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Abstract
Support vector machines are trained by solving constrainedquadratic optimization problems. This
is usually done with an iterative decomposition algorithm operating on a small working set of vari-
ables in every iteration. The training time strongly depends on the selection of these variables. We
propose the maximum-gain working set selection algorithm for large scale quadratic programming.
It is based on the idea to greedily maximize the progress in each single iteration. The algorithm
takes second order information from cached kernel matrix entries into account. We prove the con-
vergence to an optimal solution of a variant termed hybrid maximum-gain working set selection.
This method is empirically compared to the prominent most violating pair selection and the lat-
est algorithm using second order information. For large training sets our new selection scheme is
significantly faster.

Keywords: working set selection, sequential minimal optimization, quadratic programming, sup-
port vector machines, large scale optimization

1. Introduction

We consider 1-norm support vector machines (SVM) for classification.These classifiers are usually
trained by solving convex quadratic problems with linear constraints. For large data sets, this is typ-
ically done with an iterative decomposition algorithm operating on a small workingset of variables
in every iteration. The selection of these variables is crucial for the trainingtime.

Recently, a very efficient SMO-like (sequential minimal optimizationusing working sets of
size 2, see Platt, 1999) decomposition algorithm was presented by Fan et al.(2005). The main
idea is to consider second order information to improve the working set selection. Independent
from this approach, we have developed a working set selection strategysharing this basic idea but
with a different focus, namely to minimize the number of kernel evaluations periteration. This
considerably reduces the training time of SVMs in case of large training data sets. In the following,
we present our approach, analyze its convergence properties, andpresent experiments evaluating
the performance of our algorithm. We close with a summarizing conclusion.

1.1 Support Vector Machine Learning

We consider 1-norm soft margin SVMs for classification (Vapnik, 1998;Cristianini and Shawe-
Taylor, 2000; Scḧolkopf and Smola, 2002). The learning problem at hand is defined by a set of ℓ
training examples{(x1,y1), . . . ,(xℓ,yℓ)}, where thexi are points in some input spaceX with corre-
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sponding class labelsyi =±1. A positive semi-definite kernel functionk : X ×X → R ensures the
existence of a feature Hilbert spaceF with inner product〈·, ·〉 and a mappingΦ : X → F such that
k(xi ,x j) = 〈Φ(xi),Φ(x j)〉.

The SVM algorithm constructs a real-valued, affine linear functionH on the feature space. The
corresponding functionh := H ◦Φ on the input space can be computed in terms of the kernelk with-
out the need for explicit computations inF . The zero set ofH is called the separating hyperplane,
because the SVM uses the sign of this function for class prediction. This affine linear function is
defined through maximizing the margin, that is, the desired distance of correctly classified training
patterns from the hyperplane, and reducing the sum of distances by which training examples violate
this margin. The trade-off between these two objectives is controlled by a regularization parameter
C > 0.

Training a 1-norm soft margin SVM is equivalent to solving the followingℓ-dimensional convex
quadratic problem with linear constraints forα ∈ R

ℓ:

P











maximize f (α) = vTα− 1
2αTQα

subject to yTα = z

and 0≤ αi ≤C , ∀i ∈ {1, . . . , ℓ} .

The requirementsyTα = zand 0≤ αi ≤C are referred to as equality constraint and box constraints,
respectively. In the SVM context the constantsv ∈ R

ℓ andz∈ R are fixed tov = (1, . . . ,1)T and
z = 0. The matrixQ ∈ R

ℓ×ℓ is defined asQi j := yiy jk(xi ,x j) and is positive semi-definite as the
considered kernel functionk is positive semi-definite. The vectory := (y1, . . . ,yℓ)

T , yi ∈ {+1,−1}
for 1 ≤ i ≤ ℓ, is composed of the labels of the training patternsx1, . . . ,xℓ. The set of pointsα
fulfilling the constraints is called the feasible regionR (P ) of problemP .

An optimal solutionα∗ of this problem defines the functionh(x) = ∑ℓ
i=1 α∗i yik(xi ,x)+b, where

the scalarb can be derived fromα∗ (e.g., see Cristianini and Shawe-Taylor, 2000; Schölkopf and
Smola, 2002).

1.2 Decomposition Algorithms

Making SVM classification applicable in case of large training data sets requires an algorithm for the
solution ofP that does not presuppose theℓ(ℓ+1)/2 independent entries of the symmetric matrixQ
to fit into working memory. The methods of choice in this situation are the so called decomposition
algorithms (Osuna et al., 1997). These iterative algorithms start at an arbitrary feasible pointα(0)

and improve this solution in every iterationt from α(t−1) to α(t) until some stopping condition is
satisfied. In each iteration an active set or working setB(t) ⊂ {1, . . . , ℓ} is chosen. Its inactive
complement is denoted byN(t) := {1, . . . , ℓ} \B(t). The improved solutionα(t) may differ from

α(t−1) only in the components in the working set, that is,α(t−1)
i = α(t)

i for all i ∈ N(t). Usually the
working setB(t) is limited to a fixed size|B(t)| ≤ q≪ ℓ. The working set must always be larger than
the number of equality constraints to allow for a useful, feasible step. In general a decomposition
algorithm can be formulated as follows:
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Decomposition Algorithm

α(0)← feasible starting point,t← 11

repeat2

select working setB(t)3

solve QP restricted toB(t) resulting inα(t)4

t← t +15

until stopping criterion is met6

The sub-problem defined by the working set in step 4 has the same structure as the full problem
P but with onlyq variables.1 Thus, the complete problem description fits into the available working
memory and is small enough to be solved by standard tools.

For the SVM problemP the working set must have a size of at least two. Indeed, the sequen-
tial minimal optimization (SMO) algorithm selecting working sets of sizeq = 2 is a very efficient
method (Platt, 1999). The great advantage of the SMO algorithm is the possibility to solve the sub-
problem analytically (cf. Platt, 1999; Cristianini and Shawe-Taylor, 2000; Scḧolkopf and Smola,
2002).

1.3 Working Set Selection

Step 3 is crucial as the convergence of the decomposition algorithm depends strongly on the work-
ing set selection procedure. As the selection of the working set of a given sizeq that gives the
largest improvement in a single iteration requires the knowledge of the full matrix Q, well working
heuristics for choosing the variables using less information are needed.

