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Abstract—Biological data mining using kernel methods can be improved by a task-specific choice of the kernel function. Oligo kernels

for genomic sequence analysis have proven to have a high discriminative power and to provide interpretable results. Oligo kernels that

consider subsequences of different lengths can be combined and parameterized to increase their flexibility. For adapting these

parameters efficiently, gradient-based optimization of the kernel-target alignment is proposed. The power of this new, general model

selection procedure and the benefits of fitting kernels to problem classes are demonstrated by adapting oligo kernels for bacterial gene

start detection.

Index Terms—Sequence analysis, oligo kernel, translation initiation sites, model selection, kernel target alignment, support vector

machines.
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1 INTRODUCTION

KERNEL-BASED learning algorithms have been successfully
applied to a variety of sequence classification tasks

within the field of bioinformatics [1]. Recently in [2], oligo
kernels have been introduced for the analysis of biological
sequence data, where the term oligo(mer) refers to short,
single stranded DNA fragments. As shown in [2], decision
functions based on oligo kernels are easy to interpret and to
visualize. They can therefore be used to infer characteristic
sequence features. In contrast to other approaches, oligo
kernels allow for gradually controlling the level of position-
dependency of the representation, that is, how important
the exact position of an oligomer is. For example, measuring
the similarity of two sequences by the standard Hamming
distance is fully position-dependent (either two symbols at
a given position are identical or not), whereas comparing
just the frequencies of the symbols is completely position-
independent (the position of a symbol within a sequence
does not matter, just how often it occurs). The gradual
control is a decisive feature compared to other string
kernels for biological sequences, which usually provide
either position-dependent [3] or completely position-inde-
pendent representations [4], [5]. Measuring the similarity

between sequences using kernels based on the edit distance
between the sequences is an alternative approach in which
the position-dependency can be controlled [6].

In this study, we look at combined oligo kernels [2], which
consider oligomers of different lengths. This kernel allows
us to control the position-dependency for each oligomer
length individually and can therefore be better adapted to a
particular prediction or data mining problem. This leads us
to one of the key problems of all kernel-based methods,
namely, model selection, that is, finding the appropriate
kernel for a given task. Typically, a parameterized family of
kernel functions is considered and model selection reduces
to real-valued parameter optimization. When using the
combined oligo kernel for biological sequence analysis, we
want to adapt the parameters that control position-
dependency of oligomers of a particular length. The most
sophisticated algorithms for model selection are gradient-
based methods [7], [8], [9], [10], [11], [12]. However, they
require the definition of a differentiable criterion for the
performance of a kernel. Recently, kernel-target alignment

has been proposed as a criterion for kernel adaptation [13],
[14], [15]. In this study, we derive gradient-based optimiza-
tion of the kernel-target alignment leading to a general,
efficient model selection method applicable to multiple
kernel parameters.

This new model selection method enables us to adjust the
combined oligo kernel for a given task. The power of this
approach is demonstrated by applying it to the design of
support vector machines [16] for the prediction of bacterial
gene starts in genomic sequences [17]. Although the exact
localization of gene starts is crucial for correct annotation of
bacterial genomes, it is difficult to achieve with conventional
gene finders, which are usually restricted to the identification
of long coding regions. The prediction of gene starts therefore
provides a biologically relevant signal detection task, which
has been successfully approached by machine learning
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algorithms and is well-suited to the evaluation of our
kernel optimization scheme.

In the following, we derive gradient-based optimization
of the kernel target alignment for model selection. In
Section 3, the oligo kernel is introduced and, in Section 4,
experiments using optimized oligo kernels for bacterial
gene start prediction are presented.

2 KERNEL SELECTION USING GRADIENT-BASED

OPTIMIZATION OF THE KERNEL-TARGET

ALIGNMENT

The basic idea of kernel methods for classification is to map
the input patterns (here, biological sequences) to a feature
space endowed with a dot product and to classify the
patterns in the feature space using a well-understood
algorithm in which all operations in the feature space can
be expressed by dot products. The trick is to compute these
inner products efficiently in the input space using a kernel
function. Choosing the right kernel and, thereby, the right
feature space is the most important aspect when designing a
kernel classifier.

In this section, we first briefly describe support vector
machines, the most prominent kernel-based learning
method. Then, we present the kernel-target alignment as a
criterion of how well a kernel fits a certain data set. The
gradient of the kernel-target alignment is derived, which
can be used to select appropriate kernel parameters for a
given problem.

2.1 Support Vector Machines

In this study, we consider L1-norm soft margin support vector
machines (SVMs) for binary classification [16]. Let ðxi; yiÞ,
1 � i � ‘, be consistent training examples, where yi 2
f�1; 1g is the label associated with input pattern xi 2 X .
The main idea of SVMs is to map the input patterns to a
feature space F and to separate the transformed data
linearly in F .

