
Uncertainty Handling in Model Selection for

Support Vector Machines

Tobias Glasmachers and Christian Igel

Institut für Neuroinformatik, Ruhr-Universität Bochum, Germany
{Tobias.Glasmachers,Christian.Igel}@neuroinformatik.rub.de

Abstract. We consider evolutionary model selection for support vec-
tor machines. Hold-out set-based objective functions are natural model
selection criteria, and we introduce a symmetrization of the standard
cross-validation approach. We propose the covariance matrix adaptation
evolution strategy (CMA-ES) with uncertainty handling for optimizing
the new randomized objective function. Our results show that this search
strategy avoids premature convergence and results in improved classifi-
cation accuracy compared to strategies without uncertainty handling.

1 Introduction

Support vector machines (SVMSs) are powerful algorithms for supervised learn-
ing, especially for binary classification [1, 2]. However, their performance cru-
cially depends on appropriate model selection, that is, the choice of the right
kernel and the right regularization parameter. If a parametrized family of kernel
functions is considered, model selection reduces to real-valued optimization. We
propose evolution strategies (ES) for solving the resulting optimization problem
(see [3, 4] and references therein), in particular if the model selection criterion
is not differentiable and using grid-search is not possible because of the dimen-
sionality.

Cross-validation is regularly applied as a model selection criterion to estimate
the quality of a parameter vector (i.e., as a fitness function). We argue that
the cross-validation procedure suffers from its fixed partition of the available
data into training and validation sets. Especially for small datasets this has a
considerable influence on the objective function and the locations of its minima.
Therefore we propose to average over all possible dataset partitions to increase
reliability. The resulting fitness function is only of theoretical interest because
of the complexity of its computation. We avoid this computational problem by
sampling, but at the cost of introducing uncertainty. Another advantage of this
averaging is that the performance measure gets more fine-grained when using the
0-1-loss and therefore provides additional information for the search algorithm.

The aim of the present paper is to assess the effects of noise introduced
into the SVM model selection due to this sampling. We apply the highly effi-
cient covariance matrix adaptation ES (CMA-ES) to the minimization of the
new fitness function [5, 6]. Recently, a simple and efficient uncertainty handling

mechanism has been proposed for the CMA-ES [7, 8], which we employ to handle
the uncertainty in our model selection criterion.

The paper is organized as follows. In the next section we introduce the CMA-
ES and the noise-handling technique. In Section 3 we briefly review SVMs for
binary classification. Then we motivate our model selection objective function.
An empirical evaluation is presented in Section 5, and we conclude with a short
summary.

2 Handling Uncertainty in Evolution Strategies

We first briefly describe the CMA-ES [5, 6, 8] and then its extension to adaptive
reevaluation for noisy optimization proposed in [7, 8].

CMA-ES. In each generation of the CMA-ES λ offspring are generated. Their fit-
ness is evaluated and the µ = ⌊λ/2⌋ best form the next parent population. In each
iteration, the kth offspring xk ∈ R

n is created by multi-variate Gaussian muta-
tion and weighted global intermediate recombination: xk = 〈xparents〉

w
+ σzk,

where zk ∼ N(0,C) and 〈xparents〉
w

=
∑µ

i=1 wixith-best-parent (wi ∝ ln(µ +
1) − ln(i), ‖w‖1 = 1). The CMA-ES is a variable metric algorithm adapt-
ing both the n-dimensional covariance matrix C of the normal mutation dis-
tribution as well as the global step size σ ∈ R

+. In the basic algorithm, a
low-pass filtered evolution path p of successful (i.e., selected) steps is stored,
p ← η1 p + η2 (〈xnew parents〉 − 〈xold parents〉), and C is changed to make steps
p more likely: C ← η3 C + η4 ppT (this rank-one update of C is augmented by
a rank-µ update, see [6]). The variables η1, . . . , η4 denote fixed learning rates
and normalization constants set to default values [8]. The global step size σ
is adapted on a faster timescale. It is increased if the selected steps are larger
and/or more correlated than expected and decreased if they are smaller and/or
more anticorrelated than expected. The highly efficient use of information and
the fast adaptation of σ and C makes the CMA-ES one of the best direct search
algorithms for real-valued optimization [9].

