAL EVOLUTION STRATEGIES

The most notable strengths of Evolution Strategies (ES)
are fast self-adaptation of the search distribution to the local
properties of the fitness landscape, and invariance of the search
to transformations of the search space—importantly, translation
and scaling. Modern ES, such as CMA-ES [10] and xNES [8],
are even invariant under arbitrary affine linear transformations
of the search space (of course, up to initialization). And, rank-
based fitness assignment makes ES invariant under monotone
transformations of the fitness function.

This study relies on the modern and flexible class of Natural
Evolution Strategies (NES; [7, 8, 16-19]). Both hill-climbers
and population-based variants of NES have been derived from
the simple and powerful principle of adapting a parameterized
search distribution in order to optimize the expected fitness by
means of natural gradient descent. This general paradigm can
be applied to all kinds of search distributions. Gaussians with
different subsets of adaptive parameters have been treated in
the literature, such as adaptation of the full covariance matrix
[7, 8, 17-19], and diagonal covariance matrices [16].

Here we are not striving to improve the performance of a
particular ES, and the approach is not tailored or limited to a
particular algorithm. The aim is to avoid bias, which is best
achieved by using as basic an ES as possible. To this end,
in the following a natural evolution strategy is derived which
uses a radial Gaussian, the simplest type of search distribution.

In each generation, the population-based NES algorithm
samples A € N individuals z, ~ N (z|60), k € {1,...,A},
ii.d. from its Gaussian search distribution, parameterized by
0 = (u,X), with the goal of minimizing a fitness function
f:RY — R. Let p(z|6) denote the density of the Gaussian
with parameters 6. Then, the expected fitness under the search
distribution is

J(0) = Eq[f(2)] = / f(z) p(z0) dz .



The gradient w.r.t. the parameters can be rewritten as
=Vy / f(z
=By [f(2) Volog (p(z]0))] ,

(see [19] for the full derivation) from which we obtain the
Monte Carlo estimate

Vo J (0 (z]0) dz

A
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of the search gradient. The key step then consists of replacing
this gradient, pointing into the direction of (locally) steepest
descent w.r.t. the given parameterization, by the natural gradi-

ent _
Vo] =F1VyJ(0) ,

E [V@ log (p (z]6)) Vo log (p(z]0)) | is the
Fisher information matrix; leading to a straightforward scheme
of natural gradient descent for iteratively updating the search
distribution

0 —0—nVe =0—nF 'VeJ(0) ,

where F =

with learning rate parameter 7). The sequence of (1) sampling
an offspring population, (2) computing the corresponding
Monte Carlo estimate of the fitness gradient, (3) transforming
it into the natural gradient, and (4) updating the search
distribution, constitutes one generation of NES.

In order to render the algorithm invariant under monotonic
(rank preserving) transformations of the fitness values, fitness
shaping [19] is used to normalize the fitness into rank-based
utilities uy, € R, k € {1,...,A}. The individuals are ordered
by fitness, with z;.) and z).) denoting the most and least fit
offspring, respectively. The distribution parameters are then
updated using the “fitness-shaped” gradient:

A
Vo = up- Vg log (p(zi:n |0)) - )
k=1
Typically, the utility values are either non-negative numbers
that sum to one, or a shifted variant with zero mean.

An efficient scheme for Gaussian distributions with fully
adaptive covariance matrix (called xXNES) has been derived in
[8]. Here, we restrict the search distribution to have the same
variance in all dimensions, with parameters 6 = (u, o), where
p and o are the mean and standard deviation of the Gaussian
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Using the same exponential local coordinates as in [8], we
arrive at the update equations

A

B o> ug sy
i=1

A
0+ 0 -exp <7720 . Zuk . (HSkH2 — d)) ,
i=1

where s;, ~ N (0, I) are standard normally distributed random
variables used to generate the offspring zx = p + o - sg. This
version of NES with radial search distributions is referred to
as radial NES (1NES).

III. NOVELTY SEARCH

In [13], Lehman and Stanley present the idea of Novelty
Search where individuals in an evolving population are se-
lected based solely on how different they are compared to all
of the other solutions evaluated so far. Each individual, z, in
the population is assigned a novelty score that is computed as
the average novelty distance from its k-nearest neighbors in
both the population and an archive:

nov(z;)

Zdzst (@i, 4:5), 3)

where x;.; is the j-th nearest neighbor of x; with respect to
novelty distance dist(-,-). The particular choice of distance
measure is user-defined and problem specific. For example,
novelty could be defined as simply as the Euclidean distance
(dist(z,y) = ||l — y||) between genotypes. In a more com-
plex setting typically found in neuroevolution, controllers are
generated from the genotype, and evaluated in a sequential
decision task. Novelty is then computed on observation-action
sequences.

