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Abstract

Support vector machines are trained by solving constrajuedratic optimization problems. This
is usually done with an iterative decomposition algorithpei@ting on a small working set of vari-
ables in every iteration. The training time strongly depead the selection of these variables. We
propose the maximum-gain working set selection algoritbnefrge scale quadratic programming.
It is based on the idea to greedily maximize the progresséh sangle iteration. The algorithm
takes second order information from cached kernel matiisiesninto account. We prove the con-
vergence to an optimal solution of a variant termed hybrickimam-gain working set selection.
This method is empirically compared to the prominent mostating pair selection and the lat-
est algorithm using second order information. For largmiing sets our new selection scheme is
significantly faster.

Keywords: working set selection, sequential minimal optimizationadratic programming, sup-
port vector machines, large scale optimization

1. Introduction

We consider 1-norm support vector machines (SVM) for classificalibese classifiers are usually
trained by solving convex quadratic problems with linear constraints. Fye tata sets, this is typ-
ically done with an iterative decomposition algorithm operating on a small wodengf variables
in every iteration. The selection of these variables is crucial for the tratimirgy

Recently, a very efficient SMO-likeséquential minimal optimizationsing working sets of
size 2, see Platt, 1999) decomposition algorithm was presented by Fan28G8). The main
idea is to consider second order information to improve the working settiseledndependent
from this approach, we have developed a working set selection strstt@giyg this basic idea but
with a different focus, namely to minimize the number of kernel evaluationst@etion. This
considerably reduces the training time of SVMs in case of large training eials the following,
we present our approach, analyze its convergence propertiepreseht experiments evaluating
the performance of our algorithm. We close with a summarizing conclusion.

1.1 Support Vector Machine Learning

We consider 1-norm soft margin SVMs for classification (Vapnik, 1998stianini and Shawe-
Taylor, 2000; Scblkopf and Smola, 2002). The learning problem at hand is defined by af e
training exampleg (x1,y1), - .., (X, ye) }, where theg are points in some input spagewith corre-
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sponding class labels = +1. A positive semi-definite kernel functidn: x x x — R ensures the
existence of a feature Hilbert spagewith inner product-,-) and a mappin@ : x — # such that
K(xi, X)) = (®P(x;), P(Xj)).

The SVM algorithm constructs a real-valued, affine linear functioon the feature space. The
corresponding functioh := H o ® on the input space can be computed in terms of the k&nwéh-
out the need for explicit computations . The zero set o is called the separating hyperplane,
because the SVM uses the sign of this function for class prediction. Time éihear function is
defined through maximizing the margin, that is, the desired distance of tipretssified training
patterns from the hyperplane, and reducing the sum of distances bly tkéuiting examples violate
this margin. The trade-off between these two objectives is controlled byudarezation parameter
C>o0.

Training a 1-norm soft margin SVM is equivalent to solving the followirgimensional convex
quadratic problem with linear constraints fore R¢:

maximize  f(a)=v'a—3a"Qa
P subjectto  yTa=z
and 0<a;<C, Vvie{l,...,/} .

The requirementg’ a = zand 0< a; < C are referred to as equality constraint and box constraints,
respectively. In the SVM context the constauts R’ andz € R are fixed tov= (1,...,1)T and
z=0. The matrixQ € R is defined a®jj := yiy;k(x,x;) and is positive semi-definite as the
considered kernel functiokis positive semi-definite. The vectgr= (yi,...,y,)",yi € {+1,—-1}

for 1 <i </, is composed of the labels of the training pattexps..,x,. The set of pointx
fulfilling the constraints is called the feasible regigri# ) of problems.

An optimal solutiona* of this problem defines the functidiix) = S/_; a;yik(x;, x) +b, where
the scalab can be derived frono* (e.g., see Cristianini and Shawe-Taylor, 2000; &kbpf and
Smola, 2002).

1.2 Decomposition Algorithms

Making SVM classification applicable in case of large training data sets esaiiralgorithm for the
solution of# that does not presuppose t{é+ 1) /2 independent entries of the symmetric ma@ix
to fit into working memory. The methods of choice in this situation are the so cadlemhaposition
algorithms (Osuna et al., 1997). These iterative algorithms start at areaylftasible pointi(9
and improve this solution in every iteratiorfrom a1 to al) until some stopping condition is
satisfied. In each iteration an active set or workingB®&tc {1,...,/} is chosen. lts inactive
complement is denoted y® := {1,...,¢}\ BY. The improved solutiom®) may differ from

at=2 only in the components in the working set, thatd§, > = a") for all i € N®. Usually the
working setB) is limited to a fixed siz¢B“>| < g < {. The working set must always be larger than
the number of equality constraints to allow for a useful, feasible step. largka decomposition

algorithm can be formulated as follows:
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Decomposition Algorithm

1 a@ — feasible starting point,— 1

2 repeat

3 | select working seB)

4 | solve QP restricted tB() resulting ina®
5 t—t+1

6 until stopping criterion is met

The sub-problem defined by the working set in step 4 has the same strasttire full problem
2 but with onlyq variablest Thus, the complete problem description fits into the available working
memory and is small enough to be solved by standard tools.

For the SVM problemp the working set must have a size of at least two. Indeed, the sequen-
tial minimal optimization (SMO) algorithm selecting working sets of Sjze 2 is a very efficient
method (Platt, 1999). The great advantage of the SMO algorithm is the pibgsibsolve the sub-
problem analytically (cf. Platt, 1999; Cristianini and Shawe-Taylor, 2@0lkopf and Smola,
2002).

1.3 Working Set Selection

Step 3 is crucial as the convergence of the decomposition algorithm degeadgly on the work-
ing set selection procedure. As the selection of the working set of a gize q that gives the
largest improvement in a single iteration requires the knowledge of the fulbx@twell working
heuristics for choosing the variables using less information are needed.

There exist various algorithms for this task, an overview is given in th& bgd&clolkopf and
Smola (2002). The most prominent ones share the strategy to selectfpaargables that mostly
violate the Karush-Kuhn-Tucker (KKT) conditions for optimality and carsbhbsumed under the
most violating paifMVP) approach. Popular SVM packages such as $\by Joachims (1999)
and LIBSVM 2.71 by Chang and Lin (2001) implement this technique. The adedVP is to
select one or more pairs of variables that allow for a feasible step andstnosgly violate the
KKT conditions.

Here we describe the approach implemented in the LIBSVM 2.71 packatjewlg Keerthi
and Gilbert (2002) we define the sets

l={ie{l,....0ly=+1ra" Y <cyufie{l.. . .0}|yi=-1ra"" >0}
J={ie{l,.. . }y=+1ra"Y>0rufie{t,.. . f}yi=-1ra"P <C} .
Now the MVP algorithm selects the working €t = {by,b,} using the rule
icl

of
b, := argmax (yiaai(a)>

, of
by :=argmin <yiaq(0()>

ieJ i

1. For a sub-problem the constants RY andz € R in general differ from(1,...,1)T and 0, respectively, and depend
onal" Y fori e N®,

1439



GLASMACHERS AND IGEL

The conditionyblﬁ(a) —be%(a) < ¢ is used as the stopping criterion. In the limit- 0
the algorithm checl1<s the exactzKKT conditions and only stops if the solutiondfas optimal.
The MVP algorithm is known to converge to the optimum (Lin, 2001; Keertki @ilbert, 2002;
Takahashi and Nishi, 2005).

SVM'9Nt yses essentially the same working set selection method with the importantrditiere
that it is not restricted to working sets of size 2. The default algorithm &selE variables by
picking the five most violating pairs. In each iteration an inner optimization loogreenes the
solution on the 10-dimensional sub-problem up to some accuracy.

Fan et al. (2005) propose a working set selection procedure wheshsgezond order informa-
tion. The first variabldy; is selected as in the MVP algorithm. The second variable is chosen in
a way that promises the maximal value of the target funcfidggnoring the box constraints. The
selection rule is

by = argmax(f(cx’{“b?’!‘i}»

ied

Here,ar{"b?ﬁ} is the solution of the two-dimensional sub-problem defined by the workingose }

at positiona"= considering only the equality constraint. For this second order algorittstiyco
kernel function evaluations may become necessary which can slow dewntihe algorithm. These
kernel values are cached and can be reused in the gradient upgateestequation (2) in Section
2.1. Because this algorithm is implemented in version 2.8 of LIBSVM, we willrrefat as the
LIBSVM-2.8 algorithm.