Uncertainty Handling. Evolution algorithms are well suited for optimization
in noisy environments, see [10] for a general overview and [11] for a book on
ESs for noisy optimization. The population-based approach, the averaging in
the recombination process, and the rank-based, non-elitist selection are inherent
features that make the CMA-ES less vulnerable to noise. However, if the signal
to noise ratio is too small, special uncertainty handling is required. Here we use
a slightly simplified version of the uncertainty handling proposed in [7, 8]. It is
called UH-CMA-ES and relies on adaptive reevaluation of solutions.

Because the selection process is rank-based, we only care about noise if it
changes the ranking of offspring. In our scenario, individuals can be reevaluated
and computing the mean or median of several evaluations reduces the noise level.
However, the signal to noise ratio changes in the course of evolution. Because
every fitness evaluation is time consuming, we implement a strategy that adapts

the number of evaluations per individual such that individuals are not evalu-
ated too often, but still often enough so that the fitness values can guide the
optimization.

We use an algorithm to detect the effective noise by monitoring the stability
of the ranking of the offspring. Following [7, 8], we consider a population L
composed of two copies of the current offspring population (i.e., each offspring is
contained twice in L) and reevaluate λreev of them. Then we sort L twice using
the new and the old fitness values (fnew

i and fold
i , i = 1 . . . , 2λ), respectively, and

determine the ranks rank(fnew
i) and rank(fold

i), respectively, of each reevaluated
individual xi. Then we compute the rank change

∆i = | rank(fnew
i)− rank(fold

i)| − 1 .

The uncertainty level s is now defined by

s =
1

λreev

∑

i,xiwas reevaluated

(

2∆i −∆lim
θ (rank(fnew

i)− I{fnew
i > fold

i })

−∆lim
θ (rank(fold

i)− I{fold
i > fnew

i })
)

.

The indicator function I is one if its argument is true and zero otherwise. The
parameter θ ∈ [0, 1] (here set to 0.2) controls the level of noise we tolerate and
∆lim

θ (r) denotes the θ× 50 percentile of the possible rank changes (given by the
2λ− 1 values |1− r|, |2− r|, . . . , |2λ− 1− r|) when having the original rank r.

If s > 0 we increase the number of evaluations in the computation of a fitness
value by a factor of α. Otherwise we decrease the number of evaluations by 1/α.

The reevaluation is done before the environmental selection in the stan-
dard CMA-ES, which uses the median of the fitness values of the reevalu-
ated individuals for ranking. The additional fitness evaluations increase the
computational costs per generation. However, we reevaluate on average only
λreev = max(λ/10, 2) individuals in each generation.

3 Support Vector Machines

Support vector machines are considered state-of-the art in machine learning for
pattern recognition, in particular for binary classification [1, 2].

In supervised learning we consider an input space X and an output space Y =
{−1, 1}. The learning is driven by sample data S = {(x1, y1), . . . , (xℓ, yℓ)} with
xi ∈ X and labels yi ∈ Y for 1 ≤ i ≤ ℓ drawn independently from some
fixed unknown distribution p over X × Y . The goal of binary classification is
to infer from S a hypothesis h : X → Y minimizing the expected loss Rp(h) =
∫

X×Y

L(y, h(x)) dp(x, y) corresponding to the generalization error. We consider

the 0-1-loss given by L(y, h(x)) = (−h(x)y + 1)/2 (i.e., the classification error).
Support vector machines transfer the input data to a feature space and per-

form linear classification in that space. Given a positive semi-definite kernel func-
tion k : X × X → R (∀x, x′ ∈ X, ∀c1, . . . , cm ∈ R :

