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Abstract

Curiosity is an essential driving force for
science as well as technology, and has led
mankind to explore its surroundings, all the
way to our current understanding of the uni-
verse. Space science and exploration is at the
pinnacle of each of these developments, in that
it requires the most advanced technology, ex-
plores our world and outer space, and con-
stantly pushes the frontier of scientific knowl-
edge. Manned space missions carry dispro-
portionate costs and risks, so it is only natural
for the field to strive for autonomous explo-
ration. While recent innovations in engineer-
ing, robotics and AI provide solutions to many
sub-problems of autonomous exploration, in-
sufficient emphasis has been on the higher
level question of autonomously deciding what
to explore. Artificial curiosity, the subject of
this paper, precisely addresses this issue. We
will introduce formal notions of “interesting-
ness” based on the concepts of (1) compres-
sion progress through discovery of novel regu-
larities in the observations, and (2) coherence
progress through selection of data that “fits”
the already known data in a compression-

based way. Further, we discuss how to con-
struct a system that exhibits curiosity driven
by the interestingness of certain types of novel
observations, with the mission to curiously go
where no probe has gone before.

1 Introduction

Technology, and science in general, has pro-
gressed to the point that we can send intricate
machines which are computationally power-
ful into space. So advanced are these ma-
chines that their potential easily exceeds what
can be accomplished by manual control from
Earth: the bandwidth of the sensors, such as
cameras, usually exceeds the bandwidth of the
communication channel between space probe
and mission control, and more importantly,
the enormous time latency involved in the ex-
change of signals imposes strict limitations on
the efficiency of manual control. The effi-
ciency of these probes could be greatly en-
hanced if they were able to carry-out mis-
sions and explore autonomously. For efficient
autonomous exploration a probe needs to be
as like a scientist as possible. In this paper
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we discuss the concept of artificial curiosity
[12, 15] and how it can be used to best approx-
imate the decisions a scientist might make,
guided by his own knowledge, understanding,
and curiosity.

Ideally, the device controller should make
informed decisions on which information to
send back to Earth, and what to do next in
order to optimally achieve its mission goals.
However, building such a controller solely
based on assumptions and information avail-
able years before a mission begins does not
really solve the problem. The very nature of
an exploratory mission is to encounter novel,
and unexpected information. One cannot pro-
vide a priori behaviors to efficiently study un-
predicted phenomena. A more functional de-
sign might include on-board control software
capable of autonomously classifying a piece
of information such as an image or a situa-
tion as interesting or not worthwhile to inves-
tigate or even transmit back to Earth, based
on the goals of the spacecraft. The probe
could also then send interesting information to
Earth with priority over non-interesting infor-
mation. More importantly, rather than to wait
for mission control to analyze the information
and send back an appropriate action plan, our
space probe could actively explore the inter-
esting phenomenon until it has gained some
understanding thereof and no longer classifies
it as interesting. Different phenomena would
then become promising sources of novel infor-
mation and attract the interest of our probe.

However, information collected this way
serves another purpose beyond being reported
to Earth: it may facilitate decision making
in the future, enabling the agent to bootstrap
detection and understanding of complex phe-
nomena, based on simpler ones learned ear-
lier in the mission. This automatic adapta-

tion to previously unknown phenomena fur-
ther increases the probe’s autonomy from mis-
sion control. It enables the probe to respond
more appropriately to circumstances not fore-
seen at design time than any catch-all algo-
rithm might.

Intelligent autonomous control in active
agents such as space probes is addressed
within the field of artificial intelligence. A
control algorithm or ‘agent’, such as a so-
called reinforcement learner [5, 23], abstracts
a spacecraft into two types of components:
sensors that provide observations of the en-
vironment, and actuators that effect the sur-
rounding environment, including the agent it-
self. The control algorithm bridges the sen-
sory and motor systems. In reinforcement
learning language, we talk about an agent or
controller, that learns a policy which deter-
mines the actions taken by the agent, given the
history of observations and actions.