The transformation � : X ! F is implicitly done by a
kernel k : X � X ! IR, which computes a scalar (inner)
product in the feature space efficiently, that is,
kðxi; xjÞ ¼ h�ðxiÞ; �ðxjÞi. The kernel function k has to be
positive definite, that is, for every finite set of patterns xi,
1 � i � ‘, the matrix G 2 IR‘�‘ with Gij ¼ kðxi; xjÞ has to be
positive definite (i.e., a0Ga � 0 for all a 2 IR‘, we use the
term strictly positive definite if strict inequality is required for
nonzero a). Patterns are classified by the sign of a function f
of the form

fðxÞ ¼ hw; �ðxÞi þ b ¼
X‘
i¼1

��i yikðxi; xÞ þ b: ð1Þ

The real-valued coefficients ��i defining the weight vector
w ¼

P‘
i¼1 yi�

�
i �ðxiÞ and b are determined by solving the

following quadratic optimization problem:

min
w;b

H½f � ¼
X‘
i¼1

1� yifðxiÞ½ �þþ
1

2C
kwk2; ð2Þ

where ½z�þ ¼ 0 if z < 0 and ½z�þ ¼ z otherwise. The first part
penalizes patterns that are not classified correctly with a

particular margin (i.e., distance from the separating hyper-
plane in F ). The second part regularizes the solution in the
sense that minimizing the norm of the weight vector
corresponds to minimizing the norm of the function ~fðxÞ ¼
hw; �ðxÞi in F . If

P‘
i¼1 1� yifðxiÞ½ �þ¼ 0, minimizing kwk

corresponds to maximizing the minimum distance of a
training pattern from the separating hyperplane in F . The
regularization parameter C controls the trade-off between the
two parts of the objective function.

In practice, the coefficients ��i are computed by max-
imizing the dual optimization problem,

E½�� ¼
X‘
i¼1

�i �
1

2

X‘
i;j¼1

yiyj�i�jkðxi; xjÞ; ð3Þ

subject to
P‘

i¼1 �iyi ¼ 0 and 0 � �i � C for i ¼ 1; . . . ; ‘. The
optimal value for b can then be determined based on the
solution �� 2 IR‘. The patterns xi with �i > 0 are called
support vectors. For solving the dual quadratic optimization
problem, we use a sequential minimal optimization (SMO, cf.
[18]) approach based on second order information as
proposed in [19], [20].

For an introduction to SVMs, we refer to the literature
(e.g., [21] or the textbooks [22], [23], [24]).

2.2 Model Selection and Kernel-Target Alignment

The right choice of a kernel function, which implicitly
determines the feature space F , is crucial for the perfor-
mance of the learning machine. Choosing an appropriate
kernel and thereby defining a metric between input patterns
that fosters correct classification is the model selection
problem in the context of kernel-based methods. Usually, a
parameterized family of kernel functions is considered. In
this case, model selection reduces to real-valued parameter
optimization. Still, it is necessary to pick an appropriate
family of kernel functions to choose from, a performance
measure (i.e., a heuristic to compare kernels by quantifying
how well they are suited to the problem class at hand), and
an optimization strategy. If the kernel space has a
differentiable structure and the performance measure is
differentiable, the optimization methods of choice for
adapting multiple hyperparameters are iterative, gradient-
based approaches. If these assumptions are not met, direct
search methods such as grid-search, which is only applic-
able in case of very few parameters, or evolutionary
algorithms [25], [26] are used.

Usually, gradient-based approaches rely on performance
measures based on radius-margin bounds [7], [8], [9], [10],
[11], [12]. In each iteration, radius-margin performance
criteria require the training of the learning machine and the
solution of an additional quadratic program to compute the
radius of the smallest ball enclosing the training data in
feature space. Here, we consider a different criterion for
model selection, the kernel-target alignment [13], [14], [15].
It can be calculated efficiently, independently from the
actual learning algorithm, makes use of the information
from the complete training data set—and it is differentiable.

We consider a consistent training data set comprised of ‘
training patterns xi 2 X with labels yi 2 f�1;þ1g. On this
set, every positive definite kernel function k : X � X ! IR
defines a symmetric positive definite kernel matrix (Gram
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matrix) G 2 IR‘�‘ by Gij :¼ kðxi; xjÞ. On the training set, we
can measure the similarity of two kernel functions k1 and k2

by the normalized inner product (i.e., the cosine of the
angle)

Sðk1; k2Þ :¼ hGk1
; Gk2
iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

hGk1
; Gk1
ihGk2

; Gk2
i

p ð4Þ

between the corresponding kernel matrices Gk1
and Gk2

,
where the inner product between matrices is defined by
hA;Bi :¼

P‘
n;m¼1 AnmBnm for A;B 2 IR‘�‘.

We now consider the function

y : X ! IR; x 7! ym if x ¼ xm
0 otherwise;

�
ð5Þ

which assigns the observed label to every input pattern in
the training set and assigns zero (“don’t know”) to every
unseen input pattern. Let y ¼ ðy1; . . . ; y‘Þ0. The outer
product yy0 defines a positive definite rank one matrix with
ðyy0Þij ¼ yiyj. It is the kernel matrix of the kernel function
yyðx; zÞ :¼ yðxÞ � yðzÞ, which can be thought of as an
empirical kernel build of the training data. Obviously, it
perfectly suits the training data. This observation leads to
the definition of the kernel-target alignment:

ÂðkÞ :¼ Sðk; yyÞ ¼ hG; yy0i
‘
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hG;Gi

p ¼
P‘

i;j¼1 yiyjkðxi; xjÞ

‘
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP‘

i;j¼1 kðxi; xjÞ
2

q : ð6Þ

Without normalization, kernel-target alignment corre-
sponds to kernel polarization, which was proposed recently
for model selection [27].

The kernel-target alignment measures the similarity of

the kernel with yy on the observed data. We can rewrite

hG; yy0i ¼
P

yi¼yj kðxi; xjÞ �
P

yi 6¼yj kðxi; xjÞ. Thus, hG; yy0i
(and, therefore, ÂðkÞ if only normalized Gram matrices

are considered) is large if the similarity measure induced by

the kernel is large for input patterns of the same class and

small for patterns from different classes. This is the intuitive

idea behind preferring a kernel with high kernel-target

alignment because the alignment reflects how well an

induced similarity measure and class membership match.