There exist various algorithms for this task, an overview is given in the book by Scḧolkopf and
Smola (2002). The most prominent ones share the strategy to select pairs of variables that mostly
violate the Karush-Kuhn-Tucker (KKT) conditions for optimality and can besubsumed under the
most violating pair(MVP) approach. Popular SVM packages such as SVMlight by Joachims (1999)
and LIBSVM 2.71 by Chang and Lin (2001) implement this technique. The ideaof MVP is to
select one or more pairs of variables that allow for a feasible step and moststrongly violate the
KKT conditions.

Here we describe the approach implemented in the LIBSVM 2.71 package. Following Keerthi
and Gilbert (2002) we define the sets

I := {i ∈ {1, . . . , ℓ}|yi = +1∧α(t−1)
i < C}∪{i ∈ {1, . . . , ℓ}|yi =−1∧α(t−1)

i > 0}
J := {i ∈ {1, . . . , ℓ}|yi = +1∧α(t−1)

i > 0}∪{i ∈ {1, . . . , ℓ}|yi =−1∧α(t−1)
i < C} .

Now the MVP algorithm selects the working setB(t) = {b1,b2} using the rule

b1 := argmax
i∈I

(

yi
∂ f
∂αi

(α)

)

b2 := argmin
i∈J

(

yi
∂ f
∂αi

(α)

)

.

1. For a sub-problem the constantsv∈ R
q andz∈ R in general differ from(1, . . . ,1)T and 0, respectively, and depend

on α(t−1)
i for i ∈ N(t).
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The conditionyb1
∂ f

∂αb1
(α)− yb2

∂ f
∂αb2

(α) < ε is used as the stopping criterion. In the limitε→ 0

the algorithm checks the exact KKT conditions and only stops if the solution found is optimal.
The MVP algorithm is known to converge to the optimum (Lin, 2001; Keerthi and Gilbert, 2002;
Takahashi and Nishi, 2005).

SVMlight uses essentially the same working set selection method with the important difference
that it is not restricted to working sets of size 2. The default algorithm selects 10 variables by
picking the five most violating pairs. In each iteration an inner optimization loop determines the
solution on the 10-dimensional sub-problem up to some accuracy.

Fan et al. (2005) propose a working set selection procedure which uses second order informa-
tion. The first variableb1 is selected as in the MVP algorithm. The second variable is chosen in
a way that promises the maximal value of the target functionf ignoring the box constraints. The
selection rule is

b2 := argmax
i∈J

(

f (αmax
{b1,i})

)

.

Here,αmax
{b1,i} is the solution of the two-dimensional sub-problem defined by the working set {b1, i}

at positionα(t−1) considering only the equality constraint. For this second order algorithm costly
kernel function evaluations may become necessary which can slow down the entire algorithm. These
kernel values are cached and can be reused in the gradient update step, see equation (2) in Section
2.1. Because this algorithm is implemented in version 2.8 of LIBSVM, we will refer to it as the
LIBSVM-2.8 algorithm.

The simplest feasible point one can construct isα(0) = (0, . . . ,0)T , which has the additional
advantage that the gradient∇ f (α(0)) = v= (1, . . . ,1)T can be computed without kernel evaluations.
It is interesting to note that in the first iteration starting from this point all components of the gradient
∇ f (α(0)) of the objective function are equal. Thus, the selection schemes presented above have a
freedom of choice for the selection of the first working set. In case of LIBSVM, for b1 simply the
variable with maximum index is chosen in the beginning. Therefore, the orderin which the training
examples are presented is important in the first iteration and can indeed significantly influence the
number of iterations and the training time in practice.

Other algorithms select arate certifying pair(Hush and Scovel, 2003). The allurement of this
approach results from the fact that analytical results have been derived not only about the guaranteed
convergence of the algorithm, but even about the rate of convergence(Hush and Scovel, 2003; List
and Simon, 2005). Unfortunately, in practice these algorithms seem to perform rather poorly.

1.4 Related Methods

Several new training algorithms for SVMs have been developed recently,which could be considered
for large scale data sets. One possibility to reduce the computational cost for huge data sets is to
determine only rough approximate solutions of the SVM problem. Algorithms emerged from this
line of research include the Core Vector Machine by Tsang et al. (2005)and LASVM by Bordes et al.
(2005), which have the additional advantage to produce even sparsersolutions than the exact SVM
formulation. In theory, both methods can solve the exact SVM problem with arbitrary accuracy,
but their strength lies in the very fast computation of relatively rough approximate solutions. Both
methods can profit from our working set selection algorithm presented below, as the Core Vector
Machine uses an inner SMO loop and LASVM is basically an online version ofSMO.
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The SimpleSVM algorithm developed by Vishwanathan et al. (2003) provides an alternative to
the decomposition technique. It can handle a wide variety of SVM formulations, but is limited in the
large scale context by its extensive memory requirements. In contrast, Keerthi et al. (2000) present
a geometrically inspired algorithm with modest memory requirements for the exactsolution of the
SVM problem. A drawback of this approach is that it is not applicable to the standard one-norm
slack penalty soft margin SVM formulation, which we consider here, because it requires the classes
to be linearly separable in the feature spaceF .

2. Maximum-Gain Working Set Selection

Before we describe our new working set selection method, we recall howthe quadratic problem re-
stricted to a working set can be solved (cf. Platt, 1999; Cristianini and Shawe-Taylor, 2000; Chang
and Lin, 2001). Then we compute the progress, the functional gain, thatis achieved by solving a
single sub-problem. Picking the variable pair maximizing the functional gain whileminimizing ker-
nel evaluations—by reducing cache misses when looking up rows ofQ—leads to the new working
set selection strategy.

2.1 Solving the Problem Restricted to the Working Set

In every iteration of the decomposition algorithm all variables indexed by the inactive setN are
fixed and the problemP is restricted to the variables indexed by the working setB = {b1, . . . ,bq}.
We define

αB = (αb1, . . . ,αbq)
T , QB =







Qb1b1 . . . Qbqb1
...

. . .
...