The simplest feasible point one can constructii® = (0,...,0)T, which has the additional
advantage that the gradienf (a(®) =v=(1,...,1)T can be computed without kernel evaluations.
Itis interesting to note that in the first iteration starting from this point all coreptsiof the gradient
Of (a(®) of the objective function are equal. Thus, the selection schemes présditee have a
freedom of choice for the selection of the first working set. In caseBSEVM, for b; simply the
variable with maximum index is chosen in the beginning. Therefore, the oradrich the training
examples are presented is important in the first iteration and can indeedcsigtifiinfluence the
number of iterations and the training time in practice.

Other algorithms selectate certifying pair(Hush and Scovel, 2003). The allurement of this
approach results from the fact that analytical results have beerederdt only about the guaranteed
convergence of the algorithm, but even about the rate of convergelnsé and Scovel, 2003; List
and Simon, 2005). Unfortunately, in practice these algorithms seem taperdither poorly.

1.4 Related Methods

Several new training algorithms for SVMs have been developed receshilsh could be considered
for large scale data sets. One possibility to reduce the computational cémige data sets is to
determine only rough approximate solutions of the SVM problem. Algorithms emédérgen this
line of research include the Core Vector Machine by Tsang et al. (20@b) ASVM by Bordes et al.
(2005), which have the additional advantage to produce even sgatagons than the exact SVM
formulation. In theory, both methods can solve the exact SVM problem wiititrary accuracy,
but their strength lies in the very fast computation of relatively rough agmrate solutions. Both
methods can profit from our working set selection algorithm presentiedvpas the Core Vector
Machine uses an inner SMO loop and LASVM is basically an online versi@wid.
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The SimpleSVM algorithm developed by Vishwanathan et al. (2003) pre\adealternative to
the decomposition technique. It can handle a wide variety of SVM formulatiss limited in the
large scale context by its extensive memory requirements. In contrasthKeteal. (2000) present
a geometrically inspired algorithm with modest memory requirements for the salation of the
SVM problem. A drawback of this approach is that it is not applicable to thedatal one-norm
slack penalty soft margin SVM formulation, which we consider here, mxauequires the classes
to be linearly separable in the feature space

2. Maximum-Gain Working Set Selection

Before we describe our new working set selection method, we recaltte®eguadratic problem re-
stricted to a working set can be solved (cf. Platt, 1999; Cristianini and &faylor, 2000; Chang
and Lin, 2001). Then we compute the progress, the functional gainistaahieved by solving a
single sub-problem. Picking the variable pair maximizing the functional gain whilemizing ker-
nel evaluations—by reducing cache misses when looking up ro@s-deads to the new working
set selection strategy.

2.1 Solving the Problem Restricted to the Working Set

In every iteration of the decompaosition algorithm all variables indexed by taetire setN are

fixed and the problens is restricted to the variables indexed by the workingBset {by,...,bq}.
We define

Qoiy -+ Qbghy

GB:(Gbl,...,qu)T ) Qe = : ' : ’ yB:(yblv-"7ybq)T

Qoiby -+ Qbghby

and fix the values

T
ve=(1-Y Qp,aj, ... ,1-YQpai| €RY and zz=- Y vVyioieR
( i; 101 Y1 i; 1Dg ™1 i;‘ 141
not depending ong. This results in the convex quadratic problem (see Joachims, 1999)

maximize  fg(ag) = viag — 305 Qe0s
PR subjectto  yfag =7
and 0<a;<C VieB.

The valuezg can easily be determined in time lineardnbut the computation ofg takes time
linear ing and/. Then®gy can be solved using a ready-made quadratic program solver in time
independent of.

We will deal with this problem under the assumption that we know the gradéstor

d T
fB(GB),...,aGfB(GB)> (1)

by by

0
G:= DfB(C(B) = (a(}

of partial derivatives offg with respect to alfj variablesay,, ..., ay, indexed by the working set.
In the following, we consider SMO-like algorithms using working sets of gize2. In this case
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Figure 1: The 2-dimensional SMO sub-problem restricted to the equalistrednt (solid ‘feasible’
line) and the box constraints (boundary). The point fulfilling the equalibst@int with
gradient orthogonal to the feasible line is a candidate for the solution obithpr®blem.
If it is not feasible w.r.t. the box constraints it has to be moved along the linetbatoox
boundary.

the equality constraint restricts us to a line. Due to the box constraints onlyraded segment
of this line is feasible (see Figure 1). To solve the restricted problem weedtife vectomwg :=
(1,—Yb,Yb,)" pointing along the 1-dimensional feasible hyperplane. To find the maximumin th
line we look at the gradierii fg(0g) = vg — Qg0g and compute the stgg - wg (Us € R) such that
the gradientdfg(ag + U - Wg) is orthogonal tawg,

0= (Ofg(ag+ HsWa), Ws)
= (vg — Qgaig — UeQBWa, Wg)
(Ofg(ag) — M8BQsWsB, WB) -

Using O fg(ag) = (Gp,,Gp,)" we get the solution

HE™ = (Gb, — Yoy Yb, Gby) / (Qbyby + Qbob, — 2V, Yo, Qoyb,) -

The corresponding point on the feasible line is denoted P¥ = ag + pg®wg. Of courseag® is
not necessarily feasible. We can easily apply the box constraipf$*to The new solution clipped
to the feasible line segment is denotgd The maximum ofrg o can now simply be expressed as
Op = dg + HgWs.

After the solution of the restricted problem the new gradient

Of(a®) = 0f (@) - Q(a® —at—) )
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has to be computed. As the formula indicates this is done by an update of therfgradient.
Because\a = at) — a(t=1 differs from zero in only thdyth andbyth component only the corre-
sponding two matrix rows d have to be known to determine the update.

2.2 Computing the Functional Gain

Expressing the target function on the feasible line by its Taylor expansibe imaximunog'® we
get

fs(&) := fe(ag™+&ws)

 fa(af®) - 3 G Qi)

= fg(ag™) — <;WEQBWB> &2

Now it is possible to calculate the gain as

(lebl + Qo,b, — 2yb1yb2Qb1b2) (HE(ZHEaX— IJE)) . 3)

The diagonal matrix entrie®; needed for the calculation can be precomputed before the decom-
position loop starts using time and memory lineaf.inrhus, knowing only the derivatives (13,

ys, andQy,p, (and the precomputed diagonal entries) makes it possible to compute the dain in
Usually in an SVM implementation the derivatives are already at hand betaeysare required for

the optimality test in the stopping criterion. Of course we have access to ths &tmkthe regu-
larization parameteC. The only remaining quantity neededQ@,,, which unfortunately requires
evaluating the kernel function.

2.3 Maximum-Gain Working Set Selection

Now, a straightforward working set selection strategy is to look at(al- 1)/2 possible variable
pairs, to evaluate the gain (3) for every one of them, and to select thethaisis, the one with
maximum gain. It can be expected that this greedy selection policy leadsytéageiconvergence
measured in number of iterations needed. However, it has two major deksviveaking it advisable
only for very small problems: looking at all possible pairs requires thevietige of the complete
matrix Q. As Q is in general too big to fit into the working memory, expensive kernel functio
evaluations become necessary. Further, the evaluation of all possiislsgales quadratically with
the number of training examples.

Fortunately, modern SVM implementations use a considerable amount of wonkimgpry as a
cache for the rows d computed in recent iterations. In all cases, this cache contains the two rows
corresponding to the working set chosen in the most recent iteratioaysethey were needed for
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the gradient update (2). This fact leads to the following maximum-gain wogdirgselection (MG)
algorithm:

Maximum-Gain Working Set Selection in step

1 if t =1then
2 | select arbitrary working s&® = {by, by}, yb, # Vb,

3 else

L select paiBt) — argmax gs(a)

4 B:{bl.bz}‘b]_GB(tfl),sz{l,.“,f}

In the first iteration, usually no cached matrix rows are available. Thuaskdmary working set
B = {by, by} fulfilling Yb, 7 Yo, iS chosen. In all following iterations, given the previous working
setB=1 = {by,b,}, the gain of all combinationgby, b} and{b,b} (b€ {1,...,¢}) is evaluated
and the best one is selected.