A model selection strategy based on the kernel-target

alignment (and kernel polarization) requires a considerate

choice of the kernel family, guided by prior knowledge

about the problem domain. The kernel-target alignment is

maximized by the empirical kernel, which is, of course, an

undesired solution of the model selection problem. Thus,

the empirical kernel must not be an element of the family of

functions from which the kernel is selected. A schema and

an additional geometric interpretation of model selection

using the kernel-target alignment is provided in Fig. 1 and

in Appendix B. It is important to stress that maximization of

the kernel-target alignment does not aim at the general-

ization properties of some classifier. The same holds for

kernel polarization. Both measures are maximized if a

kernel reflects the properties of the training data set used to

define the empirical kernel. In order to prevent overfitting,

only parameters that control general properties of the

kernel family and that do not allow adaptation to individual

input patterns should be optimized using these criteria.

It is a decisive feature of optimizing the kernel-target

alignment for model selection that it is independent of the

actual learning machine. No computationally expensive

training of a classifier is necessary in the model selection

process. Further, the resulting kernel can be plugged into

different learning machines. However, this lack of specifi-

city can also be viewed as one of the main drawbacks of the

approach as the optimal feature space representation surely

depends on the classification algorithm.

2.3 Gradient of Kernel-Target Alignment

We propose optimizing the kernel-target alignment using

gradient-based algorithms. The partial derivative of the

kernel-target alignment with respect to a parameter h of the

kernel k with corresponding Gram matrix G is given by

@Â

@h
ðkÞ ¼

h@G@h ; yy0i � hG;Gi � hG; yy0i � h@G@h ;Gi
‘hG;Gi3=2

; ð7Þ

using h@G@h ; Bi ¼
P‘

n;m¼1
@Gnm

@h Bnm ¼
P‘

n;m¼1
@kðsn;smÞ

@h Bnm.

To the best of our knowledge, standard kernel-target

alignment has neither been combined with efficient

gradient-based optimization techniques nor applied to

complex string kernels so far. Nevertheless, kernel-target

alignment and kernel polarization have already proven to

be well suited to model selection (e.g., see [13], [27]). In [11],

a related but more complex criterion is suggested for model

selection. This measure is optimized by simple gradient-

descent and discussed in the context of the kernel-target

alignment. However, when we used the criterion proposed

in [11] instead of Â for adapting trimer and combined oligo

kernels in our experiments described in Section 4, the model

selection led to degenerate kernels, resulting in very poor

performance.

3 OLIGO KERNELS FOR SEQUENCE ANALYSIS

In this section, oligo kernels for the analysis of biological

sequence data are described. These kernels have high

discriminative power and yield classifiers that are easy to

interpret and to visualize [2]. The gradient of the combined
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Fig. 1. Schema of model selection based on kernel-target alignment.
The goal is to find a kernel k� within a restricted family of “reasonable”
kernel functions such that the normalized Gram matrix induced by k� has
the smallest distance to the normalized empirical kernel matrix yy0; see
Appendix B for a more formal treatment of this topic and a precise
definition of the labels.



oligo kernel with respect to its hyperparameters is derived

for gradient-based model selection.

3.1 Oligo Kernels

The feature space representation induced by oligo kernels

can be described in terms of oligo functions [2], which encode

occurrences of oligomers in sequences with an adjustable

degree of positional uncertainty. We consider finite

sequences over an alphabet A. In our context, subsequences

! 2 AK of length K are called K-mers (i.e., oligomers of

length K). For a sequence s containing the K-mer ! 2 AK at

positions Ss
! ¼ fp1; p2; . . .g, the oligo function is given by

�!ðtÞ ¼
X
p2Ss

!

exp � 1

2�2
K

ðt� pÞ2
� �

; ð8Þ

see Fig. 2 for an example. The continuous position variable t

is not restricted to a discrete domain so far. The smoothing

parameter �K adjusts the width of the Gaussians centered on

the observed oligomer positions and determines the degree

of position-dependency of the feature space representation.

While small values for �K imply peaky functions, large

values imply flatter functions.
For a sequence s the occurrences of all K-mers contained

in AK ¼ f!1; !2; . . . ; !mg can be represented by a vector of

m oligo functions. This yields the final feature space

representation �KðsÞ ¼ ½�!1
; �!2

; . . . ; �!m �
0 of that sequence.

The feature space objects are vector-valued functions. This

can be stressed using the notation

�Ks ðtÞ ¼ ½�!1
ðtÞ; �!2

ðtÞ; . . . ; �!mðtÞ�
0: ð9Þ

Each component corresponds to the oligo function of a

particular K-mer. This representation is well-suited to the

interpretation of discriminant functions and visualization

[2]. To make it practical for learning, we construct a kernel

function to compute the dot product in the feature space

efficiently. The inner product of two sequence representa-

tions ��Ki and ��Kj , corresponding to kKðsi; sjÞ, is given by

�Ki ; ��
K
j

D E
:¼
Z
�Ki ðtÞ � ��Kj ðtÞdt

¼
X
!2AK

X
p2Si!

X
q2Sj!

Z
exp �ðt� pÞ

2

2�2
K

 !
exp �ðt� qÞ

2

2�2
K

 !
dt

/
X
!2AK

X
p2Si!