Qb1bq . . . Qbqbq






, yB = (yb1, . . . ,ybq)

T

and fix the values

vB =

(

1−∑
i∈N

Qib1αi , . . . ,1−∑
i∈N

Qibqαi

)T

∈ R
q and zB =−∑

i∈N

yiαi ∈ R

not depending onαB. This results in the convex quadratic problem (see Joachims, 1999)

PB,α











maximize fB(αB) = vT
BαB− 1

2αT
BQBαB

subject to yT
BαB = zB

and 0≤ αi ≤C ∀i ∈ B .

The valuezB can easily be determined in time linear inq, but the computation ofvB takes time
linear in q andℓ. ThenPB,α can be solved using a ready-made quadratic program solver in time
independent ofℓ.

We will deal with this problem under the assumption that we know the gradient vector

G := ∇ fB(αB) =

(

∂
∂αb1

fB(αB), . . . ,
∂

∂αbq

fB(αB)

)T

(1)

of partial derivatives offB with respect to allq variablesαb1, . . . ,αbq indexed by the working set.
In the following, we consider SMO-like algorithms using working sets of sizeq = 2. In this case
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∇f(αB)

∇f(α∗

B
)

αB

α∗

B

Figure 1: The 2-dimensional SMO sub-problem restricted to the equality constraint (solid ‘feasible’
line) and the box constraints (boundary). The point fulfilling the equality constraint with
gradient orthogonal to the feasible line is a candidate for the solution of the sub-problem.
If it is not feasible w.r.t. the box constraints it has to be moved along the line ontothe box
boundary.

the equality constraint restricts us to a line. Due to the box constraints only a bounded segment
of this line is feasible (see Figure 1). To solve the restricted problem we define the vectorwB :=
(1,−yb1yb2)

T pointing along the 1-dimensional feasible hyperplane. To find the maximum on this
line we look at the gradient∇ fB(αB) = vB−QBαB and compute the stepµB ·wB (µB ∈ R) such that
the gradient∇ fB(αB +µB ·wB) is orthogonal towB,

0 = 〈∇ fB(αB +µBwB),wB〉
= 〈vB−QBαB−µBQBwB,wB〉
= 〈∇ fB(αB)−µBQBwB,wB〉 .

Using∇ fB(αB) = (Gb1,Gb2)
T we get the solution

µmax
B = (Gb1−yb1yb2Gb2)/(Qb1b1 +Qb2b2−2yb1yb2Qb1b2) .

The corresponding point on the feasible line is denoted byαmax
B = αB +µmax

B wB. Of course,αmax
B is

not necessarily feasible. We can easily apply the box constraints toµmax
B . The new solution clipped

to the feasible line segment is denotedµ∗B. The maximum ofPB,α can now simply be expressed as
α∗B = αB +µ∗BwB.

After the solution of the restricted problem the new gradient

∇ f (α(t)) = ∇ f (α(t−1))−Q(α(t)−α(t−1)) (2)
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has to be computed. As the formula indicates this is done by an update of the former gradient.
Because∆α = α(t)−α(t−1) differs from zero in only theb1th andb2th component only the corre-
sponding two matrix rows ofQ have to be known to determine the update.

2.2 Computing the Functional Gain

Expressing the target function on the feasible line by its Taylor expansion inthe maximumαmax
B we

get

f̃B(ξ) := fB(αmax
B +ξwB)

= fB(αmax
B )− 1

2
(ξwB)TQB(ξwB)

= fB(αmax
B )−

(

1
2

wT
BQBwB

)

ξ2 .

Now it is possible to calculate the gain as

fB(α∗B)− fB(αB) = f̃B(µ∗B−µmax
B )− f̃B(0−µmax

B )

=

(

1
2

wT
BQBwB

)

((µmax
B )2− (µ∗B−µmax

B )2)

=

(

1
2

wT
BQBwB

)

(µ∗B(2µmax
B −µ∗B))

=
1
2
(Qb1b1 +Qb2b2−2yb1yb2Qb1b2)(µ

∗
B(2µmax

B −µ∗B)) . (3)

The diagonal matrix entriesQii needed for the calculation can be precomputed before the decom-
position loop starts using time and memory linear inℓ. Thus, knowing only the derivatives (1),C,
yB, andQb1b2 (and the precomputed diagonal entries) makes it possible to compute the gain inf .
Usually in an SVM implementation the derivatives are already at hand because they are required for
the optimality test in the stopping criterion. Of course we have access to the labels and the regu-
larization parameterC. The only remaining quantity needed isQb1b2, which unfortunately requires
evaluating the kernel function.

2.3 Maximum-Gain Working Set Selection

Now, a straightforward working set selection strategy is to look at allℓ(ℓ−1)/2 possible variable
pairs, to evaluate the gain (3) for every one of them, and to select the best,that is, the one with
maximum gain. It can be expected that this greedy selection policy leads to very fast convergence
measured in number of iterations needed. However, it has two major drawbacks making it advisable
only for very small problems: looking at all possible pairs requires the knowledge of the complete
matrix Q. As Q is in general too big to fit into the working memory, expensive kernel function
evaluations become necessary. Further, the evaluation of all possible pairs scales quadratically with
the number of training examples.

Fortunately, modern SVM implementations use a considerable amount of workingmemory as a
cache for the rows ofQ computed in recent iterations. In all cases, this cache contains the two rows
corresponding to the working set chosen in the most recent iteration, because they were needed for
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the gradient update (2). This fact leads to the following maximum-gain workingpair selection (MG)
algorithm:

Maximum-Gain Working Set Selection in stept

if t = 1 then1

select arbitrary working setB(1) = {b1,b2},yb1 6= yb22

else3

select pairB(t)← argmax
B={b1,b2}|b1∈B(t−1),b2∈{1,...,ℓ}

gB(α)
4

In the first iteration, usually no cached matrix rows are available. Thus, anarbitrary working set
B(1) = {b1,b2} fulfilling yb1 6= yb2 is chosen. In all following iterations, given the previous working
setB(t−1) = {b1,b2}, the gain of all combinations{b1,b} and{b2,b} (b∈ {1, . . . , ℓ}) is evaluated
and the best one is selected.