∑m
i,j=1 cicjk(x, x′) ≥ 0),

we consider the feature space Hk = span{k(x, ·) |x ∈ X} and the function class
Hb

k = {f(x) = g(x) + b | g ∈ Hk, b ∈ R}. We classify according to the sign of a
function f ∈ Hb

k. The decision boundary induced by f is a hyperplane in Hk.
Then the hypothesis generated by a 1-Norm Soft Margin SVM corresponds

to a solution of

minimize
f∈Hb

k

1

ℓ

ℓ
∑

i=1

Lhinge(yi, f(xi)) +
γℓ

2
‖f‖2k

where γℓ = (ℓC)−1 and the (semi-)norm ‖.‖k is inherited from Hk to Hb
k. The

loss function is given by Lhinge(y, f(x)) = max(0, 1− yf(x)). That is, we do not
only penalize if a pattern x is classified wrongly (i.e., yf(x) < 0), but also if
the pattern is too close to the separating hyperplane in the sense that f(x) does
not meet the functional target margin (i.e., |f(x)| < 1). The parameter C > 0
controls the trade-off between the optimization goals of reducing the empirical
loss measured by Lhinge and the complexity of the hypothesis measured by ‖.‖k.

The most frequently used kernel (for X ⊂ R
n) is the radial Gaussian ker-

nel k(x, x′) = exp(−γ‖x − x′‖2) with a single bandwidth parameter γ > 0.
A standard extension is the Gaussian kernel with feature scaling k(x, x′) =
exp

(

−
∑n

i=1 γi(xi − x′
i)

2
)

, which is also known as automatic relevance detection
(ARD) kernel and has as many degrees of freedom as the input space has dimen-
sions. The regularization parameter C and the parameters of the kernel function
are called hyperparameters. Their proper selection is the model selection prob-
lem for SVMs.

4 A Fitness Function for SVM Model Selection

In this section we introduce a natural objective function for SVM model se-
lection. Because the objective function is impractical to compute we propose a
randomized variant, which allows to trade-off accuracy and time to compute the
objective function value.

4.1 Hold-Out Sets and Cross-Validation

The probably most simple type of objective function for model selection is the
error on a hold-out set. Assume we use a fraction of, for example, 1/5 of the
training data as a hold-out set. Then we train a learning machine on the re-
maining 4/5 of the data and compute the fraction of errors on the hold-out set.
This error measure is an unbiased estimate of the generalization error of a ma-
chine trained on a dataset of size (4/5)ℓ sampled i.i.d. from the data generating
distribution p. Usually the optimal parameters for this machine will be quite
good for a machine trained on the whole dataset of size ℓ, such that this objec-
tive function seems to be a simple and appropriate criterion for model selection.
But it turns out that the hold-out error has a high variance, in the sense that
it strongly depends on the particular partition of the dataset into training and

validation sets. This effect is very pronounced for small datasets and for small
hold-out sets. On the other hand, the larger the hold-out set the smaller becomes
the remaining training set, and this in turn imposes a larger bias in the estima-
tion of the generalization error, because fewer examples are used for training.
Furthermore, the asymmetry between the roles of the reduced training set and
the hold-out set is dissatisfactory.

Cross-validation is a simple procedure which improves on these points. How-
ever, the partition of the data into training and hold-out sets remains arbitrary.
In a k-fold cross-validation procedure the data S are split into k disjoint subsets
S1, . . . , Sk of roughly equal size. Then for each i ∈ {1, . . . , k} a machine is trained
on the dataset S \ Si and the error Ei on the corresponding hold-out set Si is

computed. Finally the total error
∑k

i=1 Ei is the so-called k-fold cross-validation
error. In this procedure the underlying loss function is evaluated exactly once
on each training example. In the machine learning literature, common values for
the parameter k range from three to ten, and the choice k = 5 can be considered
a default value [12].