Initially, the archive is empty. When a new individual is
created, if its novelty exceeds the novelty threshold, then it is
inserted into the archive. This threshold is subject to a self-
adaptation mechanism with the goal to keep the number of
individuals placed in the archive per generation around some
fixed fraction (see [4] for details).

Notice there is no notion of “fitness” in the normal sense—
the probability of being selected is not determined by a fixed
objective function, but instead depends entirely on the current
state (population) and history (archive) of a given evolutionary
run.

The archive provides a memory of previously seen novel
behaviors that may no longer be present in the population,
but does not preclude the evaluation of non-novel solutions
as in e.g. tabu search [9]. Because solutions that are novel
(with respect to the current knowledge of the system) are
selected for, their offspring have a better chance of being
novel themselves. This, in turn, diverts the search away from
wastefully retracing the same ground.

An interesting aspect of the novelty signal is that it is non-
stationary. Initially points in an unexplored region of the search
space receive high novelty scores, but as the evolutionary algo-
rithm explores the space and places more and more individuals
from this region into the archive, they become less and less
novel. Thus, the search algorithm will tend to focus on other
less explored parts of the search space. In a bounded search
space the expected behavior is that the archive will gradually
fill with representative solutions, reducing the average novelty
of the whole space over time, resulting in adaptive sampling
of the space at higher and higher resolutions.



IV. NOVELTY IN BLACK BOX-TYPE OPTIMIZATION

In this section we investigate how a novelty-based archive
can be used to improve the performance of evolutionary strate-
gies on multi-modal fitness landscapes while preserving the
properties that make these algorithms attractive for black box
search. Ideally, the resulting scheme should exhibit the same
invariance properties as the underlying evolution strategy, and
should introduce as few as possible additional parameters that
need problem-specific tuning. The method is described with
the rNES algorithm in mind, however, most steps are generic
and can easily be adapted to other evolution strategies.

Novelty search has mostly been applied in neuroevolution
tasks. The biggest difference to novelty search in black-box
search is the choice of the novelty score. By definition, in
a black box setting a behavioral or otherwise task-specific
distance measure is not available. Thus, novelty necessarily
needs to be measured based on the genotype.

The next two subsections (IV-A,IV-B) analyze two possible
ways of combining novelty with fitness, and provide the
rationale for using novelty as a basis for restarting an ES,
which is present in the last subsection (IV-C).

A. Blending Fitness and Novelty

In [4] fitness and novelty are combined as follows:

p-n(zi) + (1 —p)- flzx)

with n(-) denoting novelty (w.r.t. the archive) and f(-) fitness.
For NES this expression would replace f(zj) in equation (1).
This formula allows for smooth blending between exploration
of the fitness landscape and exploitation of fitness by following
the global trend and descending into a local optimum.

In order to mix fitness and novelty meaningfully, the two
measures must be normalized. It is possible to normalize
over the archive or over a sliding time window. However,
rank-based selection, as found e.g. in the NES algorithms
presented in section II, points to a principled solution: instead
of combining raw fitness and novelty values, first rank the
population independently according to both measures, and then
blend the corresponding (already normalized) utility values by
replacing uy in equation (2) with:

pruf+(1—p)-ul

where v} is the utility of individual z;, with respect to novelty
(equation 3), u£ with respect to fitness, and p € [0,1] is the
blending parameter. Alternatively, ranks can be blended, which
requires minimal changes in the way the utility values are
computed.

It turns out that despite its conceptual simplicity, blending
does not result in the desired effect because of the scale
invariance of the algorithm. The problem is best explained
with a scale-invariant fitness function like the sphere function,
f(x) = ||z||*: depending on the value of p, there is either a
trend to shrink or to widen the search distribution, and this
trend is the same on all scales. Thus, there is a sudden shift
from convergence into the optimum (small p) to exploration by
means of divergence (large p), rather than a smooth transition.

B. Switching between Fitness and Novelty

The above observation suggests restricting p to {0,1},
corresponding to a hard switch between fitness and novelty.
This strategy is arguably even closer to the idea of exploring
the most promising regions in search space, amounting to two
alternating phases: in the fitness-based phase of the search the
evolution strategy identifies a (local) optimum. Once conver-
gence or stagnation are detected, the algorithm switches to
novelty mode in order to escape the local optimum or plateau,
and hopefully reach a different, ultimately better attractor
basin. In the next fitness-based phase the ES converges to the
next local optimum, and the process starts over.

In fitness mode the evolution strategy operates normally,
until its stopping criterion is met. In black-box search, this
usually amounts to detecting convergence; however, this stop-
ping criterion necessarily violates the requirement of scale
invariance, as the algorithm would otherwise just keep making
insignificant improvements forever. The same holds for the
switching mechanism from fitness to novelty mode. Thus, it
is canonical to use a standard stopping criterion here.