X
q2Sj!

exp � 1

4�2
K

ðp� qÞ2
� �

:¼ kKðsi; sjÞ;

ð10Þ

using �i :¼ �si and Si! :¼ Ssi
! . In Appendix A, it is shown

that oligo kernels are valid positive definite kernels.
The feature space representations of two sequences may

have different norms. In order to improve comparability

between sequences of different lengths, we compute the
normalized oligo kernel,

~kKðsi; sjÞ ¼
kKðsi; sjÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

kKðsi; siÞkKðsj; sjÞ
p : ð11Þ

From the above definition of the oligo kernel, it is easy to

see the effect of the smoothing parameter �K , see also Fig. 2.
For the limiting case �K ! 0 with no positional uncertainty,
only oligomers that occur at the same positions in both
sequences contribute to the sum. In general, it is not
appropriate to represent oligomer occurrences without
positional uncertainty. This would imply zero similarity

between two sequences if no K-mer appears at exactly the
same position in both sequences. Regarding the other
extreme with maximum positional uncertainty, for �K !
1 position-dependency of the kernel completely vanishes.
In this case, all terms of oligomers occurring in both

sequences contribute equally to the sum, regardless of their
distance and the oligo kernel becomes identical to the
spectrum kernel [4].

It is beneficial to consider oligomers of different lengths.
In [2], the combined oligo kernel,

~k�-combinedðs1; s2Þ ¼
1

�

X�
i¼1

~kiðs1; s2Þ; ð12Þ

with � ¼ 6 and individual values for �1; . . . ; �6, was

introduced. The individual smoothing parameters �i allow
for different degrees of position-dependency for K-mers,
depending on their length K. For example, the kernel can be
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Fig. 2. Example of two sequences si and sj and the corresponding oligo functions for ! ¼ TAG for small (left) and large (right) smoothing

parameter �3.



adjusted in a way that matching trimers have to be at almost
the same position for two sequences to be considered
similar, whereas, at the level of pentamers, just their
frequency matters.

The learning machines using ~k6-combined performed better
than the machines using a single oligo kernel ~kiðs1; s2Þ; i ¼
1; . . . ; 6 in [2]. Because grid-search for six parameters is
prohibitive, the smoothing parameters were tuned by
considering each of the six kernels ~ki separately. Here, we
use gradient-based optimization of the kernel-target align-
ment for adjusting these hyperparameters simultaneously.

3.2 Motif Oligo Kernels

Although adapted oligo kernels already show very good
classification performance, as demonstrated in the follow-
ing section, in practice one would use these kernels in
combination with motif oligo kernels, additional biological
a priori information, and perhaps even other classification
tools. Oligo kernels need not be defined over all oligomers
of or up to a certain length. The kernel can also be defined
over an arbitrary finite set Amotifs 	 [1k¼1A

k of sequences of
different lengths, in particular over a set of sequence motifs
relevant for the prediction task at hand. A set of motifs
Amotifs ¼ f!1; . . . ; !mg leads straightforwardly to a feature
space representation �AmotifsðsÞ ¼ ½�!1

; �!2
; . . . ; �!m �

0 of a
sequence s and corresponding motif oligo kernels kAmotifs

and ~kAmotifs
, which can be additively combined with the

standard oligo kernel. Similarly, the oligo kernel can be
coupled with kernel functions considering additional
properties beyond the sequence information. However, in
the following, we consider only standard combined oligo
kernels. This allows for a fair comparison with other
sequence kernels and makes the improvements achieved
by our model selection approach, which adapts kernels to
specific problems, directly visible.

3.3 Gradient of Combined Oligo Kernels

For gradient-based adaptation of the kernel parameters, we
compute the partial derivatives of the combined oligo
kernel with respect to its hyperparameters. For a smoothing
parameter �i, we get

@ ~k�-combined

@�i
ðs1; s2Þ ¼

1

�

@ ~ki
@�i
ðs1; s2Þ

¼ 1

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kiðs1; s1Þkiðs2; s2Þ

p @ki
@�i
ðs1; s2Þ

�
kiðs1; s2Þ @ki

@�i
ðs1; s1Þkiðs2; s2Þ þ @ki

@�i
ðs2; s2Þkiðs1; s1Þ

h i
2�½kiðs1; s1Þkis2; s2Þ�3=2

ð13Þ

and

@ki
@�i
ðs1; s2Þ ¼

X
!2AK

X
p2S1

!

X
q2S2

!

1

2�3
i

ðp� qÞ2 � exp � 1

4�2
i

ðp� qÞ2
� �

:

ð14Þ

Combining this result with the gradient of the kernel-target
alignment Â derived in Section 2.3 allows us to perform
gradient-based optimization in the space of oligo kernels
following @Â=@�i, 1 � i � �.

4 EXPERIMENTS

We apply 1-norm soft margin SVMs as described in
Section 2.1 with optimized combined oligo kernels to the
detection of bacterial gene starts [17]. First, the problem is
outlined. Then, we concisely describe the locality improved

kernel [1], [28] and simple Markov chain models [29], which
we consider for comparison. After that, we give details
about the model selection process. Finally, the experimental
results are presented.