The complexity of the working set selection is linear in the number of training examples. It is
important to note that the algorithm uses second order information from the matrix cache. These
information are ignored by all existing working set selection strategies, albeit they are available for
free, that is, without spending any additional computational effort. This situation is comparable to
the improvement of using the gradient for the analytical solution of the sub-problem in the SMO
algorithm. Although the algorithm by Fan et al. (2005) considers second order information, these
are in general not available from the matrix cache.

The maximum gain working pair selection can immediately be generalized to the classof
maximum-gain working set selectionalgorithms (see Section 2.5). Under this term we want to
subsume all working set selection strategies choosing variables according to a greedy policy with
respect to the functional gain computed using cached matrix rows. In the following, we restrict
ourselves to the selection of pairs of variables as working sets.

In some SVM implementations, such as LIBSVM, the computation of the stopping condition
is done using information provided during the working set selection. LIBSVM’s MVP algorithm
stops if the sum of the violations of the pair is less than a predefined constantε. The simplest way
to implement a roughly comparable stopping condition in MG is to stop if the valueµ∗B defining the
length of the constrained step is smaller thanε.

It is worth noting that the MG algorithm does not depend on the caching strategy. The only
requirement for the algorithm to efficiently profit from the kernel cache isthat the cache always
contains the two rows of the matrixQ that correspond to the previous working set. This should be
fulfilled by every efficient caching algorithm, because recently active variables have a high proba-
bility to be in the working set again in future iterations. That is, the MG algorithm does not require
a change of the caching strategy. Instead, it improves the suitability of all caching strategies that at
least store the information most recently used.

2.4 Hybrid Maximum-Gain Working Set Selection

The MG algorithm can be used in combination with other methods. In order to inherit the conver-
gence properties from MVP we introduce thehybrid maximum gain(HMG) working set selection
algorithm. The algorithm is defined as follows:
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Hybrid Maximum-Gain Working Set Selection in stept, 0< η≪ 1

if t = 1 then1

select arbitrary working setB(1) = {b1,b2},yb1 6= yb22

else3

if ∀i ∈ B(t−1) : αi ≤ η ·C∨αi ≥ (1−η) ·C then4

selectB(t) according to MVP5

else6

select pairB(t)← argmax
B={b1,b2}|b1∈B(t−1),b2∈{1,...,ℓ}

gB(α)
7

In the first iteration, usually no cached matrix rows are available. Thus, anarbitrary working set
{b1,b2} fulfilling yb1 6= yb2 is selected. If in iterationt > 1 both variables indexed by the previous
working setB(t−1) = {b1,b2} are no more thanη ·C, 0 < η≪ 1, from the bounds, then the MVP
algorithm is used. Otherwise the working set is selected according to MG. Figure 2 illustrates
the HMG decision rule. The stopping condition tested by the decomposition algorithm is the one

∇

0

Cη

C(1− η)

C

0 Cη C(1− η) C

αb1

αb2

Figure 2: Illustration of the HMG algorithm. The plain defined by the previous working setB(t−1) =
{b1,b2} is drawn. If the algorithm ended up in one of the gray corners then the MVP
algorithm is used in iterationt.

from the working set selection algorithm used in the current iteration. Thatis, the decomposition
algorithm stops ifyb1

∂ f
∂αb1

(α)− yb2
∂ f

∂αb2
(α) or µ∗B falls below the thresholdε depending on whether

MVP or MG has been selected.
The HMG algorithm is a combination of MG and MVP using MVP only in special situations.

In our experiments, we setη = 10−8. This choice is arbitrary and makes no difference toη = 0 in
nearly all cases. In practice, in almost all iterations MG will be active. Thus, this algorithm inherits
the speed of the MG algorithm. It is important to note thatη is not a parameter influencing the
convergence speed (as long as the parameter is small) and is therefore not subject to tuning.

The technical modification ensures the convergence of the algorithm. This isformally expressed
by the following theorem.

1445



GLASMACHERS AND IGEL

Theorem 1 We consider problemP . Let (α(t))t∈N be a sequence of feasible points produced by
the decomposition algorithm using the HMG policy. Then, the limit point of every convergent sub-
sequence is optimal forP .

The proof can be found in Section 3.

2.5 Generalization of the Algorithm

In the following, we discuss some of the potential variants of the basic MG or HMG algorithm.
It is possible to use a larger set of precomputed rows, say, 10, for the working set selection. In

the extreme case we can run through all cached rows ofQ. Then the working set selection algorithm
becomes quite time consuming in comparison to the gradient update. As the numberof iterations
does not decrease accordingly, as we observed in real world applications, we recommend to use only
the two rows of the matrix from the previous working set. We refer to Section 4.6 for a comparison.

A small change speeding up the working set selection is fixing one element ofthe working set in
every iteration. When alternating the fixed position, every element is used twotimes successively.
Only ℓ− 2 pairs have to be evaluated in every iteration. Though leading to more iterations this
policy can speed up the MG algorithm for small problems (see Section 4.6).

The algorithm can be extended to compute the gain for tuples of sizeq > 2. It is a severe
disadvantage that such sub-problems can not be solved analytically and an iterative solver has to
be used for the solution of the sub-problem. Note that this becomes necessary also for every gain
computation during the working set selection. To keep the complexity of the working set selection
linear in ℓ only one element new to the working set can be evaluated. Due to this limitation this
method becomes even more cache friendly. The enlarged working set sizemay decrease the number
of iterations required, but at the cost of the usage of an iterative solver. This should increase the
speed of the SVM algorithm only on large problems with extremely complicated kernels, where
the kernel matrix does not fit into the cache and the kernel evaluations in every iteration take much
longer than the working set selection.

3. Convergence of the Algorithms

In this section we discuss the convergence properties of the decompositionalgorithm using MG and
HMG working set selection. First, we give basic definitions and prove a geometrical criterion for
optimality. Then, as a motivation and a merely theoretical result, we show some properties of the
gain function and prove that the greedy strategy w.r.t. the gain convergesto an optimum. Returning
to our algorithm, we give a counter example proving that there exist scenarios where pure MG
looking at pairs of variables may stop after finitely many iterations without reaching an optimum.
Finally, we prove that HMG converges to an optimum.