Compared to the simple hold-out error the variance of the generalization
error estimate is reduced, but because the data used in the different partitions
are of course not independent the reduction of the variance is not by a factor of
1
k
. In general the cost for the computation of the cross-validation error is k times

the cost of the computation of the hold-out error. Especially for small datasets
the cross-validation error can heavily depend on the partition S1, . . . , Sk of the
dataset and thus has a relatively high variance w.r.t. the choice of the partition.
This is an unsatisfactory situation as there is no such thing as a canonical data
partition.

4.2 Bootstrapping

Conceptually it is straight-forward to avoid the problem of having an a priori

fixed partition of the data. We define the set Jn =
{

I ⊂ {1, . . . , ℓ}
∣

∣

∣
|I| = n

}

of index subsets of size n, leading to the objective function

B̄ =
1

|Jn|

∑

I∈Jn

(

∑

i∈IC

L(yi, hI(xi))

)

where L is a loss function and hI is the hypothesis constructed from the data
indexed by I. Each summand of this objective function computes the hold-out
error of the hold-out set IC := {1, . . . , ℓ} \ I, evaluated on the hypothesis hI .
In the style of the k-fold cross-validation procedure we can choose n = ⌊k−1

k
ℓ⌋,

and, as usual, we consider k = 5 as the default.
This objective function has the conceptual advantage to be completely sym-

metric w.r.t. the partition of the dataset into training and hold-out set and
computes the probably best possible estimate of the generalization error of a
machine trained on n examples. It has the disadvantage that the set Jn grows
according to |Jn| =

(

ℓ
n

)

which is clearly computationally intractable.

Cγ

5-fold cross-validation

Cγ

bootstrap error

Cγ

test error

Fig. 1. The plots show the error landscapes for an instance of the chess problem
with ℓ = 200 training points (see Section 5) with the radial Gaussian kernel over an
equidistant grid on the logarithmic scale for C and γ. Here, the bootstrap error was
approximated by averaging over 100 i.i.d. drawn dataset partitions I ∈ Jn per grid
point.

Therefore, we introduce the random variable

B̂ : Jn → R I 7→
∑

i∈IC

L(yi, hI(xi))

with the uniform distribution for I ∈ Jn. For each fixed index set I we get the
hold-out error function B̂(I), which is a function of the SVM hyperparameters.
We write B̂ for the randomized objective function that picks a random I ∈ Jn

for each of its evaluations. It clearly holds E[B̂] = B̄. This way we are able to
avoid a systematic bias resulting from a fixed partition of the data like in the
cross-validation procedure, at the cost of a randomized objective function. We
will refer to this objective function as the bootstrapping error and use it with
the standard 0-1-loss (counting misclassified test patterns).

For the minimization of B̄ based on evaluations of B̂ we need a search strat-
egy that can deal with a non-differentiable and noisy objective function. This
randomized objective function takes as long to evaluate as the simple hold-out
error, but we have to be prepared for relatively long optimization runs due to the
need for the search algorithm to handle the uncertainty in the objective function
evaluations, for example when it is necessary to compute statistics over many
evaluation in order to obtain sufficiently reliable information.

Of course there are a lot of possible criteria in between the randomized hold-
out error B̂, standard cross-validation, and full bootstrapping. We can choose
a subset of Jn of considerably smaller size (which should be as symmetric as
possible), or take the mean over a few index sets sampled from Jn. The most
straight-forward example is to randomly pick a new partition of the dataset
for each evaluation of the cross-validation error, which requires a search strategy
that can deal with uncertain function evaluations as needed for the minimization
of B̂. We could even define a (weighted) mean over all choices of n. This leads
to a large number of deterministic or randomized objective functions, but for
the sake of clarity and for conceptual reasons we stick to the basic randomized
hold-out error B̂.