The tNES algorithm provides us with a particularly easy
criterion to check, as o, is an explicit step size. Once o falls
below some small threshold (e.g. as 1075, or the limit of
numerical accuracy), convergence is considered to be achieved,
the fitness phase stops, and the novelty-based restart method
looks for the next restart position.

C. Novelty Restarts

Notice that, since novelty here is based on genotypic sim-
ilarity, the choice of p = 1 means that the evaluation of the
fitness function can be skipped completely. While this may
mean a big savings in terms of sample complexity, how can
novelty alone be used to decide when to switched back to
fitness? How far away from the last optima is far enough in
to escape the local minimum? The distribution variance, o is
no longer a useful criterion as novelty search will cause the
search to diverge. And, even if the ES escapes the previous
local minimum, novelty will then only delay convergence to
the next minimum. Furthermore, it seems dangerous to add
individuals to the novelty archive without evaluating their
fitness because it allows regions of the search space to be
marked as ’explored’—the global optimum may be overlooked
and, even worse, actively ignored.

This insight suggests that instead of actually running the
novelty search, one should just use the information gathered
so far in the novelty archive to restart the search with a
new p and o. The goal is to continue the search in a less
explored region of the space. The approach proposed here
is to select the individual from the archive with the highest
novelty score as the new p of the search distribution, and
use the distance from this individual to the rest of the archive
(e.g. the mean distance to its 5 nearest neighbors), as the new
standard deviation o. Note how this scheme, except for the
stopping criterion, preserves all invariance properties of the
underlying evolution strategy. The new mean, being the most
novel point in archive, is by definition the most isolated of
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The function fy ,, for the configurations (¢ = 5, w = 0) and (£ = 20, w = 2). In the first case the difficulty for the evolution strategy is to cross

the (possibly long) fitness plateau; in the much harder second case there are deceptive local minima.

(=5 (=15 ¢=30
w=0 97 87 85
w = 19 3 0
w = 10 60 13 2
TABLE I

PERCENTAGE OF TRIALS IN WHICH RNES without novelty restarts FINDS
THE GLOBAL OPTIMUM OF fy ,,, OUT OF 100 RUNS.

the search points visited so far, and therefore far from where
the ES converged before the restart. Because this point was
generate by the ES it on the same scale. Likewise, the new o
is proportional to the scale of the points seen so far. Once the
ES restarts from the new point, the novelty at that point will
decrease such that subsequent restarts will avoid re-exploring
the same region.

By only using novelty to build the archive and not to update
the search distribution (i.e. novelty search), this approach is
related to other evolutionary methods that use an archive,
typically for multi-objective optimization [11, 20], except that
here the archive is based on the concept of novelty.

V. EXPERIMENTAL EVALUATION

The following experiments are designs to test the working
principle of novelty-based restarts, and to study how it scales
with problem difficulty. By construction restarts neither help
nor harm on unimodal fitness landscapes where it is up to
the underlying ES to identify the optimum. Therefore the
experiments focus on fitness function that exhibit plateaus and
multi-modality.

As in [16], the population size was set to A = 4+ |3log(d) ],
and the learning rates to 7, = 1, and 7, = (:)’*'5107\%@), for all
experiments.

A. Plateaus and Local Minima

The first function tests the ability of the algorithm to cross
long flat fitness plateaus and to identify the global optimum in
a deceptive landscape of much larger attractor basins with local
minima. For this purpose we introduce the scaleable fitness

7=5 (=15 (=30
w=0 79 298 319
w= 267 668  (677)*
w=10 | 101 792 903
TABLE II

MEDIAN NUMBER OF GENERATIONS (OVER 5 RUNS) REQUIRED FOR RNES
with novelty restarts TO IDENTIFY THE GLOBAL OPTIMUM. THE MOST
DIFFICULT CONFIGURATION (PLATEAU LENGTH ¢ = 30 WITH ONLY w = 2
LOCAL OPTIMA PER SIDE) WAS SOLVED IN ONE OUT OF FIVE RUNS, AFTER
667 GENERATIONS.

function
s for 2] <1
feaw(@) = 41— Fsin® (PGER)for 1< fo] < 041
(lz] = 0)? for |z| > £+ 1

with parameters ¢ > 0 and w € N. This function is symmetric
around its global optimum at 0, and based on a standard
parabola. However, the parabola is chopped open at +1 and
—1, with its branches shifted outwards by the plateau length ¢.
Additionally, w waves or local optima can be added to each
side of the plateau (figure 1). The search is started at g, = ¢+1
with a standard deviation of o = 1.

rNES was run with and without novelty restarts on this
function, with all combinations of ¢ € {5,15,30} and w €
{0,2,10}, and a budget of 10,000 generations (corresponding
to 40,000 fitness evaluations). The stopping criterion, which
was also used to trigger restarts, was o < 10719,

Table I shows the percentage of runs in which rNES
(without restarts) converged into the global optimum. By itself.
rNES copes well only with plateaus of limited length, while
local optima are indeed deceptive. The task is hardest for only
two local optima per side because of the size of the attractor
basins.