3.1 Prerequisites

In our convergence analysis, we consider the limitε→ 0, that is, the algorithms only stop if the
quantities checked in the stopping conditions vanish. We will discuss the convergence of the infinite
sequence(α(t))t∈N produced by the decomposition algorithm. If the decomposition algorithm stops
in some iterationt0 at α(t0−1), then by convention we setα(t)← α(t0−1) for all t ≥ t0. The definition
of convergence used here directly implies the convergence in finite time to a solution arbitrarily
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close to the optimum considered in other proofs (Keerthi and Gilbert, 2002;Takahashi and Nishi,
2005).

The Bolzano-Weierstraß property states that every sequence on a compact set contains a con-
vergent sub-sequence. Because of the compactness ofR (P ) the sequence(α(t))t∈N always con-
tains a convergent sub-sequence denoted(α(t))t∈S with limit point α(∞). From the construction
of the decomposition algorithm it follows that the sequence( f (α(t)))t∈N increases monotonically.
The compactness ofR (P ) implies that it is bounded. It therefore converges and its limitf (α(∞))
does not depend on the choice of the convergent sub-sequence. The gain sequencegB(t)(α(t−1)) =
f (α(t))− f (α(t−1)) is non-negative and converges to zero. It will be the aim of this section to prove
thatα(∞) is the maximizer off within the feasible regionR (P ) if the decomposition algorithm is
used with HMG working set selection.

List and Simon (2004) introduced the (technical) restriction that all principal 2×2 minors ofQ
have to be positive definite. For Theorem 4, which was shown by List andSimon (2004), and the
proof of Lemma 9 (and thus of Theorem 1) we adopt this requirement. The assumption is not very
restrictive because it does not require the whole matrixQ to be positive definite. If in contrastQ is
indeed positive definite (for example for Gaussian kernels with distinct examples) then this property
is inherited by the principal minors.2

If we fix any subset of variables ofP at any feasible pointα∈ R (P ) then the resulting restricted
problem is again of the formP . By analytically solving the problem restricted to a working setB
we can compute the gaingB(α). The setVP := {α ∈ R

ℓ | 〈y,α〉 = z} is the hyperplane defined by
the equality constraint. It contains the compact convex feasible regionR (P ). The set of possible
working sets is denoted byB (P ) :=

{

B
∣

∣B⊂ {1, . . . , ℓ}, |B|= 2
}

. We call two working setsB1,B2∈
B (P ) related ifB1∩B2 6= /0. With a working setB = {b1,b2}, b1 < b2, we associate the vectorwB

with components(wB)b1 = 1, (wB)b2 =−yb1yb2 and(wB)i = 0 otherwise. It points into the direction
in which α can be modified using the working set.

If a feasible pointα is not optimal then there exists a working setB on which it can be improved.
This simply follows from the fact that there are working set selection policiesbased on which the
decomposition algorithm is known to converge (Lin, 2001; Keerthi and Gilbert, 2002; Fan et al.,
2005; Takahashi and Nishi, 2005). In this case the gaingB(α) is positive.

Next, we give a simple geometrically inspired criterion for the optimality of a solution.

Lemma 2 We consider the problemP . For a feasible pointα0 the following conditions are equiv-
alent:

1. α0 is optimal.

2. 〈(α−α0),∇ f (α0)〉 ≤ 0 for all α ∈ R (P ).

3. 〈µ·wB,∇ f (α0)〉 ≤ 0 for all µ ∈ R, B∈ B (P ) fulfilling α0 +µ·wB ∈ R (P ).

Proof The proof is organized as(1)⇒ (2)⇒ (3)⇒ (1). We consider the Taylor expansion

f (α) = f (α0)+ 〈(α−α0),∇ f (α0)〉−
1
2
(α−α0)

TQ(α−α0)

2. Usually there is only a zero set of training data sets that violate this condition. This is obviously true if the input
space is an open subset of someR

n and the distribution generating the training data has a density w.r.t. the Lebesgue
measure.
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of f in α0. Let us assume that(2) does not hold, that is, there existsα ∈ R (P ) such thatq :=
〈(α−α0),∇ f (α0)〉> 0. From the convexity ofR (P ) it follows thatαµ := µα+(1−µ)α0 ∈ R (P )
for µ∈ [0,1]. We further setr := 1

2(α−α0)
TQ(α−α0)≥ 0 and have〈(αµ−α0),∇ f (α0)〉= µqand

1
2(αµ−α0)

TQ(αµ−α0) = µ2r. We can choseµ0 ∈ (0,1] fulfilling µ0q > µ2
0r. Then it follows

f (αµ0) = f (α0)+ 〈(αµ0−α0),∇ f (α0)〉−
1
2
(αµ0−α0)

TQ(αµ0−α0)

= f (α0)+µ0q−µ2
0r

> f (α0) ,

which proves thatα0 is not optimal. Thus(1) implies(2). Of course (3) follows from (2). Now we
assumeα0 is not optimal. From the fact that there are working set selection policies forwhich the
decomposition algorithm converges to an optimum it follows that there exists a working setB on
which α0 can be improved, which meansgB(α0) > 0. Let α1 denote the optimum on the feasible
line segment withinR (P ) written in the formα1 = α0 +µ·wB. Using the Taylor expansion above
at α1 and the positive semi-definiteness ofQ we get

f (α1) = f (α0)+ 〈(α1−α0),∇ f (α0)〉−
1
2
(α1−α0)

TQ(α1−α0) > f (α0)

⇔ 〈(α1−α0),∇ f (α0)〉>
1
2
(α1−α0)

TQ(α1−α0)≥ 0

⇒ 〈µ·wB,∇ f (α0)〉> 0

showing that (3) implies (1).

α

α

αb1
αb1

αb2
αb2

Figure 3: This figure illustrates the optimality condition given in Lemma 2 for one working set. On
the left the case of two free variablesαb1 andαb2 is shown, while on the right the variable
αb1 is at the boundC. The fat lines represent the feasible region for the 2-dimensional
problem induced by the working set. The arrows show the possible gradient directions
not violating the optimality conditions.
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3.2 Convergence of the Greedy Policy

Before we look at the convergence of the MG algorithm, we use Theorem 4by List and Simon
(2004) to prove the convergence of the decomposition algorithm using the greedy policy with respect
to the gain for the working set selection. For this purpose we will need the concept of a 2-sparse
witness of suboptimality.