The plots in Fig. 1 illustrate the difference between cross-validation and
bootstrap error. It is obvious that minimization of the newly proposed bootstrap

error gives much more reliable results than cross-validation with a fixed partition
of the data.

5 Experimental Evaluation

The focus of our experiments is to assess the effect of uncertainty handling via
self-adaptation in the CMA-ES in combination with our new model selection
criterion. As discussed above, the UH-CMA-ES algorithm decides automatically
how many averages it computes to make its fitness evaluations sufficiently reli-
able. We compare this strategy to the standard variant of the CMA-ES. Because
the standard CMA-ES has no special uncertainty handling, we incorporate the
averaging into the objective function simply by computing the statistics over a
fixed number of realizations in each evaluation. Thus, we ask for the differences
of averaging at the level of the objective function or the search algorithm. Fur-
thermore, we demonstrate that the standard cross-validation procedure indeed
suffers from its fixed partition of the data.

5.1 Setup

We consider four experimental setups. The first and most näıve strategy (referred
to as CMA-1×) is to apply the standard CMA-ES to the randomized bootstrap-
ping objective function B̂, ignoring its uncertainty. A second strategy (CMA-5×)
is to use a fixed average of k evaluations of B̂ as a fitness function for the CMA-
ES. In the style of cross-validation we use k = 5 evaluations in our experiments.1

The third strategy in the comparison, CMA-CV, is 5-fold cross-validation without
uncertainty, that is, using a random but fixed partitioning of the data. Again,
the CMA-ES is used to minimize the resulting error function. We compare these
strategies to the UH-CMA-ES applied to the B̂ objective function.

As a proof of concept, the experiments are carried out on four benchmark
datasets. In the chess board problem we consider the input space X = [0, 4)2 and
sample x from the uniform distribution on X. Then we assign a label according
to the fixed rule y = (−1)

P

2

i=1
⌊xi⌋. This rule assigns labels according to the

colors of the fields of a chess board of size 4 × 4 [13]. This distribution will be
referred to as the chess problem. We use the radial Gaussian kernel for this
problem. The next task is called sparse coordinate problem (sparse problem for
short). To generate a sample we draw n ∈ {1, . . . , 6} uniformly at random and
set S = {1, . . . , 20} \ {n}. For n ≤ 3 we assign the positive label y = +1, and set
y = −1 otherwise. Then we randomly remove four more elements from the set S.
The final representation is chosen to be x ∈ R

20 with xi = 0 if x ∈ S and xi = 1
otherwise. We apply the Gaussian ARD kernel to this problem. It should identify
the first six coordinates as highly discriminative, while the remaining coordinates

1 We could instead use any other number of averages, or use a fixed rule how the
number of averages changes over time. However, any such strategy requires problem
specific knowledge. Because we aim at a general and automated solution we will
assume such expert knowledge to be not available in this study.

provide no useful information. In addition to the artificial distributions chess

and sparse, we consider the benchmark problems banana and image from the
benchmark collection introduced by [14] and apply SVM classifiers with radial
Gaussian kernels to these problems.

The search space for the evolutionary algorithms is a low-dimensional vector
space, and we use the parameterization log(C) and log(γ) (or log(γi) for the
Gaussian ARD kernel) of regularization and kernel parameters. This allows for
unconstrained optimization. All parameters of the CMA-ES are set to default
values [8], the initial global step size is set to σ = 1.

Each strategy is given 100, 000 evaluations of B̂. This relatively high (in prac-
tice presumably too high) number of evaluations is chosen because it is sufficient
for the CMA-ES without uncertainty handling to converge. To generate reliable
results, we conducted 1000 trials for all experiments and evaluated the classifi-
cation performance of the resulting machines with a Mann-Whitney U-test. Of
course, this requires that the trials are statistically independent. Due to a lack of
data this is impossible to ensure on standard benchmark datasets, because there
is no alternative to re-using the same data in each trial. The possibility to sam-
ple arbitrary amounts of data and thus to ensure statistical independence is the
main motivation for the consideration of artificial test problems such as chess

and sparse. All four methods in the comparison are reasonable strategies for
SVM model selection. Therefore we expect the differences to be small. Further-

chess sparse

method q25 q50 q75 (1) (2) (3) (4) q25 q50 q75 (1) (2) (3) (4)