For every interaction with the environment,
be it exploratory or otherwise, the algorithm
updates the policy based on success or fail-
ure of the action sequence attempted. The
measure of success or failure is usually en-
coded into a single reward signal [23]. This
way the agent learns from experience and
autonomously improves its policy over time.
However, the big open challenge in this learn-
ing paradigm is how to decide where to look
and what to try next in order to maximize
learning progress. Humans seem to make
such decisions with relative ease, driven by
their internal curiosity. The idea behind artifi-
cial curiosity is to transfer this internal human
drive to reinforcement learning, making au-
tonomous exploration practical. This amounts
to providing the learning agent with an au-
tomatically available internal curiosity reward
signal.
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In this article we describe a route for trans-
forming a probe into a more autonomous
agent. We will achieve this goal in two con-
ceptual steps, which are both related to the
design of an internal feedback signal guiding
curiosity. First we provide the probe with a
way to measure the interestingness of its sen-
sory inputs, which allows it to passively judge
the observations it makes. Then we come to
the active part, the crux of autonomy, namely
how to come up with action plans or behaviors
that lead to exciting new observations, which
is known as artificial curiosity [11, 13]. We
close the article with a discussion on human
curiosity as a driving force of scientific re-
search.

Let us begin by introducing a number of
concepts prerequisite to the notion of artificial
curiosity.

2 What Is Interesting?
Although we are aiming for an autonomous
decision maker, let us first restrict ourselves
to an agent which cannot take any actions,
e.g., a probe which passively monitors its en-
vironment. Here, the design goal for an au-
tonomous agent reduces to detecting inter-
esting pieces of information among the vast
stream of incoming observations. To thor-
oughly address this problem we need a solid
definition of interestingness, as well as prac-
tical algorithms for classifying information as
such. However, the notion of interestingness,
although intuitively clear, got formalized only
relatively recently, using the concept of learn-
ing progress [11], in particular compression
progress [18].

Let us look at an example. Assume a probe
(a rover) equipped with sensors to continu-

ously monitor its surrounding. Although we
are ultimately interested in making the rover
explore its surroundings autonomously let us
for the moment focus only on specific observa-
tions: the simple thermal sensor records, a sin-
gle number at each time step, capturing some
information about its environment. Let us as-
sume that the sensor records its readings as
plain text strings, consisting of the time of the
reading, taking a measurement each minute,
and the temperature in Kelvin, with an accu-
racy of 1/10 Kelvin. A typical record might
read:

12/25/2030 14:11 — 288.6 K,

where the first entry indicates the date and
time at mission control when the reading was
taken. This is one possible encoding of the in-
formation, in a both human and machine read-
able format. Of course, this is an arbitrary
choice, and there are many ways to encode the
same information, some more compact than
others. For example, including the start date
and time elapsed in every record makes each
record a complete piece of information, but
it is highly redundant within the stream of
records. We can save storage space by noting
the start date only once. Knowing that the tem-
perature is recorded once a minute means that
we do not even need a time stamp at all; the
time of a measurement can be deduced from
the time the series of measurements started
and the index of the record in the list. Moving
to a smarter encoding that saves storage space
is known as compression [7]. Saving storage
may or may not be a big deal for our space
probe, but it surely is when sending the infor-
mation through a limited bandwidth channel.
Moreover, we will see in the following that the
ability to compress information can have far-
reaching implications for our explorer.
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Given that using shorter encodings is ben-
eficial, is there a better way to compress our
data? The first step in compression is to look
for patterns in the data. A pattern can be de-
fined as something that, on any level of ab-
straction, repeats itself. For example, frac-
tals possess self-similarity and repeat their pat-
tern at every scale, the decimal expansion of
π is the result of the repeated application of
the same numerical procedure. Once a stream
of data is analyzed, and repetitive trends are
found, they can be exploited for the construc-
tion of a model of the pattern. When analyz-
ing our temperature data we will find a pro-
file which, more or less, repeats with each ro-
tation of the planet. The values will rise in
the morning and drop in the evening. A com-
pressor can store this pattern once and then
use it as a model to compress future observa-
tions. It makes use of this model by storing
only the differences of the measurements from
the model. These representations of the tem-
peratures will, on average, be smaller than the
actual values, thereby shortening the length of
the encoding.

Typical (loss-less) general purpose com-
pression algorithms exploit different types of
patterns. One strategy is to build up a dic-
tionary of frequent patches of information,
patterns, which can be referenced with short
codes. In contrast, statistical encoding re-
lies on a probability model of which infor-
mation is expected to occur next, such that
the most probable next temperature can be en-
coded with a very short code [3], while for
example rare jumps in temperature will have
longer codes. These two strategies are often
combined, such as in the famous Lempel-Ziv-
Welch algorithm [24], which is the basis of
the gzip tool, an often-used program for data
compression on computers.