Definition 3 (2-sparse witness of suboptimality)A family of functions(CB)B∈B (P )

CB : R (P )→ R
≥0

fulfilling the conditions
(C1) CB is continuous,
(C2) if α is optimal forPB,α, then CB(α) = 0, and
(C3) if a feasible pointα is not optimal forP , then there exists B such that CB(α) > 0
is called a2-sparse witness of suboptimality(List and Simon, 2004).

Every 2-sparse witness of suboptimality induces a working set selection algorithm by

B(t) := argmax
B∈B (P )

(

CB(α(t−1))
)

.

List and Simon (2004) call this the induced decomposition algorithm. Now we canquote a general
convergence theorem for decomposition methods induced by a 2-sparsewitness of suboptimality:3

Theorem 4 (List and Simon, 2004)We consider the problemP and a 2-sparse witness of subop-
timality (CB)B∈B (P ). Let (α(t))t∈N denote a sequence of feasible points generated by the decompo-

sition method induced by(CB) and(α(t))t∈S a convergent sub-sequence with limit pointα(∞). Then,
the limit point is optimal forP .

The following lemma allows for the application of this theorem.

Lemma 5 The family of functions(gB)B∈B (P ) is a 2-sparse witness of suboptimality.

Proof Property(C2) is fulfilled directly per construction. Property(C3) follows from the fact
that there exist working set selection strategies such that the decompositionmethod converges (Lin,
2001; Takahashi and Nishi, 2005; List and Simon, 2005). It is left to prove property(C1). We fix a
working setB = {b1,b2} and the corresponding direction vectorwB. Choosing the working setB is
equivalent to restricting the problem to this direction. We define the affine linear function

ϕ : VP → R , α 7→ ∂
∂µ

∣

∣

∣

∣

µ=0
f (α+µwB)

and the ((ℓ−2)-dimensional) hyperplaneH := {α∈VP |ϕ(α) = 0}within the ((ℓ−1)-dimensional)
vector spaceVP . This set always forms a hyperplane becauseQwB 6= 0 is guaranteed by the as-
sumption that all 2×2 minors orQ are positive definite. This hyperplane contains the optima off
restricted to the linesα+R ·wB considering the equality constraint but not the box constraints. We

3. Theorem 1 in List and Simon (2004) is more general as it is not restricted to working sets of size two.
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introduce the mapπH projectingVP ontoH alongwB, that is the projection mapping the whole line
α+R ·wB onto its unique intersection withH. The hyperplaneH contains the compact subset

H̃ :=
{

α ∈ H
∣

∣α+R ·wB∩R (P ) 6= /0
}

= πH(R (P ))

on which we define the function

δ : H̃→ R , α 7→ argmin
{µ∈R |α+µwB∈R (P )}

|µ| .

The termδ(πH(α))wB describes the shortest vector movingα ∈ H̃ to the feasible region on the line
alongwB. On H̃ \R (P ) it parameterizes the boundary of the feasible region (see Figure 4). These
properties enable us to describe the optimal solution of the sub-problem induced by the working
set. Starting fromα ∈ R (P ) the optimumπH(α) is found neglecting the box constraints. In case
this point is not feasible it is clipped to the feasible region by moving it byδ(πH(α))wB. Thus,
per construction it holdsgB(α) = f (πH(α)+δ(πH(α))wB)− f (α). The important point here is that
convexity and compactness ofR (P ) guarantee thatδ is well-defined and continuous. We conclude
thatgB is continuous as it is a concatenation of continuous functions.

R(P)

H

H̃

wB

Figure 4: The feasible regionR (P ) within the (ℓ−1)-dimensional vector spaceVP is illustrated.
Theℓ-dimensional box constraints are indicated in light gray. The thin line represents the
hyperplaneH containing the compact subsetH̃ drawn as a fat line segment. The lengths
of the dotted lines indicate the absolute values of the functionδ on H̃. The functionδ
vanishes within the intersection ofH̃ andR (P ).

Corollary 6 We consider problemP . Let (α(t))t∈N be a sequence of feasible points produced by
the decomposition algorithm using the greedy working set selection policy. Then, every limit point
α(∞) of a converging sub-sequence(α(t))t∈S is optimal forP .

Proof For a feasible pointα and a working setB the achievable gain is computed asgB(α). Thus, the
decomposition method induced by the family(gB) selects the working set resulting in the maximum
gain, which is exactly the greedy policy. Lemma 5 and Theorem 4 complete the proof.

It is straightforward to use the more general version of the theorem fromList and Simon (2004) to
extend the construction for working sets limited in size to someq > 2.
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3.3 Convergence of the MG Algorithm

Theorem 7 Given a feasible pointα(t) for P and a previous working set B(t−1) of size 2 as a starting
point. Then, in general, the MG algorithm may get stuck, that means, it maystop after finitely many
iterations without reaching an optimum.

Proof As a proof we give a counter example. The MG algorithm may get stuck before reaching the
optimum because it is restricted to reselect one element of the previous working set. Forℓ < 4 this
poses no restriction. Thus, to find a counter example, we have to use someℓ≥ 4. Indeed, using four
training examples is already sufficient. We considerP for ℓ = 4 with the values

Q =









2
√

3 1
√

3√
3 4

√
3 3

1
√

3 2
√

3√
3 3

√
3 4









, C =
1
10

, y =









−1
−1
+1
+1









.

The matrixQ is positive definite with eigenvalues(9,1,1,1). We assume the previous working set
to beB(1) = {1,3} resulting in the pointα(1) = (C,0,C,0)T . Note that this is the result of the first
iteration starting fromα(0) = (0,0,0,0) greedily choosing the working setB(1) = {1,3}. It is thus
possible that the decomposition algorithm reaches this state in the SVM context. We compute the
gradient

∇ f (α(1)) = 1−Qα(1) = (
7
10

,1−
√

3
5

,
7
10

,1−
√

3
5

)T ≈ (0.7,0.65,0.7,0.65)T

(which is orthogonal toy). Using Lemma 2 we compute that the sub-problems defined by all work-
ing sets with exceptionB= {2,4} are already optimal. The working setsB(1) andB have no element
in common. Thus, the maximum gain working pair algorithm cannot selectB(2) = B and gets stuck
although the pointα(1) is not optimal. From Figure 5 we can see that the same example works for
all points on the edgeα(1) = (C,ν,C,ν) for ν ∈ [0,C). Lemma 8 states that indeed the edges of the
octahedron are the only candidates for the MG algorithm to get stuck.

