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Abstract. We consider the model selection problem for support vector

machines applied to binary classification. As the data generating process

is unknown, we have to rely on heuristics as model section criteria. In

this study, we analyze the behavior of two criteria, radius margin quotient

and kernel polarization, applied to SVMs with radial Gaussian kernel. We

proof necessary and sufficient conditions for local optima at the boundary

of the kernel parameter space in the limit of arbitrarily narrow kernels.

The theorems show that multi-modality of the model selection objectives

can arise due to insignificant properties of the training dataset.

1 Introduction

Assume we are given ℓ training examples (xi, yi) ∈ X ×Y , where X is the input
space and Y = {−1,+1} is the space of class labels. The examples are assumed
to be drawn i.i.d. from an unknown probability distribution ν on X × Y . The
binary classification task is to construct a predictive classifier c : X → Y from
these examples, that is a classifier which minimizes a risk functional, usually the
probability of misclassifying a pattern sampled from ν. As the distribution ν
itself is unknown, we can not minimize this risk directly.

The support vector machine (SVM) has become a standard tool for this task,
see [1, 2, 3] for an introduction. It requires a positive definite kernel function
k : X × X → R. This kernel implicitly defines a map Φ : X → H into a feature
Hilbert space H where 〈Φ(x),Φ(z)〉 = k(x, z). The SVM constructs an affine
linear function f : H → R. The class labels of points x ∈ X are predicted as
c(x) = sign(f(x)). The minimum distance in H of the correctly classified training
examples from the set {f = 0}, known as the separating hyperplane, is called
the (geometric) margin of the classifier. In the C-SVM setting the affine linear
function optimizes an objective which is a trade off between margin maximization
and model complexity reduction, controlled by a parameter C > 0. Following
[4], we consider C as a kernel parameter within the 2-norm SVM framework.

The SVM exhibits high classification accuracy and allows for the incorpo-
ration of prior knowledge about the problem at hand via the kernel function.
However, its performance crucially depends on the choice of a kernel that makes
it easy to separate the data linearly. The choice of the kernel function is the
model selection problem for the support vector machine.

In practice prior knowledge may lead to a parameterized family of kernel
functions. Then the model selection problem is reduced to a finite dimensional



search space. For at most two or three dimensional parameter manifolds it is pos-
sible to examine the objective landscape via nested grid search. Otherwise more
sophisticated techniques such as gradient descent or evolutionary algorithms are
the methods of choice.

2 Model Selection Objectives

The goal of model selection is to ensure a good generalization performance of
the classifier, that is, a minimal risk. This performance can be estimated on
a separate dataset not used for training, or by cross-validation. We can define
other quality measures for candidate models, for example if we need continuous
or differentiable objectives for optimization. These should be roughly monotonic
in the generalization ability of the classifier with high probability. Furthermore
it is important to ensure that optimization algorithms (direct search or gradient
descent algorithms) do not get stuck in local extrema. Therefore it is desirable
that objective functions tends to smoothen the generalization error landscape.
Ideally, they should not possess multiple local optima.

For the (kernel based) support vector machine, a variety of learning theo-
retical generalization error bounds have been proven. These bounds have been
proposed for model selection [4]. For example, the minimization of the radius
margin quotient (R/γ)2 is a useful objective. Here, R denotes the radius of the
smallest (closed) ball in feature space containing all training examples and γ is
the margin by which the SVM separates the classes.

Another approach is to maximize the kernel polarization [5]

P =

ℓ
∑

i,j=1

yiyjKij

or the scaling invariant kernel target alignment Â = P/
√

∑ℓ

i,j=1(Kij)2 intro-

duced in [6], both measuring the capability of the kernel function to separate
the classes on the examples.

The kernel allows for the computation of inner products between pairs of
training examples in H. Usually, this is the only computation which is affordable
in the feature space, and thus model selection algorithms are restricted to the
information represented in the positive definite symmetric kernel (Gram) matrix

K =
(

k(xi, xj)
)

1≤i,j≤ℓ
.

Hence we consider quantities which depend on the training data only through
the kernel matrix K. This condition is fulfilled for the model selection objective
functions presented above. Each of them can be written as a function of the
kernel matrix. In case of the radius margin quotient the functional relation is
only implicitly available as the computation of R and γ each requires the solution
of an optimization problem depending on K.



3 Properties of the Radial Gaussian kernel

In the following we consider the radial Gaussian kernel1

kσ(x, z) = exp

(

−‖x − z‖2

2σ2

)

+ δx,z

1

C
(1)

operating on the input space X = R
n. Although in this formulation the SVM

parameter C is considered a kernel parameter, we will concentrate on the adap-
tation of the single parameter σ > 0. The theoretical analysis will hold for any
fixed value of C. The derivative of the Kernel (1) with respect to σ is

k′
σ(x, z) =

∂

∂σ
kσ(x, z) =

‖x − z‖2

σ3
exp

(

−‖x − z‖2

2σ2

)

.