The complexity of the working set selection is linear in the number of trainingples. It is
important to note that the algorithm uses second order information from thexroathe. These
information are ignored by all existing working set selection strategiesi étieg are available for
free, that is, without spending any additional computational effort. Tihiatson is comparable to
the improvement of using the gradient for the analytical solution of the soiblgm in the SMO
algorithm. Although the algorithm by Fan et al. (2005) considers secater arformation, these
are in general not available from the matrix cache.

The maximum gain working pair selection can immediately be generalized to theotlass
maximum-gain working set selecti@atgorithms (see Section 2.5). Under this term we want to
subsume all working set selection strategies choosing variables aggtodingreedy policy with
respect to the functional gain computed using cached matrix rows. In Hogiftg, we restrict
ourselves to the selection of pairs of variables as working sets.

In some SVM implementations, such as LIBSVM, the computation of the stoppimdjtam
is done using information provided during the working set selection. LIBSWVP algorithm
stops if the sum of the violations of the pair is less than a predefined comstané simplest way
to implement a roughly comparable stopping condition in MG is to stop if the yglukefining the
length of the constrained step is smaller tlgan

It is worth noting that the MG algorithm does not depend on the caching gyralehe only
requirement for the algorithm to efficiently profit from the kernel cachthé& the cache always
contains the two rows of the matr@@ that correspond to the previous working set. This should be
fulfilled by every efficient caching algorithm, because recently activealbes have a high proba-
bility to be in the working set again in future iterations. That is, the MG algoritbesdot require
a change of the caching strategy. Instead, it improves the suitability ofcllirgastrategies that at
least store the information most recently used.

2.4 Hybrid Maximum-Gain Working Set Selection

The MG algorithm can be used in combination with other methods. In order tatitie conver-
gence properties from MVP we introduce timgbrid maximum gaitHMG) working set selection
algorithm. The algorithm is defined as follows:
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Hybrid Maximum-Gain Working Set Selection inste@ < n <« 1
1 if t =1then

2 | select arbitrary working s&® = {by, b2}, b, # Vb,

else

4 | ifvieB™Y:q;<n-Cva;>(1—n)-Cthen

| selectB) according to MVP

6 else
L select paiB®t) — argmax ga(a)

w

B:{bl,bz} | b]_GB(t_l),bze{l,...,Z}

In the first iteration, usually no cached matrix rows are available. Thusskdtmary working set
{b1, by} fulfilling yu, # Yo, is selected. If in iteratiom > 1 both variables indexed by the previous
working setB1 = {b;,b,} are no more than -C, 0 < n < 1, from the bounds, then the MVP
algorithm is used. Otherwise the working set is selected according to M@reFg illustrates
the HMG decision rule. The stopping condition tested by the decompositiorithlgads the one

C
C(l1—n)
Qp,
Cn
0 o
Cn C(l-mn) C

Figure 2: lllustration of the HMG algorithm. The plain defined by the previoosing seBt-1) =
{b1,by} is drawn. If the algorithm ended up in one of the gray corners then the MVP
algorithm is used in iteration

from the working set selection algorithm used in the current iteration. iShéte decomposition
algorithm stops ifyblﬁ(u) —be%(a) or g falls below the threshold depending on whether
MVP or MG has been selected.

The HMG algorithm is a combination of MG and MVP using MVP only in special situs.
In our experiments, we set= 10-8. This choice is arbitrary and makes no differencete 0 in
nearly all cases. In practice, in almost all iterations MG will be active. Tthis algorithm inherits
the speed of the MG algorithm. It is important to note thas not a parameter influencing the
convergence speed (as long as the parameter is small) and is therdfsubjeot to tuning.

The technical modification ensures the convergence of the algorithm. Toisially expressed
by the following theorem.
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Theorem 1 We consider problenr. Let (a)cy be a sequence of feasible points produced by
the decomposition algorithm using the HMG policy. Then, the limit point ofyes@nvergent sub-
sequence is optimal far.

The proof can be found in Section 3.

2.5 Generalization of the Algorithm

In the following, we discuss some of the potential variants of the basic MGW® tlgorithm.

It is possible to use a larger set of precomputed rows, say, 10, fordHeng set selection. In
the extreme case we can run through all cached rov@ dhen the working set selection algorithm
becomes quite time consuming in comparison to the gradient update. As the nofiitbeations
does not decrease accordingly, as we observed in real world appigave recommend to use only
the two rows of the matrix from the previous working set. We refer to Secti®fiof a comparison.

A small change speeding up the working set selection is fixing one elemira wbrking set in
every iteration. When alternating the fixed position, every element is usetim&e successively.
Only ¢ — 2 pairs have to be evaluated in every iteration. Though leading to more itexdkiisn
policy can speed up the MG algorithm for small problems (see Section 4.6).

The algorithm can be extended to compute the gain for tuples ofgsiz€. It is a severe
disadvantage that such sub-problems can not be solved analyticallynatetadive solver has to
be used for the solution of the sub-problem. Note that this becomes ngcakssafor every gain
computation during the working set selection. To keep the complexity of thkingpset selection
linear in £ only one element new to the working set can be evaluated. Due to this limitation this
method becomes even more cache friendly. The enlarged working setajzgecrease the number
of iterations required, but at the cost of the usage of an iterative soies should increase the
speed of the SVM algorithm only on large problems with extremely complicatetelerwhere
the kernel matrix does not fit into the cache and the kernel evaluationgiin ieration take much
longer than the working set selection.

3. Convergence of the Algorithms

In this section we discuss the convergence properties of the decompadifiwithm using MG and
HMG working set selection. First, we give basic definitions and proveomeérical criterion for

optimality. Then, as a motivation and a merely theoretical result, we show saperpes of the
gain function and prove that the greedy strategy w.r.t. the gain conviergesoptimum. Returning
to our algorithm, we give a counter example proving that there exist dosnahere pure MG
looking at pairs of variables may stop after finitely many iterations without rega@m optimum.

Finally, we prove that HMG converges to an optimum.

3.1 Prerequisites

In our convergence analysis, we consider the lignit- 0, that is, the algorithms only stop if the
guantities checked in the stopping conditions vanish. We will discuss theigence of the infinite
sequencéa®) ),y produced by the decomposition algorithm. If the decomposition algorithm stops
in some iterationg ata =1, then by convention we set!) — a(o—b for all t > ty. The definition

of convergence used here directly implies the convergence in finite time tlutgosaarbitrarily
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close to the optimum considered in other proofs (Keerthi and Gilbert, 2ZRikghashi and Nishi,
2005).

The Bolzano-Weierstral3 property states that every sequence on acosep contains a con-
vergent sub-sequence. Because of the compactnesg®f the sequencéa®);cy always con-
tains a convergent sub-sequence dengtetl );cs with limit point a*®). From the construction
of the decomposition algorithm it follows that the sequefit@®)),cy increases monotonically.
The compactness o (#) implies that it is bounded. It therefore converges and its lifit*))
does not depend on the choice of the convergent sub-sequenegaifhsequencgy (a1 =
f(a®) — f(a®Y) is non-negative and converges to zero. It will be the aim of this sectiorot@p
thata(®) is the maximizer off within the feasible regiom (#) if the decomposition algorithm is
used with HMG working set selection.

List and Simon (2004) introduced the (technical) restriction that all prih@pa2 minors ofQ
have to be positive definite. For Theorem 4, which was shown by LisSamdn (2004), and the
proof of Lemma 9 (and thus of Theorem 1) we adopt this requirement. Shevgtion is not very
restrictive because it does not require the whole m&riv be positive definite. If in contraf is
indeed positive definite (for example for Gaussian kernels with distinchpbes) then this property
is inherited by the principal minors.

If we fix any subset of variables af at any feasible poird € ® () then the resulting restricted
problem is again of the forne. By analytically solving the problem restricted to a working Bet
we can compute the gagg(a). The seV, = {a € R’|(y,a) = z} is the hyperplane defined by
the equality constraint. It contains the compact convex feasible regian). The set of possible
working sets is denoted by(2) := {B|B C {1,...,¢},|B| = 2}. We call two working setB1,B, €
3 () related ifB; N By # 0. With a working seB = {bs,b,}, by < by, we associate the vectois
with componentgwg)p, = 1, (Wg)b, = —Yb, Yb, and(wg)i = 0 otherwise. It points into the direction
in which a can be modified using the working set.