3.4 Convergence of the HMG Algorithm

The above result makes it advisable to use a different algorithm whenever MG is endangered to
get stuck. For this purpose the HMG algorithm was designed. In this sectionwe prove that this
modification indeed guarantees convergence to an optimum.

The following lemma deals with the specific property of the MG algorithm to reselect one
element of the working set, that is, to select related working sets in consecutive iterations. It is a
major building block in the proof of the main result stated in Theorem 1.

Lemma 8 We considerP , a current non-optimal feasible pointα and a previous working set B1 =
{b1,b2}. If at least one of the variablesαb1 and αb2 is free (not at the bounds0 or C) then there
exists a working set B2 related to B1 such that positive gain gB2(α) > 0 can be achieved.

Proof We show that no counter example exists. The idea is to reduce the number of possible
scenarios to a finite number and to inspect each case individually.
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C(1

α(0)

α(1) α(2)

∇f(α(1))

{1, 3}

{2, 4}

Figure 5: Illustration of the counter example. The feasible regionR (P ) forms an octahedron within
the 3-dimensional spaceVP . The possible directions of movement using working sets of
size 2 are parallel to the edges of the octahedron. The SVM algorithm startsin α(0) =
(0,0,0,0)T . During the first two iterations the greedy policy reaches the pointsα(1) =
(C,0,C,0)T andα(2) = (C,C,C,C)T . The MG algorithm gets stuck after the first iteration
at α(1). The plane spanned by the directions(1,0,1,0)T and(0,1,0,1)T defined by the
working sets{1,3} and{2,4} respectively, is drawn. The gray lines are level sets of the
target functionf within this plane. In the pointα(1) the gradient∇ f (α(1)) (which lies
within the plane) has an angle of less thanπ/2 only with the horizontally drawn edge
corresponding to the working set{2,4}.

For ℓ≤ 3 the condition thatB1 andB2 are related is no restriction and we are done. In the main
part of the proof, we consider the 4-dimensional case and setα = (α1,α2,α3,α4)

T andB1 = {1,2}
with free variableα1 ∈ (0,C). In the end, we will reduce the general case toℓ≤ 4.

Let us have a look at potential counter examples. A feasible pointα is a counter example if it is
not optimal and does not allow for positive gain on any working set relatedto B1. These conditions
are equivalent to

gB(α)

{

= 0 for B 6= {3,4}
> 0 for B = {3,4} .

(4)

Looking at the six possible working setsB we observe from Lemma 2 that we have to distinguish
three cases for sub-problems induced by the working sets:

• The current pointα is at the bounds for a variable indexed byB and the pointsα + µ ·
wB lie within R (P ) only for µ≤ 0. Then Lemma 2 states thatα can only be optimal if
〈wB,∇ f (α)〉 ≥ 0.
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• The current pointα is at the bounds for a variable indexed byB and the pointsα + µ ·
wB lie within R (P ) only for µ≥ 0. Then Lemma 2 states thatα can only be optimal if
〈wB,∇ f (α)〉 ≤ 0.

• The current pointα is not at the bounds for both variables indexed byB. Thus, there are
positive and negative values forµ such thatα + µ ·wB lies within R (P ). From Lemma 2 it
follows thatα can only be optimal if〈wB,∇ f (α)〉= 0.

We conclude that the signs (< 0, = 0, or> 0) of the expressions

〈wB,∇ f (α)〉= ∂ f
∂αb′0

(α)−yb′0
yb′1

∂ f
∂αb′1

(α) for B = {b′0,b′1} ⊂ {1,2,3,4} (5)

and the knowledge about which variables are at which bound are sufficient for the optimality check.
Further, it is not important which exact value a free variable takes. The possible combinations of
vectorswB occurring in equation (5) are generated by the label vectory. Combining these insights,
we define the maps

sign :R→{−1,0,+1}, x 7→











−1 if x < 0

0 if x = 0

+1 if x > 0

bound :[0,C]→{0,
C
2

,C}, x 7→











0 if x = 0
C
2 if 0 < x < C

C if x = C

and a mapping of all possible counter examples onto a finite number of cases

Ψ : R (P )×R
4×{−1,+1}4→{−1,0,+1}6×{0,C/2,C}3×{−1,+1}4,




α
∇ f (α)

y



 7→





bound(αi), i ∈ {2,3,4}
sign(〈wB,∇ f (α)〉), B∈ B (P )

y



 .

A possible counter example is fully determined by a candidate pointα ∈ R (P ), the gradientG =
∇ f (α), and the label vectory. As the parameters of problemP are not fixed here, the equality
constraint can be ignored, because every point fulfilling the box constraints can be made feasible
by shifting the equality constraint hyperplane. The relationΨ(α,G,y) = Ψ(α̃,G̃, ỹ) divides the
pre-image ofΨ into equivalence classes. For each element of one equivalence class the check of
condition (4) using Lemma 2 is the same. Formally, we have

Ψ(α,G,y) = Ψ(α̃,G̃, ỹ)

⇒condition (4) holds for(α,G,y) if and only if condition (4) holds for(α̃,G̃, ỹ) .

It follows that any finite set containing representatives of all the non-empty equivalence classes
is sufficient to check for the existence of a counter example in the infinite pre-image ofΨ.4 The
checking can be automated using a computer program. A suitable program can be downloaded from
the online appendix

4. The functionΨ itself helps designing such a set of representatives of the non-empty classes. For every fixedα andy
the set{−4,−3, . . . ,3,4}4 ⊂ R

4 is sufficient to generate all possible combinations of sign(〈wB,∇ f (α)〉), B∈ B (P ).
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http://www.neuroinformatik.ruhr-uni-bochum.de/PEOPLE/igel/wss/ .