Table II shows the median number of generations it took
rNES with novelty restarts to identify the optimum with an
accuracy of 107°. In contrast, the novelty restart strategy
manages to identify the optimum reliably, and scales gracefully
with respect to both plateau length and number of local optima.
It is clear from figure 2 that the archive adapts itself to the
current scale of the search distribution and fills the search
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Fig. 2. Archive at the end of a typical run of the novelty restart algorithm for £ = 30 and w = 2.

space until it finally finds the global optimum. However, the
fitness-based component of the search makes sure that the
interesting regions around the local optima are sampled at a
much finer scale than the rest of the search space.

B. Scaling to Higher Dimensions

The function fy,, is a worst-case scenario for an evolution
strategy. The lack of global trend makes it a continuous version
of the needle-in-a-haystack problem, that requires a thorough
search of the space in order to finally find the small attractor
of the global optimum. The archive here helps a lot, as any
element in it acts as a milestone, discouraging the search from
wasting time in the close surrounding.

In contrast, the Rastrigin function

d
JRastrigin © R? SR, z— 10d+ Z [mf —10- cos(27m:i)]
i=1
has a quadratic global trend, overlayed with a grid of local
optima. This benchmark is used to investigate the scaling of
novelty-based restarts to higher-dimensional problems, where
it is not feasible for the archive to cover the search space.
Each run was started by initializing g, randomly from a
uniform distribution over the interval [—5, 5]¢, with o = 1. As
in the previous experiment above, for the runs without restarts,
the percentage of successful runs was recorded (Table III). For
the restart runs the number of generations required to find the
optimum is reported since almost all the runs were successful
(Table III). Experiments were conducted for dimensions d €
{2,5,10, 20}, with a maximum of 10,000 generations for each
run.

d=2 d=5 d=10 d=20
24.6 25.6 18.9 16.2
TABLE III

PERCENTAGE OF TRIALS IN WHICH RNES without novelty restarts FINDS
THE GLOBAL OPTIMUM OF THE RASTRIGIN FUNCTION, OUT OF 1,000

RUNS.
d=2 d=5 d=10 d=20
352 234 64.3 1374*
TABLE IV

MEDIAN NUMBER OF GENERATIONS (OVER 25 RUNS) IT TAKES RNES with
novelty restarts TO IDENTIFY THE GLOBAL OPTIMUM OF THE RASTRIGIN
FUNCTION. IN DIMENSION d = 20 THE ALGORITHM FAILED TO IDENTIFY
THE GLOBAL OPTIMUM IN ONLY 2 OUT OF 25 RUNS WITHIN ITS BUDGET

OF 10,000 GENERATIONS.

The results show that novelty restarts scale well to relatively
high dimensions. Even in the hypercube [—1.5,1.5]¢ the
Rastrigin function has 3 local optima. If the algorithm would
need to represent all of these (and even other) local optima
in its archive, then a scaling of at least (3%) would be
expected. In contrast, the results show a far more graceful
scaling to higher dimensions. This is possible because the
Rastrigin problem is much less deceptive than the purpose-
made fy,, function.

VI. DISCUSSION AND CONCLUSION

We have investigated novelty-based search for evolutionary
black-box optimization. The focus was on preserving the
invariance properties that make evolution strategies powerful
for these problems. When combining fitness and novelty under



these constraints, our analysis revealed that novelty-based
search phases can be understood as a restart strategy for
fitness-based search.

In contrast to simpler restart strategies, these restarts are in-
formed decisions taken based on information explicitly stored
in an archive of already explored solutions. Our restart strategy
naturally respects important invariance properties of the ES,
such as translation, rotation, and scale invariance, since it is
based solely on information produced by the evolution strategy
itself.

A deceptive benchmark was designed to highlight the ben-
efits of novelty-based restarts. However, the strategy of filling
an archive with all local optima of the search space bears
the risk of exponential sample complexity with search space
dimension. Experiments on the less deceptive, and arguably
more realistic benchmark defined by the Rastrigin function,
showed that in practice such a archive-filling behavior is not
necessary to solve the task, resulting in a good scalability with
respect to search space dimensionality.

It remains unclear when exactly novelty-based restarts are
better than other restart schemes. We believe that this question
is best answered by a thorough experimental comparison, left
for future work.
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