If a feasible pointx is not optimal then there exists a working Bein which it can be improved.
This simply follows from the fact that there are working set selection poligésed on which the
decomposition algorithm is known to converge (Lin, 2001; Keerthi and @jl2802; Fan et al.,
2005; Takahashi and Nishi, 2005). In this case the ggin) is positive.

Next, we give a simple geometrically inspired criterion for the optimality of a solution

Lemma 2 We consider the problermn. For a feasible pointip the following conditions are equiv-
alent:

1. apis optimal.
2. ((a—ap),df(ag)) <0 forallae g (2).
3. (u-wg,Of(ag)) <0 forallpeR, Be 3(2) fulfilling ag+ - wg € R (P).

Proof The proof is organized g§4) = (2) = (3) = (1). We consider the Taylor expansion

f(a) = f(ap) + ((a—ap), Of(ag)) — %(a — )T Q(a — ap)

2. Usually there is only a zero set of training data sets that violate this condifiois is obviously true if the input
space is an open subset of soRieand the distribution generating the training data has a density w.r.t. thediebes
measure.
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of f in 0p. Let us assume thd®) does not hold, that is, there exisisc ® (?) such thatg :=
((a—ag),Of(0p)) > 0. From the convexity of () it follows thatay, := pa + (1 — p)ag € R (2)
for pe [0,1]. We further set := %(0( — )" Q(a —ap) > 0 and have(ay —op), If(ag)) = pgand
2 (o —00) TQ(ar, — 0tg) = W2r. We can chosgyp € (0, 1] fulfilling pog > pér. Then it follows

(o) = (o) + (@ — o), I (0t0)) — (@ — t0) Q[0 — o)
= f(0to) + Hodl —
> f(do) ,

which proves thatip is not optimal. Thug1) implies(2). Of course (3) follows from (2). Now we
assumen is not optimal. From the fact that there are working set selection policiestimh the
decomposition algorithm converges to an optimum it follows that there existgkingasetB on
which 0 can be improved, which meagg(ap) > 0. Leta; denote the optimum on the feasible
line segment withirg () written in the forma; = ag+ - wg. Using the Taylor expansion above
ata; and the positive semi-definiteness@fve get

f(oy) =f(ao) + ((ag —ag), If(ag)) — %(al — )" Q(a1 —ag) > f(ap)

& ((ag—ap), Of(ag)) > %(al—ao)TQ(al—ao) >0

= (M-wg,0f(0p)) >0

showing that (3) implies (1). |

Opy Qp,

O[bl ab1

Figure 3: This figure illustrates the optimality condition given in Lemma 2 for onekieg set. On
the left the case of two free variableg, anday, is shown, while on the right the variable
Op, is at the boundC. The fat lines represent the feasible region for the 2-dimensional
problem induced by the working set. The arrows show the possible gtatiiections
not violating the optimality conditions.
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3.2 Convergence of the Greedy Policy

Before we look at the convergence of the MG algorithm, we use Theorbgnldst and Simon
(2004) to prove the convergence of the decomposition algorithm usingdbdypolicy with respect
to the gain for the working set selection. For this purpose we will need theept of a 2-sparse
witness of suboptimality.

Definition 3 (2-sparse witness of suboptimality)A family of functiongCg)gc s (»)
Cs: R (EP) — RZO

fulfilling the conditions

(C1) Cg is continuous,

(C2) if a is optimal foreg 4, then G(a) =0, and

(C3) if a feasible pointx is not optimal fore, then there exists B such thag@) > 0
is called a2-sparse witness of suboptimalityist and Simon, 2004).

Every 2-sparse witness of suboptimality induces a working set selectiorithlg by

BY := argmax( Cg(a"Y)) .
oot )

Bes(®

List and Simon (2004) call this the induced decomposition algorithm. Now wejgate a general
convergence theorem for decomposition methods induced by a 2-syitiess of suboptimality:

Theorem 4 (List and Simon, 2004)We consider the problerm and a 2-sparse witness of subop-
timality (Cg)pes(»)- Let (a®)cy denote a sequence of feasible points generated by the decompo-
sition method induced biCg) and (a(!));.s a convergent sub-sequence with limit paift). Then,

the limit point is optimal forr.

The following lemma allows for the application of this theorem.
Lemma 5 The family of function§gs)scs (») is @ 2-sparse witness of suboptimality.

Proof Property(C2) is fulfilled directly per construction. Proper{{C3) follows from the fact
that there exist working set selection strategies such that the decompasitibad converges (Lin,
2001; Takahashi and Nishi, 2005; List and Simon, 2005). It is left btegproperty(C1). We fix a
working setB = {by, by} and the corresponding direction vectas. Choosing the working s& is
equivalent to restricting the problem to this direction. We define the affinarliivection

d:Vo =R, GD—>£ f(o+pwg)
auuzo

and the (¢ — 2)-dimensional) hyperplantd := {a € V,, | §(a) = 0} within the (¢ — 1)-dimensional)
vector spacd/,. This set always forms a hyperplane becaQs# # 0 is guaranteed by the as-
sumption that all 2 2 minors orQ are positive definite. This hyperplane contains the optimf of
restricted to the linea + R - wg considering the equality constraint but not the box constraints. We

3. Theorem 1 in List and Simon (2004) is more general as it is not restrio working sets of size two.
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introduce the mapy projectingV, ontoH alongwg, that is the projection mapping the whole line
o + R -wg onto its unique intersection witH. The hyperplanél contains the compact subset

H:={aeH|a+R-wgNR (P)# 0O} = (R (?))
on which we define the function

:H—-R, aw— argmin |y .
{HeER[a+pwBeR ()}

The termd(Ti4 (o) )ws describes the shortest vector moving H to the feasible region on the line
alongwg. OnH \ ® () it parameterizes the boundary of the feasible region (see Figure 43eThe
properties enable us to describe the optimal solution of the sub-problerceitidhy the working
set. Starting frono € % () the optimumry (a) is found neglecting the box constraints. In case
this point is not feasible it is clipped to the feasible region by moving idby, (a))wg. Thus,
per construction it holdgg(a) = f (T () +8(TH (a) )wg) — f(a). The important point here is that
convexity and compactness ®f(# ) guarantee thal is well-defined and continuous. We conclude
thatgg is continuous as it is a concatenation of continuous functions. [ |

Figure 4: The feasible regior (#) within the (¢ — 1)-dimensional vector spadé, is illustrated.
The¢-dimensional box constraints are indicated in light gray. The thin line repteshe
hyperplaneH containing the compact subdétdrawn as a fat line segment. The lengths
of the dotted lines indicate the absolute values of the fundiion H. The functiond
vanishes within the intersection Bf and® ().

Corollary 6 We consider problenr. Let (a“))teN be a sequence of feasible points produced by
the decomposition algorithm using the greedy working set selection pohey, Bvery limit point
a(®) of a converging sub-sequen@?) ;s is optimal fore.

Proof For a feasible poirtt and a working seB the achievable gain is computedggsa ). Thus, the
decomposition method induced by the fan{ifys) selects the working set resulting in the maximum
gain, which is exactly the greedy policy. Lemma 5 and Theorem 4 completedbé pr |

It is straightforward to use the more general version of the theorem lfishand Simon (2004) to
extend the construction for working sets limited in size to sgme2.
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3.3 Convergence of the MG Algorithm

Theorem 7 Given a feasible poira ) for 2 and a previous working setB?) of size 2 as a starting
point. Then, in general, the MG algorithm may get stuck, that means, istopyafter finitely many
iterations without reaching an optimum.