A model that fits the data well allows a com-
pressor to code the information compactly.
This means that the optimal model is problem-
dependent. In the extreme case we arrive at the
notion of Kolmogorov complexity [6, 7, 21].
The Kolmogorov complexity of a sequence is
defined as the length of the shortest program
(in a universal programming language) encod-
ing this information. This formal approach
to compression turns out not to be realizable
in practice. Instead, one has to fall back to
approximations and heuristics, such as dictio-
naries and statistical prediction, and be con-
tent with compressors that at best only approx-
imate the ideal compressor and the shortest
possible encoding of the data. However, even
such imperfect compressors can be extremely
powerful. For example, the models built by
the human brain, which include tremendously
useful concepts such as hierarchies (ranging
from abstract to concrete notions), are all of
the latter type, and can be realized as instances
of compression. In addition, compression is
intimately related to the concept of Occam’s
razor: the principle of preferring models with
fewer assumptions (among the models that ex-
plain the data) translates to choosing the short-
est program that compresses the data [1, 21].

We want to emphasize that the compres-
sor has learned something about the environ-
ment by studying it, discovering patterns, and
then constructing a model from these patterns.
Building a model which explains some aspect
of the environment, in the case of our probe
the typical daily behavior, not only allows us
to compress observations, but also represents
what we have learned about the environment,
and allows us to make predictions about fu-
ture events [4, 21]. Applying the model to the
(past) events used to construct the model itself
allows the compressor to encode these events
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with short codes, resulting in data compres-
sion. We use the term ‘prediction’ for infor-
mation obtained from the model, even when
applied to data from the agent’s history.

As discussed above, the notions of pattern,
model, prediction and compression are inti-
mately related. Learning is then the process
of finding patterns in data and incorporating
them into a model, which again allows the
compressor to encode with shorter codes, and
thus to compress and predict better. Although
predictability and compressibility are not quite
the same [9], we can use a measure of com-
pression to express the quality of predictions a
model can make about information in the en-
vironment. We will see that this notion also
leads to a straight-forward definition of inter-
estingness.

The process of learning or training in this
passive scenario of monitoring the world and
processing data is understood as learning to
predict (in contrast to learning to act well).
This is the same as learning to compress. The
goal of learning is thus equivalent to finding
shorter and shorter codes for a given stream of
data. However, as noted above, there is a lower
bound on the length of an encoding that a com-
pressor can find. Thus, the learning progress,
measured by the decrease in length of the com-
pressed representation, will essentially vanish
as the length of the code approaches the length
that an ideal compressor would produce. If the
model is suitable for the problem at hand, this
means that it will have learned to predict all
the data arbitrarily well, leaving nothing else
to learn. So what makes data or information
interesting? Continuing the line of thought
above, the extent to which new information is
interesting is related to how much the model
of the environment stands to improve by ob-
serving it. This concept is caught compactly

by the notion of compression progress. Using
the connection between prediction and com-
pression, we now phrase the statement as such:
information is interesting if it allows us to
more succinctly code the observations we have
made in our environment.

The drive to actively seek out data which
allows for the learning of more expressive and
compact models over time (or in other words,
the drive to compress data with shorter pro-
grams) is known as curiosity [15]. The goal
of curiosity is to maximize the pace of learn-
ing patterns and regularities. A rover can use
this drive to learn new rules to govern its ex-
ploration strategy.

3 Compression Progress

Now that we have introduced and justified the
utility and role of compression progress, we
show how to formalize that notion. Broadly
speaking, compression progress is a measure
of how much the ability to compress the his-
tory of observations improves by either learn-
ing new patterns (from the history) or by mak-
ing new observations.

We will discuss several aspects of this: (1)
an adaptive compressor can learn previously
unknown patterns and regularities by revisit-
ing the history (by way of a change in the com-
pressor), (2) new observations might yield ad-
ditional data obeying unknown but learnable
laws, (3) new observations might also increase
the internal coherence of the history, leading
to a better compressibility of the augmented
history, even without a change in the compres-
sor (by way of a change in the data).
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3.1 Coherence progress
To simplify matters, this paper will
mostly focus on the last aspect, coher-
ence progress [10]. We assume a fixed
compressor; for example, say, the gzip
tool. The progress of such an algorithm may
change as new observations arrive. A new
observation can be compressed in the context
of the history, and the overall compressibility
of the history changes accordingly. Hence, the
progress is directly attributed to the current
observation, and results in a (partial) measure
of its interestingness.