4.1 Problem Description

To extract protein-encoding sequences from nucleotide
sequences is an important task in bioinformatics. For this
purpose, it is necessary to detect locations at which coding
regions start. These locations are called translation initiation

sites (TIS).
We consider (sense strand) DNA sequences, that is,

strings over the alphabet A ¼ fA;T;C;Gg. A TIS contains
the start codon (substring) ATG or rarely GTG or TTG (in
our example, there is only one known case where ATT also
serves as a start codon). The start codon marks the position
at which the translation starts. Not every ATG triplet is a
start codon, even if it is the first one on the transcribed
mRNA when scanning starting from the 50 end. Therefore, it
must be decided whether a particular ATG corresponds to
a start codon or not. This classification problem can be
solved automatically using machine learning techniques in
which, usually, the neighborhood of nucleotides around
potential TISs, probably combined with additional features,
is used as input pattern to a classifier. Various successful
applications of established statistical methods and compu-
tational intelligence techniques have been reported (e.g.,
[30], [31], [32], [28], [2], [6], [33], [34], [35]). Markov chain

models (see Section 4.3) were first used by Salzberg [30],
neural networks were used, for example, in [31], [32], and
SVMs in [28], [2], [6], [35]. In [33], Markov models and
neural networks were combined. In addition to these
supervised learning approaches, unsupervised methods
have recently been applied to the problem of TIS prediction.
In particular, Tech and Meinicke [34] iterate a process of
supervised model building and reassigning input patterns
to the classes of positive and negative examples. This
algorithm yields very good results, which still depend on
the quality of the supervised model building. Thus,
improving the supervised putative TIS classification would
also improve the unsupervised algorithm described in [34],
which relies on Markov chain models with positional
smoothing.

When discussing TIS detection, we have to distinguish
between eukaryotes and prokaryotes, that is, between
organisms in which the genetic material is organized into
membrane-bound nuclei and organisms without a cell
nucleus. In contrast to prediction of eukaryotic TIS (e.g.,
in [30], [31], [32], [28], [6]), there is no biological justification
for using a general learning machine across different
species for prediction of prokaryotic TIS. For this reason,
learning of prokaryotic TISs is always restricted to a limited
amount of species-specific examples and model selection
methods have to cope with small data sets.

IGEL ET AL.: GRADIENT-BASED OPTIMIZATION OF KERNEL-TARGET ALIGNMENT FOR SEQUENCE KERNELS APPLIED TO BACTERIAL... 5



We chose an experimental setup to simulate a later step
in a reannotation process, where a subset of all TISs in a
prokaryotic genome has been verified on the basis of
biological knowledge. These verified translation starts can
be used to build a TIS classifier which, in turn, can be
applied to correct or verify the putative TIS locations of the
remaining genes of the genome, which have been found by
a conventional tool for detection of open reading frames of a
significant length (e.g., see [36]).

To create a reliable data set, we selected E. coli genes
from the EcoGene database [37] and considered only those
entries with biochemically verified N-terminus. The neigh-
boring nucleotides were looked up in the GenBank file
U00096.gbk [38]. From the 732 positive examples (i.e., we
have to deal with small data sets compared to the analysis
of eukaryotic sequence databases), we created associated
negative examples. For the negative examples, we extracted
sequences centered around a codon from the set
fATG;GTG;TTGg and accepted them if the codon is
in-frame with one of the appropriate start sites used as a
positive case, its distance from a real TIS is less than
80 nucleotides, and no in-frame stop codon occurs in
between. This data selection generates a difficult bench-
mark because the negative TISs in the data set are both in-
frame with and in the neighborhood of the real TIS.

We finally obtained a set of 1,248 negative examples. The
length of each sequence is 50 nucleotides, with 32 located
upstream and 18 downstream, including the start codon.

To minimize random effects, we generated 50 different
partitionings of the data into training and test sets. Each
training set contained 400 sequences plus the associated
negatives, the corresponding test set 332 sequences plus the
associated negatives. The data sets can be obtained from:
http://www.neuroinformatik.rub.de/PEOPLE/igel/data/
TIS-50.tgz.

4.2 Locality Improved Kernel

For comparison, we consider the locality improved kernel
[1], [28]. It counts matching nucleotides and considers local
correlations within local windows of length 2lþ 1. Given
two sequences si, sj of length L the locality improved kernel
is given by

klocalityðsi; sjÞ ¼
XL
p¼1

XminðL;pþlÞ

t¼maxð1;p�lÞ
vtþl�p �matchtðsi; sjÞ

0
@

1
Ad

;

ð15Þ

with matchtðsi; sjÞ equal to one if si and sj have the same
nucleotide at position t and zero otherwise. The weights vt
allow us to emphasize regions of the window which are of
special importance. In our experiments, they are fixed to
vt ¼ 0:5� 0:4jl� tj=l. The hyperparameter d determines the
order in which local correlations are considered. The
locality improved kernel can be considered a special form
of a polynomial kernel, where only a weighted subset of
monomers is considered [1].

4.3 Markov Chain Model

As a baseline classifier, we consider simple Markov models
of the positive and negative sequences, see [29] for an

introduction. We apply inhomogeneous Markov chains, also

referred to as weight array matrix models. Given a Markov

chain M of order n over an alphabet A for strings of a fixed

length l (cf. [29, Section 4.4.2] and [33]), the likelihood of a

sequence s is given by

PMðsÞ ¼ PM
1 ðs1Þ � PM

2 ðs2 j s1Þ � . . . � PM
n ðsn j s1; . . . ; sn�1Þ

�
Yl
i¼nþ1

PM
i ðsi j si�n; . . . ; si�1Þ:

ð16Þ

The conditional probabilities PM
i are the jAjnþ1�jAj

jAj�1 þ ðl�
nÞjAjnþ1 parameters of the model and are estimated from

the frequencies in the training data plus a pseudocount cpseudo

(cf. [29, Section 4.3.1]). For example, for a model of order

n ¼ 2 over the alphabet A ¼ fA;T;C;Gg and for i > 2, we

have

PM
i ðsi j si�2; si�1Þ ¼ ðcMi ðsi�2 si�1 siÞ þ cpseudoÞ
� ½cMi ðsi�2 si�1 AÞ þ cMi ðsi�2 si�1 CÞ þ cMi ðsi�2 si�1 GÞ
þ cMi ðsi�2 si�1 TÞ þ 4cpseudo��1;