Proof As a proof we give a counter example. The MG algorithm may get stuckdedaching the
optimum because it is restricted to reselect one element of the previousmgsek. For < 4 this
poses no restriction. Thus, to find a counter example, we have to use/serhdndeed, using four
training examples is already sufficient. We considdor ¢ = 4 with the values

2 V3 1 3 -1
[v3 4 V3 3 c_ 1 [
=1 va 2 v3|" 100 YT |a
V3 3 V3 4 +1

The matrixQ is positive definite with eigenvalug8,1,1,1). We assume the previous working set
to beBM = {1,3} resulting in the point™ = (C,0,C,0)T. Note that this is the result of the first
iteration starting fromu(©) = (0,0,0,0) greedily choosing the working sBtY = {1,3}. Itis thus
possible that the decomposition algorithm reaches this state in the SVM contextorpute the
gradient

1 1 7 V3 7 &N ~ T
Of(a®) =1—QaM = (151~ 5 g1~ g ) ~(07.06507,065)
(which is orthogonal tg). Using Lemma 2 we compute that the sub-problems defined by all work-
ing sets with exceptioB = {2,4} are already optimal. The working s&%) andB have no element
in common. Thus, the maximum gain working pair algorithm cannot sBlétt= B and gets stuck
although the pointi@ is not optimal. From Figure 5 we can see that the same example works for
all points on the edga™ = (C,v,C,v) for v € [0,C). Lemma 8 states that indeed the edges of the

octahedron are the only candidates for the MG algorithm to get stuck. |

3.4 Convergence of the HMG Algorithm

The above result makes it advisable to use a different algorithm whehMBes endangered to
get stuck. For this purpose the HMG algorithm was designed. In this sagéqgorove that this
modification indeed guarantees convergence to an optimum.

The following lemma deals with the specific property of the MG algorithm to reselee
element of the working set, that is, to select related working sets in canseiarations. It is a
major building block in the proof of the main result stated in Theorem 1.

Lemma 8 We consider, a current non-optimal feasible poiatand a previous working set;B=
{b1,by}. If at least one of the variables,, anday, is free (not at the boundd or C) then there
exists a working setBrelated to B such that positive gaingy(a) > 0 can be achieved.

Proof We show that no counter example exists. The idea is to reduce the numbessiblp
scenarios to a finite number and to inspect each case individually.
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Figure 5: lllustration of the counter example. The feasible regigm ) forms an octahedron within
the 3-dimensional spadé.. The possible directions of movement using working sets of
size 2 are parallel to the edges of the octahedron. The SVM algorithm istartd =
(0,0,0,0)". During the first two iterations the greedy policy reaches the paiffts=
(C,0,C,0)"T anda(® = (C,C,C,C)T. The MG algorithm gets stuck after the first iteration
ataM. The plane spanned by the directidris0,1,0)™ and(0,1,0,1)T defined by the
working sets{1,3} and{2,4} respectively, is drawn. The gray lines are level sets of the
target functionf within this plane. In the point® the gradientdf(a¥) (which lies
within the plane) has an angle of less thaf2 only with the horizontally drawn edge
corresponding to the working s€2,4}.

For ¢ < 3 the condition thaB; andB; are related is no restriction and we are done. In the main
part of the proof, we consider the 4-dimensional case and setay,0p,03,04)" andBy = {1,2}
with free variablen; € (0,C). In the end, we will reduce the general casé t04.

Let us have a look at potential counter examples. A feasible pama counter example if it is
not optimal and does not allow for positive gain on any working set relat8d. These conditions
are equivalent to

gB(a){_o for B # {3,4} @
>0 forB={3,4} .

Looking at the six possible working sdBswe observe from Lemma 2 that we have to distinguish
three cases for sub-problems induced by the working sets:

e The current pointx is at the bounds for a variable indexed Byand the pointsx + -
wg lie within g (#) only for p < 0. Then Lemma 2 states thatcan only be optimal if
(wg,O0f(a)) > 0.
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e The current pointx is at the bounds for a variable indexed Byand the pointsa + -
wg lie within g (#) only for p> 0. Then Lemma 2 states thatcan only be optimal if
(wg, O0f(a)) <O0.

e The current pointx is not at the bounds for both variables indexedByyThus, there are
positive and negative values farsuch thatx + p- wg lies within £ (). From Lemma 2 it
follows thata can only be optimal ifwg, Of (a)) = 0.

We conclude that the signs (0, = 0, or > 0) of the expressions

of of
(e, DF (@) = 50 (0) ~Yigdhy go () for B={bhbi}C {1234} (5)
0 1

and the knowledge about which variables are at which bound areisuffior the optimality check.
Further, it is not important which exact value a free variable takes. ©Bsilple combinations of
vectorswg occurring in equation (5) are generated by the label vgct@ombining these insights,
we define the maps

-1 ifx<O
sign:R — {—1,0,+1}, X 0 ifx=0
+1 ifx>0
c 0 ifx=0

bound :[0,C] — {O’E’C}’ x—<{S ifo<x<C
C ifx=C

and a mapping of all possible counter examples onto a finite number of cases

W:g (2)xR*x {-1,+1}* — {-1,0,41}°x {0,C/2,C}3 x {—1, +1}%,

a bounda),i € {2,3,4}
(Df(a)) — (sign((wB,Df(a»), Be B(LP))
y y

A possible counter example is fully determined by a candidate poitR (), the gradienG =
Of(a), and the label vectoy. As the parameters of problem are not fixed here, the equality
constraint can be ignored, because every point fulfilling the box ainttrcan be made feasible
by shifting the equality constraint hyperplane. The relatfu,G,y) = HJ(G,G,Y/) divides the
pre-image of¥ into equivalence classes. For each element of one equivalence dadsettk of
condition (4) using Lemma 2 is the same. Formally, we have

W(a,G,y) = ¥(&,G,Y)
=-condition (4) holds fofa, G,y) if and only if condition (4) holds fo(d,é,y) .
It follows that any finite set containing representatives of all the nontgmguivalence classes
is sufficient to check for the existence of a counter example in the infiniténmage of¥.* The

checking can be automated using a computer program. A suitable progndra dawnloaded from
the online appendix

4. The function¥ itself helps designing such a set of representatives of the non-empsggsla-or every fixed andy
the set{ —4,—3,...,3,4}* c R*is sufficient to generate all possible combinations of jgg, 0f (a))), B € 3(2).
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The outcome of the program is that there exists no counter example.

It is left to prove the lemma fof > 4. This case can be reduced to the situations already
considered. Because is not optimal there exists a working sBf with gg, (o) > 0. The set
W := B; UB, defines an at most 4-dimensional problem. The proof above shows ¢natekists a
working setB € W with the required properties. |

Following List and Simon (2004), one can boufa® —a®=1|| in terms of the gain:

Lemma 9 We consider problenz and a sequencgV)),cy produced by the decomposition algo-
rithm. Then, the sequengga® —a*~)||), _ converges t@.

Proof The gain sequenc@gB(t) (O((tfl)))teN converges to zero as it is non-negative and its sum is
bounded from above. The inequality

O (0 9) 2 Ta® —al D2 & ) —at D) < /2 g (at-D)

holds, wheres denotes the minimal eigenvalue of thet2 minors ofQ. By the technical assump-
tion that all principal 2< 2 minors ofQ are positive definite we hawe> 0. |

Before we can prove our main result we need the following lemma.

Lemma 10 We consider problem, a sequenc(aa(t))teN produced by the decomposition algorithm
and the corresponding sequence of working sef$)(By. Let the index set 8 N correspond to a
convergent sub-sequen@&®) )5 with limit pointa(*).

(i) Let
I:{Beﬁ@)\MeSBm:BH:w}

denote the set of working sets selected infinitely often. Then, no gain cahieeed in
the limit pointa(*) using working sets B I.

(i) Let
R:={Be3(?)\l | Bisrelatedtosom8el} .
denote the set of working sets related to working sets in I. If the decampaagorithm

chooses MG working sets, no gain can be achieved in the limit péfitusing working
sets Be R.

This is obvious from equation (5) and the fact that these cases coferedif as well as equal absolute values for
all components together with all sign combinations. Hence, it is sufficielobtoat these 9 gradient vectors, or in
other words, the map frofi-4, -3, ...,3,4}* to sign((wg, 0f(0))), B € B(?) is surjective. The mapping of thé 3
pointsa; = C/2, a; € {0,C/2,C} for i € {2,3,4} onto boundai), i € {2,3,4} is bijective. Of course the identity
mapy — y of the 2 possible labels is bijective, too. Now we have constructed a sét-@92% = 2,834,352 cases.

If there is no counter example among them, we know that no counter@aaxists in the whole infinite set.
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Proof First, we provei). Let us assume these exi&s | on which positive gain can be achieved
in the limit pointa®). Then we have := gB(a<°°)) > 0. Becauseyg is continuous there exists
to such thatgg(a®) > g/2 for allt € S t > ty. BecauseB is selected infinitely often it follows
f(a(®)) = . This is a contradiction to the fact thatis bounded om (2).