(1) CMA-1× 0.149 0.168 0.187 — >>> >> >>> 0.257 0.274 0.295 — >>> >>> >>>

(2) CMA-5× 0.146 0.162 0.181 <<< — 0.13 >> 0.250 0.262 0.281 <<< — 0.44 >>>

(3) CMA-CV 0.147 0.163 0.183 << 0.87 — >>> 0.251 0.263 0.278 <<< 0.56 — >>>

(4) UH-CMA 0.143 0.159 0.178 <<< << <<< — 0.249 0.258 0.274 <<< <<< <<< —

banana image

method q25 q50 q75 (1) (2) (3) (4) q25 q50 q75 (1) (2) (3) (4)

(1) CMA-1× 0.126 0.138 0.158 — >>> >>> >>> 0.119 0.133 0.154 — >>> >>> >>>

(2) CMA-5× 0.124 0.135 0.149 <<< — 0.62 > 0.116 0.129 0.144 <<< — 0.52 0.38
(3) CMA-CV 0.124 0.134 0.149 <<< 0.38 — > 0.116 0.129 0.144 <<< 0.48 — 0.34
(4) UH-CMA 0.123 0.132 0.147 <<< < < — 0.116 0.129 0.145 <<< 0.62 0.66 —

Table 1. Absolute and relative performance of the classifiers resulting from the pa-
rameters found by the different strategies. The errors are given as 25%, 50%, and
75% quantiles over 1000 trials. The comparison matrix on the right uses the symbols
<, <<, and <<< to indicate that the method in this row performs significantly better
than the method in this column with significance levels 0.05, 0.01, and 0.001, respec-
tively. A one-sided Mann-Whitney U-Test (also known as Wilcoxon rank sum test) is
used for the comparison. Analogously, the symbols >, >>, and >>> indicate that the
method in that row performs significantly worse with the corresponding significance
level. If the differences are not significant at a level of at least 0.05 the significance level
is reported. Note that for the fixed size datasets banana and image the trials are not
independent, such that the “true” significance levels are in general worse.

more, the fitness function and the function used to judge the final parameters
differ. The objective function of model selection is, of course, the generalization
error, which is estimated by the test error. In contrast, we have no alternative
to fitness functions computable from the available training data. This difference
between the functions used for training and for evaluation is an additional source
of perturbations in the results. These two reasons make clear that we need a rel-
atively large number of trials in order to obtain statistically significant results.
We used training datasets of size ℓ = 100. For the artificial problems we sampled
test sets of size 100, 000, giving extremely reliable estimates of the generalization
error. For the fixed size benchmark problems we used the remaining examples
for testing, which amounts to 5, 000 test examples for the banana benchmark
and 2, 210 for the image problem.

5.2 Results and Discussion

generation

n
u
m

b
er

o
f
a
v
er

a
g
es

number of fitness averages

0 5 10 15 20 25 30 35 40 45
1

10

100

1.000

10.000

Fig. 2. Typical evolution of the number of
averages over the generations of the UH-
CMA-ES. Usually only few generations can
be evaluated with a limit of 100,000 evalu-
ations of B̂.

The results are summarized in Ta-
ble 1. The significant differences be-
tween the methods clearly indicate
that averaging over several evalua-
tions of B̂ improves the solution. The
CMA-ES profits from automatic un-
certainty handling. The UH-CMA-
ES method performs clearly best, al-
though it evaluates only a compara-
tively small number of search points.
For the SVM model selection prob-
lem, and in particular for the fine-
tuning of the SVM hyperparameters,
the reliable evaluation of a small num-
ber of candidates turns out to be more
successful than the cheap but unreli-
able evaluation of a large number of
search points. Furthermore, the ex-
periments indicate that the robust es-
timation of the generalization error requires a large number of averages over
simple hold-out error evaluations.