ð17Þ

where cMi ðsi�2 si�1 siÞ denotes the frequency of the subse-

quence si�2 si�1 si at positions i� 2 to i in the data set used

for building the model.
Let Mþ and M� be the Markov chain models built from

the positive and negative examples in the training data,

respectively. A sequence s is classified based on the sign of

lnPMþðsÞ � lnPM�ðsÞ.
Our simple Markov chain model has only two hyper-

parameters, its order n and the value of the pseudocount

cpseudo. The latter serves as a regularization parameter.
More sophisticated Markov models, for example inter-

polated Markov models or interpolated context models [39], [36],

as well as hybrid methods combining Markov models with

other machine learning techniques [33] are likely to increase

the performance. However, similar motif extraction (see

Section 3.2) and hybridization techniques would also

improve the performance of the oligo kernel classifier—and

benefit from accurate model selection. In this study, the

experiments are restricted to the classifiers in their generic

form, not only to make the improvements by our model

selection approach directly accessible, but also because, in

our application, the training data are sparse and, thus, too

complex models derived from properties of the training

data are prone to overfitting.

4.4 Model Selection

We first describe our new model selection approach applied

to the combined oligo kernel for TIS prediction. Then, we

describe how the model selection is done for the alternative

models we consider for comparison, namely, SVMs using

oligo kernels with only a few adapted parameters, SVMs

using the locality improved kernel, and Markov chain

models. In the experiments, all model selection processes

are repeated independently for the 50 training data sets.
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4.4.1 Oligo Kernels

We consider the combined oligo kernel (12) with � ¼ 6. The
six smoothing parameters of ~k6-combined are adapted by
gradient ascent on the kernel-target alignment. The reg-
ularization parameter C of the SVM cannot be optimized
using the kernel-target alignment, which is independent of
the actual learning algorithm applied in the feature space.
Therefore, the hyperparameter adaptation is comprised of
two steps:

1. gradient-based optimization of the kernel para-
meters by maximizing the kernel-target alignment
and

2. adaptation of the regularization parameter C by
minimizing the classification error estimated by
cross-validation using grid-search.

First, the kernel parameters (here, six) are adapted by
optimizing the kernel-target alignment using 60 iterations
of iRpropþ, a gradient-based algorithm [40]. All training
examples are used to compute the kernel-target alignment.
The �i are initially set to 1. Second, the regularization
parameter C of the SVM is optimized using grid-search. We
look at the grid-points f0:1 � i j 1 � i � 50g. As a perfor-
mance measure, we compute the mean classification error
on the hold out data sets in a 5-fold cross-validation
procedure (i.e., the training data set is split into five
partitionings with pairwise disjoint hold out data sets of
size ‘=5). Finally, the SVM is trained using the adapted
parameter set using the complete training data. The
resulting classifier is evaluated on the previously unseen
test data.

This general procedure performs grid-search in only one
dimension (i.e., a line-search). The adaptation of the kernel
parameters is completely decoupled from the grid search
and does not require SVM training at all. We would like to
stress that the proposed method scales well with the
number of kernel parameters. In contrast to methods that
are solely based on grid-search, a large number of
hyperparameters can be adapted.

For comparison, we also test the trimer oligo kernel ~k3 as
defined in (11). The model selection is done as for the
combined kernel. The hyperparameter �3 is adjusted by
gradient ascent on the kernel-target alignment and C by
grid-search as described above.

In order to get some insights about the objective function
surface of the kernel-target alignment maximization pro-
blem and the robustness of our model selection approach,
we conduct some additional experiments. We vary the

single hyperparameter �3 of the trimer oligo kernel on a log

scale and compute the corresponding kernel-target align-

ment on the first training data partition. Further, we

consider 50 independent kernel-target alignment optimiza-

tions of the combined oligo kernel on this single data set

starting from different initializations. The initial values for

the �i are drawn independently from a log-normal dis-

tribution, where the normal distribution has zero mean and

standard deviation two.

4.4.2 Locality Improved Kernel

For comparison, we build C-SVMs based on the locality

improved kernel as described in Section 4.2. This kernel

compares two sequences locally within a small window of

length 2lþ 1 around a sequence position. A second

parameter d controls the order of local correlations within

a window. The parameters l and d are integers. Thus, the

family of (standard) locality improved kernels has no

appropriate differentiable structure. Therefore, gradient-

based optimization cannot be applied directly and the

parameters have to be adjusted by a direct (zeroth order)

search method.
We consider C 2 f0:002 � i j 1 � i � 10g and l; d 2 fi j 1 �

i � 6g (this is a reasonable range, see [28]). Two different

model selection strategies are compared. First, we pick C, l,

and d based on three-dimensional grid-search and 5-fold

cross-validation, as described above. Second, we adopt the

model selection approach used for the oligo kernels and

pick l; d 2 fi j 1 � i � 6g based on two-dimensional grid-

search using the kernel-target alignment as the performance

criterion. That is, no SVMs are built in the process of

choosing l and d. The regularization parameter C 2
f0:002 � i j 1 � i � 10g is then adjusted using grid-search.