To prove(ii) we define the index s& ) := {t + 1|t € S}. Using Lemma 9 we conclude that
the sequencéa®)cs ., converges ta(®). Let us assume that the limit point can be improved us-

ing a working seB € Rresulting ing := gB(a(w)) > 0. Because is continuous, there existigsuch
thatit holdsgs(al) > g/2 forallt € S, 1), t > to. By the convergence of the sequeriéén ™)) )ier
we findt; such that for alt > t; it holdsgge (at~) < /2. The definition o yields that there is a
working setB ¢ | related taB which is chosen in an iteratidn> max{to,t1}, t € S. Then in iteration
t+1€ S, 1) due to the MG policy the working s&(or another working set resulting in larger gain)
is selected. We conclude that the gain achieved in iteratiot is greater and smaller than2 at
the same time which is a contradiction. Tha$®) can not be improved using a working &t R. W

Proof of Theorem 1First we consider the case that the algorithm stops after finitely many iterations
that it, the sequend@ ) ).y becomes stationary. We again distinguish two cases depending on the
working set selection algorithm used just before the stopping condition is Imegase the MVP
algorithm is used the stopping condition checks the exact KKT conditionss, The point reached
is optimal. Otherwise Lemma 8 asserts the optimality of the current feasible point.

For the analysis of the infinite case we distinguish two cases again. If thel@@tam is used
only finitely often then we can simply apply the convergence proof of SMee(ti and Gilbert,
2002; Takahashi and Nishi, 2005). Otherwise we consider the set

T :={t e N|MG is used in iteratiot}

of iterations in which the MG selection is used. The compactnegs(af) ensures the existence of
a subseSC T such that the sub—sequedccé”)tes converges to some limit point(®). We define
the sets

I::{Be@(sp) | ]{teS\B(t):B}\:oo}
R:={Be5(?)\l | Bisrelated to somBe I }

and conclude from Lemma 10 that*) can not be improved using working s&s | UR. Now let

us assume that the limit point can be improved using any other working set. LEmema 8 states

that all coordinateai(‘”) foralli € B €1 are at the bounds. By the definition of the HMG algorithm
this contradicts the assumption that the MG policy is used on the whole sequehges. Thus,

the limit pointa(*®) is optimal for2. From the strict increase and the convergence of the sequence
(f(a®))en it follows that the limit point of every convergent sub-sequefe®), s is optimal. B

4. Experiments

The main purpose of our experiments is the comparison of different wgpdahselection policies
for large scale problems. This comparison focuses on SMO-like algorithinesexperiments were
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carried out using LIBSVM (Chang and Lin, 2001). We implemented our Hé(@ction algorithm
within LIBSVM to allow for a direct comparison. The modified source codeI&SVM is given
in the online appendix

http://ww. neur oi nf or mati k. ruhr - uni - bochum de/ PEOPLE/ i gel / wss/

Three SMO-like working set selection policies were compared, namely tR8VYM-2.71 MVP
algorithm, the second order LIBSVM-2.8 algorithm, and HMG working sktction.

To provide a baseline, we additionally compared these three algorithms td98\(8bachims
1999) with a working set of size ten. In these experiments we used the sarfigucation and
cache size as for the SMO-like algorithms. It is worth noting that neither thatidercount nor
the influence of shrinking are comparable between LIBSVM and $¥M As we do not want
to go into details on conceptual and implementation differences between thepauhkdges, we
only compared the plain runtime for the most basic case as it most likely occapplitations.
Still, as the implementations of the SMO-like algorithms and d9differ, the results have to be
interpreted with care.

We consider 1-norm soft margin SVM with radial Gaussian kernel funstio

. |2
kol = exp( 20 ©
with kernel parametes and regularization paramet@r If not stated otherwise, the SVM was given
40 MB of working memory to store matrix rows. The accuracy of the stoppiiterion was set to
€ = 0.001. This value is small compared to the components of the gradient of tlet fiangtion in
the starting positioa(?). The shrinking heuristics for speeding up the SVM algorithm is turned on,
see Section 4.4. Shrinking may cause the decompaosition algorithm to requiedterations, but
in most cases it considerably saves time. All of these settings corresporal LtBIBVM default
configuration. If not stated otherwise, the hyperparamé&ensdo were fixed to values giving well
generalizing classifiers. These were determined by grid search optimizmgrtir on independent
test data.

For the determination of the runtime of the algorithms we used a 1533 MHz AMD AP
system running Fedora Linux.

In most experiments we measured both the number of iterations needed anuhtihee of
the algorithm® Although the runtime depends highly on implementation issues and programming
skills, this quantity is in the end the most relevant in applications.

The comparison of the working set selection algorithms involves one majocultijfi The
stopping criteria are different. It is in general not possible to computettipping criterion of one

5. We did not investigate the classification performance of the diffeggmoaches. As we are comparing algorithms
converging to the exact solution of the SVM problem and the stopping crigéeeiachosen appropriately, we can
expect that the machines trained using the different methods are equdlliguited for classification. Due to the
finite accuracy, the direction from which the optimum is approached, thet grath taken by the optimization, and
the stopping criterion influence the value of the final solution. Thus, sriffdrences in classification performance
may occur between the algorithms. In contrast to the comparison oh rapgroximation methods or completely
distinct types of classifiers, these effects are highly random, as theyle@end on the presence of single input
patterns or even on the order in which the training examples are preséether well known effect is that the
classification accuracy measured on a test set does not necessaesmwith the solution accuracy. Thus, besides
the prior knowledge that the differences are negligible, a compariddahs olassification accuracy is not meaningful
in this context.
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algorithm in another without additional computational effort. As the complésabf the runtime
depends on an efficient implementation, each algorithm in the comparisangsusa/n stopping
criterion. The computation of the final value of the objective function risviiat the two stopping
conditions are roughly comparable (see Section 4.2 and Table 2).

As discussed in Section 1.3, the order in which the training examples aenfedsnfluences
the initial working set and thereby considerably the speed of optimizatioretigha certain or-
dering leads to fast or slow convergence is dependent on the workirggkection method used.
Therefore, we always consider the median over 10 independent titalsliferent initial working
sets if not stated otherwise. In each trial the different algorithms starbed tihe same working
set. Whenever we claim that one algorithm requires less iterations or timerédsests are highly
significant (two-tailed Wilcoxon rank sum tegt,< 0.001).

Besides the overall performance of the working set selection strategigw@stigated the influ-
ence of a variety of conditions. The experiments compared differentvaliithe kernel parameter
o, the regularization paramet€r and the cache size. Further, we evaluated the performance with
LIBSVM’s shrinking algorithm turned on or off. Finally, we comparedigats of the HMG strategy
using different numbers of cached matrix rows for the gain computation.

4.1 Data Set Description

Four benchmark problems were considered. The 60,000 training exaofiptesMNIST handwrit-
ten digit database (LeCun et al., 1998) were split into two classes contéiintigits{0, 1,2, 3,4}
and{5,6,7,8,9}, respectively. Every digit is represented as a2 pixel array making up a 784
dimensional input space.

The next two data sets are available from the UCI repository (Blake and,NM898). The
spam-database contains 4,601 examples with 57 features extracted from e-mails. TheteBaiR
positive examples (spam) and 2,788 negative ones. We transformgdeaterre to zero mean and
unit variance. Because of the small training set, HMG is not likely to exdbisbenchmark.

The connect-4 opening database contains 67,557 game states of the connect-4 game after 8
moves together with the labels ‘win’, ‘loose’, or ‘draw’. For binary ciisation the ‘draw’ ex-
amples were removed resulting in 61,108 data points. Every situation waftraed into a 42-
dimensional vector containing the entries 1, 0-dr for the first player, no player, or the second
player occupying the corresponding field, respectively. The reptaton is sparse as in every vec-
tor only 8 components are non-zero. The data were split roughly into tivesnaking up training
and test data. For the experiments only the training data were used.

Theface data set contains 20,000 positive and 200,000 negative training exarapiey. ex-
ample originates from the comparison of two face images. Two pictures ofithe person were
compared to generate positive examples, while comparisons of picturéfeoémnt persons make
up negative examples. The face comparison is based on 89 similarity &afithrese real-world
data were provided by the Viisage Technology AG and are not available fuutfiic.