The plot in Fig. 2 clearly reveals that there is no uniformly best number of
averages for all search points, but that the number of averages grows to large
numbers if needed. This result is not surprising. Of course, the closer the CMA-
ES comes to a local optimum, the worse gets the signal-to-noise ratio. This drives
the UH-CMA-ES algorithm to large numbers of averages in late generations.
The algorithm very quickly identifies the region of well-generalizing classifiers,
and then gradually switches over to fine-tuning of the hyperparameters which
requires a large sample per individual.

In our experiments, the bootstrap error B̄ is clearly superior to the cross-
validation error if the uncertainty of B̂ is handled properly.

6 Conclusion

We applied the CMA-ES with and without uncertainty handling mechanism to
the problem of model selection for SVMs. As a new model selection criterion, we
proposed the minimization of the bootstrapping error B̄ based on evaluations
of its estimate B̂. There are good arguments to prefer this objective function
over standard cross-validation. Our experiments support these theoretical con-
siderations and show the advantage of automatic uncertainty handling for this
problem. The small overhead of the uncertainty handling for the re-evaluation of
some individuals is clearly justified by the resulting improvement in performance.

References

1. Cortes, C., Vapnik, V.: Support-vector networks. Machine Learning 20 (1995)
273–297

2. Evgeniou, T., Pontil, M., Poggio, T.: Regularization networks and support vector
machines. Advances in Computational Mathematics 13 (2000) 1–50

3. Friedrichs, F., Igel, C.: Evolutionary Tuning of Multiple SVM Parameters. Neu-
rocomputing 64 (2005) 107–117

4. Mersch, B., Glasmachers, T., Meinicke, P., Igel, C.: Evolutionary Optimization of
Sequence Kernels for Detection of Bacterial Gene Starts. International Journal of
Neural Systems 17 (2007) 369–381 Selected paper of ICANN 2006.

5. Hansen, N., Ostermeier, A.: Completely derandomized self-adaptation in evolution
strategies. Evolutionary Computation 9 (2001) 159–195

6. Hansen, N., Müller, S.D., Koumoutsakos, P.: Reducing the time complexity of the
derandomized evolution strategy with covariance matrix adaptation (CMA-ES).
Evolutionary Computation 11 (2003) 1–18

7. Hansen, N., Niederberger, A.S.P., Guzzella, L., Koumoutsakos, P.: Evolutionary
optimization of feedback controllers for thermoacoustic instabilities. In Morri-
son, J.F., Birch, D.M., Lavoie, P., eds.: IUTAM Symposium on Flow Control and
MEMS, Springer-Verlag (2008)

8. Hansen, N., Niederberger, A.S.P., Guzzella, L., Koumoutsakos, P.: A method for
handling uncertainty in evolutionary optimization with an application to feedback
control of combustion. IEEE Transactions on Evolutionary Computation (2008)
In press.

9. Beyer, H.G.: Evolution strategies. Scholarpedia 2 (2007) 1965
10. Jin, Y., Branke, J.: Evolutionary optimization in uncertain environments—a sur-

vey. IEEE Transactions on Evolutionary Computation 9 (2005) 303–317
11. Arnold, D.V.: Noisy Optimization With Evolution Strategies. Kluwer Academic

Publishers (2002)
12. Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning:

Data Mining, Inference, and Prediction. Springer-Verlag (2001)
13. Glasmachers, T., Igel, C.: Gradient-based Adaptation of General Gaussian Kernels.

Neural Computation 17 (2005) 2099–2105
14. Rätsch, G., Onoda, T., Müller, K.R.: Soft Margins for AdaBoost. Machine Learning

42 (2001) 287–320