To formalize this, we first introduce the aux-
iliary concept of compression similarity

S(a, b) = L(a) + L(b)− L(a+ b) ,

which is a measure of how closely two se-
quences a and b are related to each other. Here,
L(·) is the length of a compressed sequence
when using a fixed compressor. In other
words, S(·, ·) is a measure of how many bits
can be saved by compressing two sequences
together, as opposed to compressing them sep-
arately. We can generalize this to the notion of
compression coherence of a single sequence:

C(h) =
1

n− 1

n−1∑
i=1

S(h1:i, hi+1:n).

In words, coherence is the average compres-
sion similarity between two partitions of the
history, cut at index i. Coherence progress can
then be defined as the increase in compression
coherence, when incorporating a new observa-
tion into the history, measured in bits:

Ph(on+1) =C(h1:n + on+1)− C(h1:n)

=C(h1:n+1)− C(h1:n),

3.2 Compression Progress

Now let us turn to the general case of learn-
ing compressors, the focus of most previous
work on interestingness [11, 22, 14, 15, 16,
19, 18, 17, 20]. In contrast to a fixed tool
such as zip, an adaptive compressor is able
to make compression progress simply by re-
visiting the history, that is, without the need
of additional observations [15, 20] (although
additional observations may make it easier to
achieve compression progress). This progress
is achieved by a change in the compression
strategy, which can be interpreted as a gain in
understanding of the history. For example, a
search process may find a new rule that allows
the compressor to better predict forthcoming
observations, thus encoding them from then
on with shorter codes. Or an adaptive architec-
ture, such as a recurrent artificial neural net-
work, might adapt its synaptic weights to bet-
ter reflect some aspect of the dynamics of the
environment, again resulting in an even more
powerful anticipation of observations.

Processes that lead to compression progress
without additional observations are coupled
with improvements of existing models, or with
the emergence of completely new models. As
discussed earlier, this added predictive power
amounts to better understanding the sequence
of observations, and thus the environment.
This way, an adaptive compressor can adapt
to its environment, building increasingly more
complex rules on top of the pre-existing ones.

Let us treat this situation of an adaptive
compressor in the terms of the length func-
tion L and the history h1:n introduced above.
By re-visiting and re-compressing the history,
an adaptive compressor can change its encod-
ing, and thus the length function itself. It is
straight-forward that the progress of a change
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Figure 1: A Wundt Curve. Measures of inter-
estingness date back to Wundt [25]. Wundt’s
curve shows the interestingness of an obser-
vation as a function of novelty. Novelty, un-
like complexity, depends on the relationship
between the information and the person ob-
serving it. Trivial patterns quickly lose their
novelty, while noise is always novel. As learn-
ing proceeds the complexity of the most inter-
esting patterns increases. From the artificial
curiosity point of view, novelty can be consid-
ered inversely proportional to compressibility:
noise has a low compressibility, and trivial or
simple patterns have a high compressibility.

of encoding, resulting in a new length function
L̃, should be measured by

L(h1:n)− L̃(h1:n) .

Even more general measures of learning
progress also take into account the time
needed for compressing and decompressing
the data [15]. Because of the nature of restruc-
turing its compression strategy by means of
detecting additional patterns and gaining im-
proved understanding of the history, this type
of progress cannot be attributed solely to a
particular observation. Rather, it is also to
be attributed to the restructuring process it-
self. Although learning a better compressor
may be costly in terms of computational re-

sources such as time and memory, this process
too can have a measure of interestingness at-
tributed with it, one that is consistent with the
measure used with new observations.

3.3 Relation of Interestingness to
Coherence Progress

Setting aside the interestingness associated
with learning a better compressor, we now re-
turn to the compression progress-independent
interestingness associated to particular obser-
vations. Our measure of coherence progress
already captures a number of desirable prop-
erties of interestingness.

For the purposes of the present section, a
new observation is uninteresting when we can-
not make coherence progress from it. This
may happen for completely different reasons:
The observation may be easily compressible,
either because the observation is trivially com-
pressible by itself (e.g., a long string of ze-
ros, L(on+1) ≈ 0), or because its informa-
tion is redundantly present in the observation
history already (the sunrise temperature in-
crease, after having observed hundreds of sun-
rises before), if the underlying pattern (here,
periodicity) has been discovered already, i.e.,
L(h1:n+1) ≈ L(h1:n). In both these cases,
Ph(on+1) will be low.