First it becomes clear from definition (1) that all training feature vectors are
of the same length in H, as it holds ‖Φσ(x)‖2 = 〈Φσ(x),Φσ(x)〉 = kσ(x, x) =
1 + 1/C. Thus, the diagonal entries of K do not depend on σ. This is not the
case for the off-diagonal entries. For every pair of different training examples
x 6= z it holds kσ(x, z) ∈ (0, 1). As σ decreases, the feature vectors Φσ(x) and
Φσ(z) become more and more orthogonal (that is, if σ is divided by

√
2 the

kernel values are squared and thus become smaller). Let us now consider two
pairs of training examples x1 6= z1 and x2 6= z2 fulfilling the strict2 inequality
‖x1 − z1‖ < ‖x2 − z2‖. It follows kσ(x1, z1) > kσ(x2, z2) for all σ > 0. An
interesting property to observe here is

1 >
kσ(x2, z2)

kσ(x1, z1)
=

(

k1(x2, z2)

k1(x1, z1)

)
1

σ2

, (2)

that is by decreasing σ the quotient becomes arbitrarily small. It is important to
note that not only the absolute values of the off-diagonal entries of K decrease
during this process, but that they become more and more different in the sense
that their quotients decay (or explode if the pairs are switched).

We can compute a similar quotient using the derivative of the kernel function
instead of the kernel function itself:

1 >
k′

σ(x2, z2)

k′
σ(x1, z1)

=

(

k′
1(x2, z2)

k′
1(x1, z1)

)
1

σ2

·
(‖x1 − z1‖2

‖x2 − z2‖2

)
1

σ2 −1

. (3)

This quotient decays even faster for σ → 0.
We want to reserve the indices p and q for the pair of training examples with

minimum input space distance, that is

(p, q) = argmin
(i,j) s.t. i<j

‖xi − xj‖ .

1We use the Kronecker delta notation δa,b = 1 if a = b and δa,b = 0 otherwise.
2For simplicity we assume ‖x1 − z1‖ 6= ‖x2 − z2‖.



To stress the dependency of the model selection objectives from the finite number
of kernel matrix entries depending on σ, we use the matrix notation

K(σ) =
(

kσ(xi, xj)
)

1≤i,j≤ℓ
and K ′(σ) =

(

k′
σ(xi, xj)

)

1≤i,j≤ℓ
.

It is clear from equations (2) and (3) that these matrices become degenerate in
the limit case σ → 0. The diagonal entries are fixed to Kii(σ) = 1 + 1/C and
K ′

ii(σ) = 0, while the off-diagonal entries quickly decay to zero. Among the
off-diagonal entries Kpq(σ) = Kqp(σ) and K ′

pq(σ) = K ′
qp(σ) become arbitrarily

dominating over all other entries. This is formalized in the following lemma:

Lemma 1. For the quotients of off-diagonal entries of K and K ′ it holds

lim
σ→0

∑

1≤i<j≤ℓ

(i,j) 6=(p,q)

Kij(σ)

/

Kpq(σ) = 0 and lim
σ→0

∑

1≤i<j≤ℓ

(i,j) 6=(p,q)

K ′
ij(σ)

/

K ′
pq(σ) = 0 .

Proof. The lemma is a direct consequence of equations (2) and (3).

4 Degeneracy Theorems

As a consequence of the degeneracy of the kernel matrix and its derivative we
show that both radius margin quotient (R/γ)2 and kernel polarization P are
governed by the pair of labels (yp, yq) if the kernel parameter σ becomes small.
For the analysis of the radius margin quotient we introduce the notation ℓ+ =
|{i | yi = +1}| and ℓ− = |{i | yi = −1}|.

Theorem 2. Under the conditions ℓ+ > 0, ℓ− > 0 and ℓ > 2 the radius margin
quotient R2/γ2 has a local optimum (minimum) at the boundary σ → 0 if and
only if yp 6= yq.