Training an SVM using the large data stise andMNIST takes very long. Therefore these two
problems were not considered in all experiments.

We determined appropriate values oandC for each benchmark problem, see Table 1. We did
coarse grid searches. The parameter combinations resulting in the snratlesba corresponding
test sets were chosen.
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We want to pay special attention to the size of the kernel matrices in compé#oisoa cache
size (see Table 1). The data sets cover a wide range of kernel matsxgikeh fit into the cache
by nearly 50% to only @2 %. It is a hopeless approach to adapt the cache size in order todit larg
parts of the kernel matrix into working memory. Because the space requitdorethe kernel
matrix grows quadratically witli, large scale real world problems exceed any physically available
cache.

data set dim. l cache o C SV BSV
spam-database 57 4,601 47.2% 10 50| 185% 11.7%
connect-4 42 30,555 1.07% 15 45|27.0% 7.7%
MNIST 784 60,000 0.28% 3,500 50| 105% 4.6%
face 89 220,000 0.029 3 5| 26% 1.2%

Table 1: SVM parameters used in the comparison together with solution stati$tiescolumn
“dim.” gives the input space dimension whildés the number of training examples. The
“cache”-column shows how much of the kernel matrix fits into the kerneheacThe
fractions of support vectors and bounded support vectors amgetehy “SV” and “BSV”.
These percentage values might slightly differ between the algorithms leectilne finite
accuracy of the solutions.

4.2 Comparison of Working Set Selection Strategies

We trained SVMs on all data sets presented in the previous section. We nadnit@ number
of iterations and the time until the stopping criterion was met. The results arensholable 2.
The final target function value(a*) are also presented to prove the comparability of the stopping
criteria (for the starting state it holde{(x(o)) =0). Indeed, the final values are very close and which
algorithm is most accurate depends on the problem.

It becomes clear from the experiments that the LIBSVM-2.71 algorithnopad worst. This
is no surprise because it does not take second order information irgardcdn the following we
will concentrate on the comparison of the second order algorithms LIB&\8vand HMG.

As the smallest problem considered #pam-database consists of 4,601 training examples.
The matrixQ requires about 81 MB of working memory. The cache size of 40 MB shbald
sufficient when using the shrinking technique. The LIBSVM-2.8 algorifimafits from the fact
that the kernel matrix fits into the cache after the first shrinking event. éstldss iterations and (in
the mean) the same time per iteration as the HMG algorithm and is thus the fastestmalthe

In the connect-4 problem the kernel matrix does not fit into the cache even if shrinking id use
to reduce the problem size. Thus, even in late iterations kernel evaluatinreeccur. Here, HMG
outperforms the old and the new LIBSVM algorithm. This situation is even maregomced for
the MNIST data set and théace problem. Only a small fraction o fit into the cache making
expensive kernel evaluations necessary. Note that for all of thegee paoblems the LIBSVM-2.8
algorithm minimizes the number of iterations while HMG minimizes the training time. The HMG
algorithm is the fastest on the three large scale problems, because it nsakefstiie kernel cache
more efficiently.
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data set{) algorithm iterations  runtime f(a*)
LIBSVM-2.71 36,610 11.21s 27,019.138

spam-database (4,601) | LIBSVM-2.8 9,228 8.44  27,019.14Q
HMG 10,563 9.17s  27,019.140

N

LIBSVM-2.71 65,167 916s  13,557.54
connect-4 (30,555) LIBSVM-2.8 45,504 734s  13,557.542

HMG 50,281 633s 13,557.536
LIBSVM-2.71 | 185,162 13,657s 143,199.142
MNIST (60,000) LIBSVM-2.8 110,441 9,957s 143,199.146
HMG 152,873 7,485s 143,199.160
LIBSVM-2.71 37,137 14,239s  15,812.666
face (220,000) LIBSVM-2.8 32,783 14,025s  15,812.666
HMG 42,303 11,278s 15,812.664

Table 2: Comparison of the number of iterations of the decomposition algoridrtraining times
for the different working set selection approaches. In each caskestevalue is high-
lighted. The differences are highly significant (Wilcoxon rank sum {&st,0.001). Addi-
tionally, the final value of the objective function showing the comparability efrdgsults
is given.

We performed the same experiments with the $¥Wsupport vector machine implementation.
The results are summarized in Table 3. We relaxed the stopping conditiortreiche SVYMINt
solutions are less accurate than the LIBSVM solutions. Nevertheless Vikii9% algorithm is
slower than the LIBSVM implementation using the SMO algorithm (see Table 2)as@laote
that according to the numerous implementation differences these experirnarisgrovide a fair
comparison between SMO-like methods and decomposition algorithms usingvangeng sets.

data set{) iterations  runtime f(a*)

spam-database (4,601) 9,450 23.97s 27,019,125
connect-4 (30,555) 17,315 5589 s 13,557.520
MNIST (60,000) 42,347 282,262s 143,175.447
face (220,000) 9,806 51,011s 15,812.643

Table 3: Iterations, runtime and objective function value of the $¥Mexperiments with working
set sizeq = 10. Because of the enormous runtime, only one trial was conducted for the
MNIST task.
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4.3 Analysis of Different Parameter Regimes

The choice of the regularization paramefeand the parameter of the Gaussian kernel (6) influ-
ence the quadratic problem induced by the data. We analyzed this depgndeng grid search on
theconnect-4 problem. The results are plotted in Figure 6.

All parameter configurations where LIBSVM-2.71 or LIBSVM-2.8 oufpemed HMG have
one important property in common, namely, that itis a bad idea to reselecraerglef the previous
working set. This is true when after most iterations both coordinates indsxak working set are
already optimal. This can happen for different reasons:

e Foro — 0 the feature vectors corresponding to the training examples become ndareeas
orthogonal and the quadratic problembecomes (almost) separable.

e For increasing values af the example points become more and more similar in the feature
space until they are hard to distinguish. This increases the quotient ofglesiand smallest
eigenvalue ofQ. Thus, the solution of is very likely to lie in a corner or on a very low
dimensional edge of the box constraining the problem, that is, many of'tead up at the
constraints 0 o€. This is even more likely for small values Gf

We argue that in practice parameter settings leading to those situations aealhotelevant be-
cause they tend to produce degenerate solutions. Either almost all examgéetected as support
vectors (and the SVM converges to nearest neighbor classificatioing arformation available are
used inefficiently, setting most support vector coefficient€.t@Both extremes are usually not in-
tended in SVM learning. In our experiments, HMG performs best in thenpeter regime giving
well generalizing solutions.

4.4 Influence of the Shrinking Algorithm

A shrinking heuristics in a decomposition algorithm tries to predict whetheriablaa; will end up
at the box constraint, that is, whether it will take one of the values®. dn this case the variable
is fixed at the boundary and the optimization problem is reduced accordi@lgourse, every
heuristics can fail and thus when the stopping criterion is met these variabkide reconsidered.
The temporary reduction of the problem restricts working set selectiomitlgs to a subset of
possible choices. This may cause more iterations but has the potential #Isaeé runtime.

We repeated our experiments with the LIBSVM shrinking heuristics turnetbakveal the
relation between the working set selection algorithms and shrinking, sé= 4labhe experiments
show that the influence of the shrinking algorithm on the different workitgselection policies is
highly task dependent. The time saved and even the algorithm for which moredissaved differs
from problem to problem. For some problems the differences between thedsdtictrease, for
others they decrease. Compared to the experiments with shrinking turtieelr@sults qualitatively
remain the same.

4.5 Influence of the Cache Size

The speed (in terms of runtime, not iterations) of the SVM algorithm dependkeofraction of
matrix rows fitting into the cache. We used ttmnect-4 data set to test the dependency of speed
on the cache size. The full representation of the m&nigquires nearly 3.5 GB of working memory
for this problem. We trained SVMs with 20 MB (0.56% of the matrix), 40 MB (1.)2%0 MB
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Figure 6: Influence o€ ando on the runtime for theonnect-4 data set. The plots show on loga-
rithmic scales the runtime of the SVM depending@andc. The comparison of HMG
to LIBSVM-2.71 is plotted in (A), while plot (B) shows the comparison of HMG to
LIBSVM-2.8. The colored shapes indicate the method needing less runtiightiand
dark gray for LIBSVM and HMG, respectively. Only the lower surfam®responding
to the faster algorithm is drawn solid while the higher surface is indicated bgatied
grid lines. Bothy = 1/(20?) andC are considered in a range of factor, 200 containing
the well generalizing parameter regime, see Table 2. The dots mark datgefsard thus
not desirable) solutions. The gray dots indicate that the solution usesa®8% of the
training data as support vectors. If at least 99 % of the support weaterat the upper
boundC the solution is marked with a black dot.