On the other hand, patterns may be so com-
plex that we cannot find predictive models.
This may happen either because we lack the
necessary prerequisites (such as basic skills or
knowledge) for discovering the patterns, or be-
cause the observation is actually random; in
both cases we have L(h1:n+1) ≈ L(h1:n) +
L(on+1), and thus Ph(on+1) will be low. In
principle it is therefore difficult to tell a ran-
dom phenomenon from a pattern we fail to
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catch. However, given enough observations
with an underlying regularity, and a compres-
sor that is able to find this regularity, the his-
tory of observations can be stored in a much
shorter form; for example, a child will find a
course on advanced statistics completely bor-
ing, while a student with the necessary prereq-
uisites may be fascinated. See Figure 1 for an
informal illustration of how interestingness re-
lates to the compressibility of observations.

It is important to note that data are not in-
herently interesting. What is currently inter-
esting depends on context, namely, what we
already know. For Ph(on+1) to be large, the
new coherence C(h1:n + on+1) needs to ex-
ceed the previous coherence C(h1:n), which
again means that new observations need to
support the discovery of patterns in our ex-
perience for which we did not have sufficient
evidence before. In order to keep things in-
teresting we may profit from continually dis-
covering new patterns. Consequently, as we
learn more, that is as our predictive model be-
comes stronger, we have to turn to environ-
ments where pattern discovery was originally
too difficult. For example, we finally enroll in
the advanced statistics course. This happens
for two reasons: (i) contexts in which pattern
detection was extraordinarily difficult appear
relatively more interesting because we already
figured out the simpler patterns and (ii) more
importantly, having discovered a base of rules
by first exploring simpler environments allows
us to extend these rules to more complex pat-
terns in more complex environments. A re-
sult of learning is that we can learn things we
previously were unable to. Figure 2 illustrates
this point by showing how the values of co-
herence progress evolve as observations (from
a given class) are accumulated. The coher-
ence progress is measured for three different
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Figure 2: Illustration of the qualitative effect of
aspects of interestingness, measured in terms of
coherence progress Ph(on+1) achieved by a new
observation, when added to the current history h1:n
(where n is on the horizontal axis). The time pro-
file of coherence progress evolves differently, de-
pending on the amount of overlap between indi-
vidual observations. The three classes from which
the observations are drawn are the following. The
plot in blue (solid line) shows observations with
high overlap, where every observation shares 80%
of its information with every other one (individual
stones, say). For them coherence progress is high
initially, but quickly decays, as the underlying pat-
terns are easy to spot and then compress – obser-
vations from n = 15 onwards convey but few new
insights. The plot in green (broken line) shows ob-
servations with low overlap (approximately 10%,
different planets, say), in which case coherence
progress only kicks in after the history has accu-
mulated sufficient observations (around 20 here)
for each new one to increase the coherence signif-
icantly (e.g., when different planet categories start
to emerge). This class has more total information,
and a more complex underlying structure, which is
the reason why coherence progress stays compar-
atively high for a long time. In red (dotted), we
show the plot for a sequence of random observa-
tions: the coherence progress is zero throughout,
as expected.
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classes, each with different degrees of shared
information between the observations. Among
other things, it also shows that there can be
a trade-off between short-term and long-term
progress.

Given that our formal definition of coher-
ence progress provides a quantitative mea-
sure of certain aspects of interestingness, cor-
rectly capturing certain key qualitative aspects
(noise is never interesting, redundant informa-
tion quickly becomes uninteresting), that is
simple to compute and understand, we will
use it in the next section as a feedback sig-
nal that can inform an autonomous agent on
where to explore next. In this way we are able
to base a variant of artificial curiosity, the in-
formed drive to explore aspects of the environ-
ment that maximize coherence progress, on a
qualitative measure.

4 Choosing Actions
An agent equipped with intrinsic motivation,
such as artificial curiosity, is able to control
its behavior and steer itself autonomously to-
wards places and phenomena that are quan-
titatively interesting. Such an agent, clearly,
could play an important role in space explo-
ration. We now discuss how to realize such
an agent, making an autonomous robot more
of a curious scientist. We want the agent to
chose an action that results in interesting ob-
servations. How can we create such a curious
agent?

Firstly, we need to extend our agent, which
so far only does passive monitoring. Obvi-
ously, it is not enough for an agent to simply
observe changes in its environment if it is to
seek out interesting data. It must be able to
perform different actions (e.g., move a sensor

or its entire self), and more to the point, it must
choose actions which actually lead to the ob-
servation of interesting data.