Proof. We will compute the derivative of R2/γ2 for σ → 0. The radius R can
be obtained from the solution β∗ of the quadratic problem

R2 = max
β





ℓ
∑

i=1

βiKii(σ) −
ℓ

∑

i,j=1

βiβjKij(σ)





under the constraints
∑ℓ

i=1 βi = 1 and ∀ i = 1, ..., ℓ : βi ≥ 0. In the limit σ → 0
we have Kij(σ) = (1 + 1/C)δij . The resulting objective and the constraints
depend on all βi equally. Thus all β∗

i take on the same value leaving only a one
dimensional problem open. From the equality constraint we obtain the feasible
solution β∗

i = 1/ℓ, from which we compute R2 = (1 + 1/C)(1 − 1/ℓ).
The maximum α∗ of the dual SVM objective

ℓ
∑

i=1

αi −
1

2

ℓ
∑

i,j=1

αiαjyiyjKij(σ) (4)



under the equality constraint
∑ℓ

i=1 yiαi = 0 and the inequality constraints ∀ i =

1, ..., ℓ : αi ≥ 0 defines the margin by 1/γ2 =
∑ℓ

i,j=1 α∗
i α

∗
jyiyjKij(σ). After

plugging Kij(σ) = (1+1/C)δij into equation (4), the resulting problem depends
equally on all αi having the same label yi. From this observation we conclude
that the solution is of the form α∗

i = α̃yi
. The two dimensional problem is then

reduced to one dimension by the equality constraint and can be solved setting
the derivative of the objective (4) to zero. We get the feasible solution

α∗
i =

{

α̃(+1) = 2C
1+C

ℓ
−

ℓ
if yi = +1

α̃(−1) = 2C
1+C

ℓ+
ℓ

if yi = −1
and thus 1/γ2 =

4

1 + 1/C
· ℓ+ℓ−

ℓ
.

We observe that all training examples are support vectors (∀ i = 1, ..., ℓ : α∗
i > 0).

Following [4], the derivative of the radius margin quotient can be computed as

∂

∂σ

R2

γ2
=R2



−
ℓ

∑

i,j=1

α∗
i α

∗
jyiyjK

′
ij(σ)



 +
1

γ2





ℓ
∑

i=1

β∗
i K ′

ii(σ) −
ℓ

∑

i,j=1

β∗
i β∗

j K ′
ij(σ)





= − 2
∑

1≤i<j≤ℓ

(

α∗
i α

∗
jR

2yiyj + β∗
i β∗

j /γ2
)

· K ′
ij(σ) .

From Lemma 1 we know that in the limit σ → 0 this sum is governed by the
term

α∗
pα

∗
qR

2ypyq + β∗
pβ∗

q /γ2 . (5)

From the prerequisites it follows (ℓ − 1)(min(ℓ+, ℓ−))2 > ℓ+ℓ−. Together with
the limits of α∗ and β∗ computed above, we get the inequality

α∗
pα

∗
qR

2 ≥ 4(ℓ − 1)(min(ℓ+, ℓ−))2

(1 + 1/C)ℓ3
>

4ℓ+ℓ−
(1 + 1/C)ℓ3

= β∗
pβ∗

q /γ2

which shows that the left summand of expression (5) dominates the right one.
Thus the derivative of R2/γ2 has the same sign as −ypyq. At the boundary
σ → 0, a positive (negative) derivative indicates a minimum (maximum).

Theorem 3. The kernel polarization P has a local optimum (maximum) at the
boundary σ → 0 if and only if yp 6= yq.

Proof. We compute the derivative

∂

∂σ
P =

ℓ
∑

i,j=1

yiyjK
′
ij(σ) = 2 ·

∑

1≤i<j≤ℓ

yiyjK
′
ij(σ)

and observe from Lemma 1 that for small σ the term is governed by ypyqK
′
pq(σ).

It is negative (positive) if and only if the labels yp and yq differ (are equal),
indicating a maximum (minimum) at the boundary σ → 0.



Although the kernel target alignment Â differs from kernel polarization only
by a normalization term, its analysis is more complicated.

The theorems show that near the boundary σ → 0 the term ypyq controls
the path taken by a gradient descent algorithm. It is clear that this term does
not represent much information about the underlying distribution ν. At least for
noisy datasets it is a highly random quantity. Further the proofs of the theorems
show that lots of local optima may exist near the boundary, governed by label
combinations of proximate training examples.

5 Conclusion

In practice, bounds derived from statistical learning theory as well as measures
like kernel polarization work well for SVM model selection. Here we want to sen-
sitize for the fact that these functions are in general multi-modal. As parameter
search is usually carried out over several orders of magnitude, boundary extrema
may play a role. It is possible to sail around the arising difficulties easily. We
recommend to use a heuristic as proposed in [7] for an initial choice of the scaling
parameter σ of the Gaussian kernel. With this initialization a search algorithm
should avoid the boundary optima with very high probability.

We know that our proofs poorly catch the true multi-modality of model
selection objectives. Besides the boundary optima computed in this study, useful
objective functions can exhibit lots of local optima far from the boundary, see
for example [8]. This fact justifies the application of heuristics to the model
selection problem.
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