(2.8%) and 200 MB (5.6%) cache. Because the shrinking heuristicsgediie amount of memory
required for the storage of the relevant par€@the percentage values should be viewed with care.
If all variables ending up at the box constraints are removed, the sterag®f the matrixQ is
about 134 MB. This matrix already fits into the 200 MB cache.

The results listed in Table 5 and plotted in Figure 7 clearly show that for snikecsizes the
HMG algorithm is advantageous while for a large cache the LIBSVM-2.8ritgo catches up.

These results can easily be explained. As long as there is a considdrabte¢o find a matrix
row in the cache it is not necessary to use the cache friendly HMG stratetjys case it is reason-
able to minimize the number of iterations. This is best achieved by the LIBSVM4@@ithm. If
the cache is too small to store a relevant part of the kernel matrix it becalwastageous to use
HMG, because HMG produces at most one cache miss per iteration. \WWeiderthat the HMG
algorithm should be used for large scale problems.
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data set algorithm iterations runtime
LIBSVM-2.71 | 33,340 91.19% 12.77s 114%
spam-database | LIBSVM-2.8 9,123 98.9%| 8.98s 106%
HMG 9,342 88.4%| 11.41s 124%
LIBSVM-2.71 | 65,735 100.9% 2,223s 243%
connect-4 LIBSVM-2.8 45,466 99.9% 1,567s 213%
HMG 49,512 98.5% 1,005s 159%
LIBSVM-2.71 | 187,653 101.3% 94,981s 695%
MNIST LIBSVM-2.8 | 110,470 100.0% 58,213s 585%
HMG 155,182 101.5% 41,097s 549%
LIBSVM-2.71 | 37,060 99.8% 55,057s 387 %
face LIBSVM-2.8 32,796 100.09% 48,922s 349%
HMG 43,066 101.89% 33,001s 293%

Table 4: Iterations and time needed for solving the quadratic problem wistounking. The per-
centage values refer to the corresponding results with shrinking tumeéldat is, iterations
and runtime of the experiments with shrinking turned on define the 100% mar&.td®
the enormous runtime, for the data seits$IST andface only one trial was conducted.

cache sizg LIBSVM-2.71 | LIBSVM-2.8 | HMG
20 MB 958s 766s| 656s
40 MB 916s 734s| 633s
100 MB 758s 649s| 583s
200 MB 603s 547s| 555s

Table 5: The training time for theonnect-4 task for the different working set selection algorithms
depending on the cache size.

4.6 Number of Matrix Rows Considered

In the definition of the HMG algorithm we restrict ourselves to computing the gsiimg the two
cached matrix rows corresponding to the previous working set. This seebgsan arbitrary re-
striction. To determine the influence of the number of rows considered wpa@d the HMG
algorithm to two modified versions.

We computed the gain using only one matrix row corresponding to one eleifntetworking
set. The element chosen was alternated in every iteration such that acdsebetable was used in
exactly two successive iterations. This policy reduces the time requiréitfarorking set selection
by about 50%. It can be considered as the minimal strategy avoiding asyiesrigttween the
variables. The results comparing the usage of one and two rows are ghdable 6.

Although the stopping criteria used are the same we get different final famgsion values.
This happens due to the reduced number of pairs over which the maximuneisitethe one-row
strategy. The values listed indicate that the experiments are roughly cditgydrat the one-row
strategy produces less accurate solutions in general.
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Figure 7: The training time in seconds for tbennect-4 data set is plotted over the cache size in

MB.
two rows one row
data set iterations  runtime f(a*) | iterations runtime f(a*)
spam-database 10,563 9.17s 27,019.140, 14,023 10.99s 27,019.134
connect-4 50,281 633s 13,557.536/ 83,305 4,967s 13,557.529

Table 6: Comparison of the one-row and the two-row strategy. The beltegs/are printed in bold
face. The differences are highly significant (Wilcoxon rank sum test0.001). The final
target function values are lower using the one-row strategy.

The two-row strategy performed clearly better. The reasons for the geréormance of the
one-row strategy are the higher number of iterations and, what is wbesér higher number of
unshrinking events. Because of the reduced amount of pairs coegities strategy is endangered
to wrongly detect optimality on the shrunk problem causing a costly unshgnkiocess. Simple
experiments indicated that the one-row strategy can compete if the problemalis Blowever, in
this case both HMG strategies were outperformed by the LIBSVM algorithm.

The other strategy tested is to compute the gain for every cached matrix el@maédable. Of
course this algorithm is extremely time consuming and thus not practical focagigns. This test
gives us the minimum number of iterations the HMG working pair algorithm careaghas it is
the strategy using all information available. It thus provides a bound oretfiermance of possible
extensions of the algorithm using more than two cached matrix rows to deterrain@tking pair.

In the case where the whole matfXfits into the cache and all rows have already been computed,
the strategy coincides with the exact greedy policy w.r.t. the gain. We cothffageesults to the
the two-row strategy, see Table 7.

Again it is difficult to compare the experiments because the algorithm usingetted rows
available generally stops later than the two-row strategy. We will neverthiglesspret the results,
although this difficulty indicates that the bound on the possible performand®I& algorithms
using more than two rows may not be tight.

The behavior is clearly problem specific. On dwnect-4 task both strategies nearly showed
the same performance. This reveals that on some real world problems thevivetrategy cannot
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two rows whole cache iterations
data set iterations f(a*) | iterations f(a*) saved
spam-database 10,563 27,019.140 7,280 27,019.143 31%
connect-4 50,281 13,557.536 51,285 13,557.538 0%

Table 7: Comparison of the strategies using two matrix rows and the whole mattie @available.

be outperformed by HMG strategies using more than two matrix rows. In cbritnathespam-
database, the whole-cache strategy saved 31 percent of the iterations. Thisnsigeble amount
which was bought dearly using all cached matrix rows for the workingedettion. In practice one
would like to use a faster method, which, for example, looks at a small fixethauof matrix
rows. The reduction of the number of iterations will presumably be lesaufdr strategies. Addi-
tionally, the non-trivial question for the row selection policy arises. Tharssimplicity as well as
performance we recommend to stick to the two-row HMG algorithm.

5. Conclusion

The time needed by a decomposition algorithm to solve the support vector rg&\iv) opti-
mization problem up to a given accuracy depends highly on the workirsgpksttion. In our experi-
ments with large data sets, that is, when training time really matters, our new hydxichum-gain
working set selection (HMG) saved a lot of time compared to the latest secdadselection algo-
rithm. This speed-up is achieved by the avoidance of cache misses in thapiEsition algorithm.
In contrast, for small problems the LIBSVM-2.8 algorithm is faster. Thisiltesuggest a mixed
strategy which switches between the algorithms depending on cache dtehpisize.

The main advantage of the HMG algorithm is its efficient usage of the matrixecéiateselects
almost always one element of the previous working set. Therefore,sttane matrix row needs to
be computed in every iteration. The new algorithm obtains strong theoreaijgabd as it is known
to converge to an optimum under weak prerequisites, see Section 3.

The HMG algorithm is especially efficient for appropriate kernel andlagzation parameter
settings leading to well-generalizing solutions. Thus, it is the method of chdiea warameters
suiting the problem at hand am@ughlyknown. It is for example a good idea to find out well working
parameters using a small subset of the data and then train the SVM with the Hjgi@hem using
the whole data set.

Although LIBSVM-2.8 and HMG both select working sets using seconckondformation,
different target functions and variable sets are considered. It isaa &f future work to investigate
the performance and the convergence properties of possible combiatioethods. In particular,
an elaborate cooperation between the kernel cache strategy and Kiegngat selection algorithm
is promising to increase the efficiency of future algorithms.
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