Without a good model of the world that
agent can not know in advance which actions
will most probably result in interesting ob-
servations. At the same time, without explo-
ration the agent does not have access to ob-
servations from which it could build a suffi-
ciently detailed model of its environment. Ar-
tificial intelligence research has resolved this
dilemma by using, e.g., reinforcement learn-
ing algorithms [23]. Such algorithms are de-
signed to bootstrap both action policy and
world model at the same time. Typically,
such algorithms are applied to autonomously
achieve a pre-defined goal, encoded in a re-
ward signal. Such a goal-related reward sig-
nal in known as external reward in the litera-
ture. With new observations and reward sig-
nals becoming available, reinforcement learn-
ing algorithms change their policy to make ac-
tions that have been rewarding in the past more
likely in the future. This feedback, over time,
shapes the behavior of the system, enabling it
to evolve specialized strategies that achieve ar-
bitrary pre-specified goals.

The decisive trick that turns an agent into a
curious explorer is to provide the very same
class of algorithms with a different type of
feedback signal, namely with so-called inter-
nal or curiosity reward [12, 20]. This is the
most direct way to reflect the drive for finding
interesting observations in a control algorithm.
Let us have a closer look at its different com-
ponents in the following.

The agent needs to have a model of the
world that represents what has been learned
about the environment so far. Again, the role
of this model is twofold: it allows for a com-
pression of the history of its observations, and
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more relevant here, it will allow the agent to
make predictions about future events. The
agent also needs a way to update the internal
world model as new observations are made.
Most of the time it is sufficient to refine the
existing model, but sometimes it may be nec-
essary to find a completely fresh model, one
that integrates newly discovered phenomena
with the previous model and possibly resolves
conflicts between old assumptions and new
data. Such learning and updating of models
based on data is a prototypical task for ma-
chine learning algorithms, and can be imple-
mented for example with artificial neural net-
works.

In order to choose better actions the robot
needs feedback on how well it is perform-
ing. In the reinforcement-learning paradigm,
such feedback is encoded into a reward sig-
nal. Based on the observations that follow an
action, we can either increase or decrease the
likelihood of the action in similar future situa-
tions.

In the case of a curious explorer this goal
can be cast as a drive to improve the internal
world model, for which the curiosity reward
is received. From previous sections we know
that such improvements can be measured in
terms of compression progress, hence, the cu-
riosity reward feedback is the progress made
by the system. Note that this curiosity feed-
back signal cannot be formulated as a func-
tion of the state of the agent and its environ-
ment. Instead, it depends on the agent’s inter-
nal state, particularly on the predictive power
of its current world model.

Let’s now extend our original example, the
fixed probe measuring the temperature on a
planetary surface. Consider the same probe
attached to a vehicle or rover. The rover al-
lows for simple actions, say: left, right, for-

ward, backward, and stay. If we allow the
robot to curiously explore it will, after gener-
ating a first model from its observations, be-
gin by choosing actions either randomly or ac-
cording to some ad-hoc scheme. Based on its
observations the reinforcement learning algo-
rithm will modify the likelihood of the actions
so as to maximize the reward signal.

In this example the robot will detect a uni-
form, boring, temperature distribution on the
surface, but when it enters a crater it will
happen upon a different temperature pattern.
This temperature pattern will be novel, and
non-random, and therefore interesting. With
enough exploration of the phenomenon the
robot will make compression progress and en-
joy a curiosity reward. This reward signal will
then be used by the learning algorithm to in-
crease the likelihood of action sequences that
find such regions. As long as the pattern is
not fully incorporated into the world model
the agent will receive reward for exploration in
this area. Continuing, the next time the agent
discovers a crater, the temperature profile will
again change. A crater of roughly the same
size and shape will have the same profile and
will generate little reward, exploration will not
last long in this area. However, the exploration
of a crater of a different shape will remain re-
warding. Explorations of craters of different
sizes will carry-on until the robot’s model is
capable of predicting the temperature profile
of any crater.

A space probe that is driven by artificial cu-
riosity will lead to the discovery and the mod-
eling of unpredicted phenomena. This probe
would not need the direct intervention of hu-
man scientists to guide it towards such phe-
nomena, nor would its behavior need to be pre-
determined and programmed ahead of time.
But a probe is typically sent into space with
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goals other than pure exploration. Often very
specific experiments, predefined by scientists
on Earth, or constrains on exploring only spe-
cific parts of space or certain phenomena are
put on the spacecraft. A robot driven solely by
exploration is simply not realistic. How then
can a curious agent best serve us? Given the
goals of a specific space mission we can de-
fine a goal to be used in the feedback of our
reinforcement-learning algorithm.