4.4.3 Markov Chain Model

The order n and the value of the pseudocount cpseudo are

optimized using grid-search over the values cpseudo 2
f0:2 � i j 1 � i � 10g and n 2 fi j 0 � i � 5g. Selection criter-

ion is five-fold cross-validation, as described above.
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TABLE 1
Optimized Regularization Parameter C and

Smoothing Parameters for the Combined Oligo Kernel

All results refer to 50 trials with different partitionings of the data.

Fig. 3. Visualization of the search space when maximizing the kernel-

target alignment for the trimer oligo kernel. The single kernel

parameter �3 is varied on a log scale and the corresponding kernel-

target alignment computed on the first training data partition is plotted.



4.5 Results and Discussion

The optimized hyperparameters of the combined oligo kernel
are shown in Table 1. There is not much variability among the
50 trials with different data partitionings, that is, the model
selection process was robust. In Fig. 3, we visualize the
dependence between the kernel-target alignment of the
trimer oligo kernel and the single smoothing parameter �3.
In this concrete example, the objective function of the model
selection process is unimodal. The same seems to be true for
the combined oligo kernel, as is evident from the results of
repeated optimization considering a single training data set,
but starting from random initial points. In all 50 trials, the
optimization ends up in approximately the same optimum,
see Table 2. The variance in the first two parameters is due
to numerics as the objective function becomes extremely flat
for small values of �i, see Fig. 3. At least for the problem at
hand, these results indicate that the objective function
surfaces are not very rugged and that gradient-based
algorithms seem to be appropriate for the optimization of
the kernel-target alignment.

The final values for the smoothing parameters in Table 1
show that the positional uncertainty increases with the
oligomer length. On the level of individual bases and
dimers, the optimized kernels use Gaussians that are
narrow peaks and virtually just count exact matches.
However, there is a considerable increase in �K for K � 3.
On the level of trimers and longer fragments, matching
subsequences shifted by a few bases nucleotides contribute
to the similarity of two sequences. Note that a �i-value of 2.5
implies that a subsequence shifted by three nucleotides still
has 
 70 percent of the contribution of an exact match in the
kernel function (10).

Table 3 shows the statistics of the final hyperparameters
for the trimer oligo kernel, the locality improved kernel, and
the Markov chain model. Again, there is only a little
variance. The order of the Markov chains is between one
and two. One reason for the low order is, of course, the
limited training data that does not allow for estimation of
too many model parameters.

The classification performances of the different methods
are shown in Table 4. The tables gives the mean values as
well as 25, 50, and 75 percent quantiles over the 50 partitions
of the classification error on the test set (accuracy),
specificity, sensitivity, and Matthews correlation coefficient

[41]. Specificity is defined by TN=ðTNþ FPÞ, sensitivity by

TP=ðTPþ FNÞ, and the Matthews correlation coefficient by

TP� TN� FP� FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðTPþ FPÞðTPþ FNÞðTNþ FPÞðTNþ FNÞ

p ; ð18Þ

where TP, TN, FP, and FN denote the true positives, true

negatives, false positives, and false negatives, respectively.
In Fig. 4, the ROC (receiver operating characteristic)

curves of the classifiers are shown. For the SVMs, the curves

were obtained by simply varying the threshold parameter b

(see [42] for a more advanced approach). For the Markov

chain model, a threshold parameter b was introduced and

adjusted, that is, a sequence was classified based on the sign

of lnPMþðsÞ � lnPM�ðsÞ þ b. Each curve in Fig. 4 corre-

sponds to the median of the 50 trials (similar to the

attainment surfaces described in [43]).
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TABLE 2
The Statistics of the Final Smoothing Parameters after

Maximization of the Kernel Target Alignment between the
Combined Oligo Kernel and the Empirical Kernel

of the First Training Data Partition

The values refer to 50 trials starting from different random initializations.

TABLE 3
The Results for the Final Hyperparameter Configurations

over the 50 Partitions for the Trimer Oligo Kernel,
the Locality Improved Kernel, and the Markov Chain Model

TABLE 4
Experimental Results in Terms of Classification Accuracy,

Specificity, Sensitivity, and Matthews Correlation Coefficient

The mean values as well as the 25, 50, and 75 percent quantiles over
50 runs are listed. The accuracy of the combined oligo kernel is
significantly statistically better than the accuracy of the other methods
(paired Wilcoxon rank sum test, p < 0:001).



Through maximization of the kernel-target alignment,
the performance of the oligo kernel considerably improved.
The accuracy of the optimized combined oligo kernel is
significantly statistically better than the accuracy of all other
methods in our study (paired Wilcoxon rank sum test,
p < 0:001). The superior performance is also supported by
the ROC curves in Fig. 4. The combined oligo kernel is
clearly better than the trimer oligo kernel. This shows the
benefits of considering more complex and flexible kernels in
combination with an appropriate model selection strategy.

We considered two model selection methods for the
SVMs with locality improved kernel, one based solely on
the cross-validation classification error and one using the
kernel-target alignment for adjusting the kernel parameters.
In our application example, it turned out that the second
method gave slightly better results, although the same
hyperparameter combinations were tested. This shows that
model selection using the kernel-target alignment can lead
to competitive results compared to cross-validation while
being computationally less demanding. The three-dimen-
sional grid-search involved testing 360 hyperparameter
combinations and the cross-validation procedure required
training of five SVMs per combination. In contrast, the
kernel-target alignment was computed for 36 kernels and
the subsequent adaptation of C required building five
SVMs only for each of the 10 possible values for the
regularization parameter. In Table 4 and Fig. 4, only the
better results achieved by kernel-target alignment optimiza-
tion are presented. Nonetheless, the locality improved
kernel is worse than both the optimized trimer and the
combined oligo kernel.