Say we want our robots to mine some dis-
tant planet for a particular ore. The more ore
they mine the better. Our feedback signal is
easy to design. But, where is the ore? And
what is the best way to mine on this unfamiliar
planet? These are questions that the curiosity
reward can help answer, by exploring and de-
veloping a world model that allows better pre-
diction about the nature of the planet so that
the most ore can be mined.

Moreover, how does an agent balance ex-
ploration, developing a model via an intrin-
sic reward signal, and exploitation, using its
model to directly fulfill its goals? This is a
non-trivial problem. In general it is hard to
balance the exploration and the exploitation
of an environment so as to maximize the ex-
ternal reward. It becomes particularly diffi-
cult when other constraints, such as limited
lifetime and energy usage, are taken into ac-
count. Regardless, a reinforcement learning
algorithm can learn when to explore and an
agent equipped with artificial curiosity gives
the agent a guided, open-ended, way to ex-
plore so it may better improve its collection
of external reward.

Over the years various formalizations of cu-
riosity have been researched by Schmidhu-
ber et al. [20]. Some of them include in-
trinsic reward based on prediction error [12],
world model improvements, differences be-

tween prior and posterior beliefs of agents be-
fore and after learning new data [22], as well
as zero-sum intrinsic reward games of two
players, each trying to out-predict or surprise
the other, taking into account the computa-
tional costs of learning, and learning when to
learn and what to learn [14]. There are other
approaches as well for adding intrinsic moti-
vation to artificial agents, e.g. [8].

Although it is conceptually clear how a
route toward building curious autonomous
agents looks like, the current state-of-the-art
in machine learning may not yet be suffi-
cient for realizing such behavior in a space
probe. We identify two different types of
bottlenecks: First, current compressors are
mostly limited to specific domains, such as
text, images, sound and video. Far more pow-
erful model-building learning methods are re-
quired to build compressors that capture the
world in the way human scientists do. Sec-
ond, a reinforcement learner that makes sense
of the internal curiosity feedback generated
by the compression-based coherence module
needs to scale gracefully to larger and more
complex environments. This requires progress
in the field of reinforcement learning, since
current methods are typically limited to small,
simple, and low-dimensional tasks.

Current research focuses on finding ways
to bring together the measure of compression
progress, which is used as an intrinsic re-
ward signal, with general yet practically fea-
sible reinforcement-learning methods. These
are yet to be implemented in real world
and robotic systems. In our lab we focus
on the implementation of these ideas in hu-
manoid robots in real-world environments, as
for example, in the E.U. funded project: IM-
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CLEVER1.

5 Curiosity in Science

Compression progress is not only a useful
principle for learning machines, such as curi-
ous space probes; it also reflects an important
aspect of human scientific interest. By im-
proving the subjective compressibility of the
history of observations we obtain shorter and
simpler descriptions of that history. The regu-
larities that facilitate a short, simple descrip-
tion of the history can be regarded as rules
that describe the structure of our observations.
Conversely, we can understand our observa-
tions in terms of the rules we have thus far
discovered. These rules or compression pro-
grams ultimately form the scientific descrip-
tion of our world. Driven by the desire to find
shorter descriptions of their observations, sci-
entists actively focus their attention (e.g. build
measuring devices, perform experiments) on
gathering data that allows them to find or val-
idate better compression programs [15, 18].
Physicists, for example, have traditionally an-
alyzed certain aspects of the world to find sim-
ple models to describe their limited observa-
tions better than previous models. In essence
they are trying to find programs that com-
press observed data better than the best pre-
viously known program. For example, New-
ton’s law of gravity can be formulated as a
short program which allows for substantially
compressing many observation sequences in-
volving falling apples and other objects. Al-
though its predictive power is limited – for ex-
ample, while it does not explain the quantum
fluctuations of the electrons inside an apple, it

1http://www.IM-CLEVER.eu/

still allows for a large reduction in the amount
of data required to encode the observations
of falling objects, by assigning short codes to
events that obey this law. Einstein’s general
relativity theory yields additional compression
progress as it compactly explains many previ-
ously unexplained deviations from Newton’s
laws of motion.