The inhomogeneous Markov chain models (weight array
matrix models) serve as a baseline for the evaluation of the
performance of the kernel classifiers. When adjusting the
parameters of the Markov chain model properly, as is done
in this study, very good results can already be achieved.
Still, the accuracy is significantly worse compared to all of
the kernel methods in our study (paired Wilcoxon rank sum
test, p < 0:001). When looking at the results in Table 4, the

Markov chain models seem to perform well in terms of
sensitivity, but the ROC curves in Fig. 4 reveal that, for the
same level of sensitivity, the other classifiers show better
specificity.

The kernel methods, in particular the combined oligo
kernel with a mean accuracy of 93.30 percent, give good
classification results, although the available training data
set is rather small. The reasons might be that SVMs in
general are a reasonable choice when dealing with small
amounts of training data as well as the appropriate model
selection. Our parameterization of the oligo kernel provides
the required flexibility. Of course, too much flexibility bears
the risk of overfitting. And, indeed, model selection as
described in this study applied to a family of oligo kernels
with more than 60 parameters proposed in [35] overfits to
limited training data.

5 CONCLUSION

Biological sequence analysis using kernel methods benefits
from a task-specific choice of the kernel function. We
proposed gradient-based maximization of the kernel-target
alignment for model selection. If the considered kernel
space has a differentiable structure, this method can be
applied to efficiently optimize multiple parameters. The
kernel-target alignment can be maximized independently of
the actual learning machine; in particular, solving quadratic
optimization problems in each iteration is not required.
Having such an efficient method at hand allows for
extending the family of kernel functions considered during
model selection.

The benefits of this additional flexibility and the power
of the proposed model selection algorithm were demon-
strated by adapting complex sequence kernels, namely,
oligo kernels. As an application example, we considered the
prediction of bacterial gene starts using support vector
machines. The classification performance improved signifi-
cantly when the kernels were parameterized appropriately
and when these parameters were chosen in a task-specific
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Fig. 4. Median ROC curves of the adapted classifiers based on 50 trials.



way by maximizing the kernel-target alignment. Analyzing
the optimized kernel parameters can provide insights about
the problem at hand. In our example, the results showed
clear differences between the optimal position dependen-
cies of different oligomer lengths.

APPENDIX A

OLIGO KERNELS ARE POSITIVE DEFINITE KERNELS

We show that the various oligo kernels are indeed
positive definite kernel functions. We first consider some
mathematical properties of oligo functions �! and the
feature map �K . Because oligo functions are finite sums
of Gaussians, they are infinite differentiable and square
integrable, that is,

R
�2
!ðtÞdt <1. This implies that oligo

functions are elements of the Hilbert space L2 with
standard dot product hf; gi ¼

R
IR fðtÞgðtÞdt for f; g 2 L2.

Thus, �K maps the sequences to the Hilbert space ðL2Þm
endowed with canonical dot product hf; gi ¼

R
IR fðtÞ �

gðtÞdt for f; g 2 ðL2Þm, where a � b denotes the standard
scalar product between a; b 2 IRm.

Computing kKðsi; sjÞ as defined in (10) corresponds to
the dot product in the feature space F ¼ Lm2 of the feature
space representations of the sequences si; sj. Therefore, kK
is a positive definite kernel.

The normalized oligo kernel (11) is still a positive definite
kernel because, in general, it holds that if k is a positive
definite kernel on X , then kðx; yÞ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kðx; xÞkðy; yÞ

p
, x; y 2 X , is

also a positive definite kernel. The combined oligo kernel
(12) is positive definite because, in general, it holds that if k1

and k2 are positive definite kernels on X , then
k12ðx; yÞ ¼ w1k1ðx; yÞ þ w2k2ðx; yÞ, x; y 2 X ; w1; w2 2 IRþ, is
also a positive definite kernel [23].

APPENDIX B

GEOMETRIC VIEW ON KERNEL-TARGET ALIGNMENT

MAXIMIZATION

Kernel-target alignment maximization aims at finding a
kernel k� from a restricted family of “reasonable” kernel
functions such that the Gram matrix induced by k� has the
smallest distance to the empirical kernel matrix. The
empirical kernel matrix yy0 is defined by the outer product
of the class labels y ¼ ðy1; . . . ; y‘Þ0 of the ‘ training patterns.

Formally, let K be the set of possible positive definite
kernels on X . Let S 	 K be the parameterized family of
kernel functions to which the model selection process is
restricted. Given a set D of training patterns, we define the
equivalence relation �D on K by k1 �D k2 if and only if
Gk1

=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hGk1

; Gk1
i

p
¼ Gk2

=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hGk2

; Gk2
i

p
, where Gk1

and Gk2
are

the Gram matrices on D for the two kernels. We consider
the quotient spaces KD ¼ K= �D and SD ¼ S= �D . The
distance between two equivalence classes ½k1�; ½k2� 2 KD
with representatives k1 and k2 can be defined as

dð½k1�;½k2�Þ:¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hGk1

=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hGk1

;Gk1
i

p
�Gk2

=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hGk2

;Gk2
i

p
;hGk1

=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hGk1

;Gk1
i

p
�Gk2

=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hGk2

;Gk2
i

p
i

p
¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�2Sðk1;k2Þ
p

:

ð19Þ

Thus, we seek a kernel k� minimizing

dð½k�; ½yy�Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� 2ÂðkÞ

q
;

which is equivalent to maximizing ÂðkÞ.
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gen, Germany. He is a PhD student in the
group of Oliver Kohlbacher at the Institut für
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