More generally, scientists try to find in-
creasingly compact rules to describe certain
aspects of the world that are consistent with
rules found eslewhere. for other aspects.
However, a description of a system (e.g., a
planet’s surface) on a certain abstraction level
(e.g., particle physics) does not immediately
yield insights into all the phenomena related to
that system (e.g., craters). Instead, scientists
try to achieve further compression and more
general explanations by finding rules that al-
low for shorter descriptions of the concepts
known thus far. Such a collection of rules, or a
compression program, can itself then become
a concept to which a certain name is given.
For example, planetary scientists obviously do
not describe planet surface phenomena on the
level of particle physics, but instead use more
abstract concepts that allow for shorter de-
scriptions of their observations. They might
find it useful to introduce the concept of a
crater, based on repeated occurrences of a de-
pression in the planet’s surface with a particu-
lar shape. The same principle applies for many
other concepts we use to describe our world;
the concept of a molecule allows for a short
description of many aspects of stable configu-
rations of its atoms, the concept of an atom al-
lows for a short description of certain configu-
rations of protons, neutrons and electrons, and
so on. Similarly, we can identify more abstract
concepts, such as ‘turbulence,’ for a distribu-
tion of motion in a liquid or gas, that is regular
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over a range of scales and allows, once again,
for a shorter representation of a significant
part of turbulent motion. In this fashion, the
amount of compression that can be achieved
serves as a criterion for determining the ab-
straction level on which a phenomenon can
best be described. Compression programs for
individual concepts on different abstraction
levels can again be compared for similarities
and grouped by inter-compressibility, poten-
tially yielding further compression. Such an
organization of compression programs takes a
hierarchical form in which more abstract con-
cepts describe increasingly general relations
between concepts on different levels of ab-
straction. Although compression progress is
essential to science, the idea that we should
use simple programs to describe our world
does not make explicit how to find such pro-
grams. As for example shown in [2], simple
file compression methods (gzip) can already
be used to infer some regularities associated
with the concept of ‘life,’ but not all com-
pression methods used in science might be so
straightforward.

The compression of a history of observa-
tions not only entails identifying the rules,
regularities or models that describe particular
physical processes, but also finding the level of
abstraction on which physical entities are best
represented. Similarly, compression progress
consists of not only finding shorter rules which
describe an ever larger number of observa-
tions, but also finding more abstract concepts
to which the rules apply. In this fashion, a
space probe driven by artificial curiosity could
learn to form representations similar to the
concepts formed by human scientists. For ex-
ample, a space probe could learn to represent
observations of ‘craters’ with a short program
based on similarities in their shape. After

this abstract concept is in place, it could learn
to find models for the processes surrounding
craters, for example, ‘erosion.’ Moreover, it
could then actively direct its attention or even
manipulate its environment, just as scientists
perform experiments, to gather observations
that allow to further compress its history of ob-
servations.

6 Conclusion
We have discussed a formal notion of curios-
ity within a framework of an agent that, from
the interactions with its environment, learns to
focus on observations with patterns that were
not yet identified. Informal notions related to
curiosity, such as complexity, pattern, regular-
ity, novelty, interestingness, were captured in
a general computational framework based on
compression. Compression programs allow an
agent to store its history of observations based
on identified regularities underlying those ob-
servations. The interestingness of incoming
observations can be determined relative to the
agent’s current ability to compress its history
of observations. In particular, interestingness
can be measured as compression progress. We
also introduced a method for measuring the
extent to which new data fits old data, called
coherence progress.

Many algorithms and methods developed in
artificial intelligence and computer science in
general, such as gzip, neural networks, pat-
tern recognition or dimensionality reduction,
ultimately perform some kind of compres-
sion. Of course, most of the existing meth-
ods have their own particular limitations: e.g.,
only successful with specific data types (such
as text documents, images or music), do not
produce human-readable representations, are
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overly time or resource intensive. While the
current state of the art in machine learning is
yet unable to address all these issues in gen-
eral applications, a major advantage of our ap-
proach is that the interestingness of observa-
tions is determined relative to the pattern dis-
covery ability of the compressor. Patterns that
can be easily discovered by a certain compres-
sor soon become boring, while patterns that
can never be found by a compressor will also
not be interesting. Instead, a curious agent fo-
cuses its actions on collecting observations for
which its limited compressor can find regular-
ities that were not yet discovered in the his-
tory of observations thus far. As researchers
develop better and more flexible compression
methods, the capability of curious artificial in-
telligence can be extended within the general
framework of compression progress.

Artificial curiosity in artificial intelligence
is closely related to human curiosity in scien-
tific investigation. Scientists not only try to
find regularities in previous observations, they
also actively collect new observations that al-
low them to find even better compression pro-
grams. Autonomous exploring probes should
resemble human scientists in that regard and
use artificial curiosity to discover concepts
similar to those found by human scientists.
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