The outcome of the program is that there exists no counter example.
It is left to prove the lemma forℓ > 4. This case can be reduced to the situations already

considered. Becauseα is not optimal there exists a working setB∗ with gB∗(α) > 0. The set
W := B1∪B∗ defines an at most 4-dimensional problem. The proof above shows that there exists a
working setB⊂W with the required properties.

Following List and Simon (2004), one can bound‖α(t)−α(t−1)‖ in terms of the gain:

Lemma 9 We consider problemP and a sequence(α(t))t∈N produced by the decomposition algo-
rithm. Then, the sequence

(

‖α(t)−α(t−1)‖
)

t∈N
converges to0.

Proof The gain sequence
(

gB(t)(α(t−1))
)

t∈N
converges to zero as it is non-negative and its sum is

bounded from above. The inequality

gB(t)(α(t−1))≥ σ
2
‖α(t)−α(t−1)‖2 ⇔ ‖α(t)−α(t−1)‖ ≤

√

2
σ

gB(t)(α(t−1))

holds, whereσ denotes the minimal eigenvalue of the 2×2 minors ofQ. By the technical assump-
tion that all principal 2×2 minors ofQ are positive definite we haveσ > 0.

Before we can prove our main result we need the following lemma.

Lemma 10 We consider problemP , a sequence(α(t))t∈N produced by the decomposition algorithm
and the corresponding sequence of working sets (B(t))t∈N. Let the index set S⊂ N correspond to a
convergent sub-sequence(α(t))t∈S with limit point α(∞).

(i) Let

I :=
{

B∈ B (P )
∣

∣ |{t ∈ S|B(t) = B}|= ∞
}

denote the set of working sets selected infinitely often. Then, no gain can beachieved in
the limit pointα(∞) using working sets B∈ I.

(ii) Let

R :=
{

B∈ B (P )\ I
∣

∣ B is related to somẽB∈ I
}

.

denote the set of working sets related to working sets in I. If the decomposition algorithm
chooses MG working sets, no gain can be achieved in the limit pointα(∞) using working
sets B∈ R.

This is obvious from equation (5) and the fact that these cases cover different as well as equal absolute values for
all components together with all sign combinations. Hence, it is sufficient tolook at these 94 gradient vectors, or in
other words, the map from{−4,−3, . . . ,3,4}4 to sign(〈wB,∇ f (α)〉), B∈ B (P ) is surjective. The mapping of the 33

pointsα1 = C/2, αi ∈ {0,C/2,C} for i ∈ {2,3,4} onto bound(αi), i ∈ {2,3,4} is bijective. Of course the identity
mapy 7→ y of the 24 possible labels is bijective, too. Now we have constructed a set of 94 ·33 ·24 = 2,834,352 cases.
If there is no counter example among them, we know that no counter example exists in the whole infinite set.
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Proof First, we prove(i). Let us assume these existsB∈ I on which positive gain can be achieved
in the limit point α(∞). Then we haveε := gB(α(∞)) > 0. BecausegB is continuous there exists
t0 such thatgB(α(t)) > ε/2 for all t ∈ S, t > t0. BecauseB is selected infinitely often it follows
f (α(∞)) = ∞. This is a contradiction to the fact thatf is bounded onR (P ).

To prove(ii) we define the index setS(+1) := {t +1| t ∈ S}. Using Lemma 9 we conclude that
the sequence(α(t))t∈S(+1)

converges toα(∞). Let us assume that the limit point can be improved us-

ing a working setB∈Rresulting inε := gB(α(∞)) > 0. BecausegB is continuous, there existst0 such
that it holdsgB(α(t)) > ε/2 for all t ∈S(+1), t > t0. By the convergence of the sequence( f (α(t)))t∈N

we findt1 such that for allt > t1 it holdsgB(t)(α(t−1)) < ε/2. The definition ofI yields that there is a
working setB̃∈ I related toB which is chosen in an iterationt > max{t0, t1}, t ∈S. Then in iteration
t +1∈S(+1) due to the MG policy the working setB (or another working set resulting in larger gain)
is selected. We conclude that the gain achieved in iterationt +1 is greater and smaller thanε/2 at
the same time which is a contradiction. Thus,α(∞) can not be improved using a working setB∈R.

Proof of Theorem 1First we consider the case that the algorithm stops after finitely many iterations,
that it, the sequence(α(t))t∈N becomes stationary. We again distinguish two cases depending on the
working set selection algorithm used just before the stopping condition is met.In case the MVP
algorithm is used the stopping condition checks the exact KKT conditions. Thus, the point reached
is optimal. Otherwise Lemma 8 asserts the optimality of the current feasible point.

For the analysis of the infinite case we distinguish two cases again. If the MG algorithm is used
only finitely often then we can simply apply the convergence proof of SMO (Keerthi and Gilbert,
2002; Takahashi and Nishi, 2005). Otherwise we consider the set

T := {t ∈ N |MG is used in iterationt}

of iterations in which the MG selection is used. The compactness ofR (P ) ensures the existence of
a subsetS⊂ T such that the sub-sequence(α(t))t∈S converges to some limit pointα(∞). We define
the sets

I :=
{

B∈ B (P )
∣

∣ |{t ∈ S|B(t) = B}|= ∞
}

R :=
{

B∈ B (P )\ I
∣

∣ B is related to somẽB∈ I
}

and conclude from Lemma 10 thatα(∞) can not be improved using working setsB∈ I ∪R. Now let
us assume that the limit point can be improved using any other working set. Then Lemma 8 states
that all coordinatesα(∞)

i for all i ∈ B∈ I are at the bounds. By the definition of the HMG algorithm
this contradicts the assumption that the MG policy is used on the whole sequence(α(t))t∈S. Thus,
the limit pointα(∞) is optimal forP . From the strict increase and the convergence of the sequence
( f (α(t)))t∈N it follows that the limit point of every convergent sub-sequence(α(t))t∈S̃ is optimal.

4. Experiments

The main purpose of our experiments is the comparison of different working set selection policies
for large scale problems. This comparison focuses on SMO-like algorithms.The experiments were
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carried out using LIBSVM (Chang and Lin, 2001). We implemented our HMGselection algorithm
within LIBSVM to allow for a direct comparison. The modified source code ofLIBSVM is given
in the online appendix

http://www.neuroinformatik.ruhr-uni-bochum.de/PEOPLE/igel/wss/ .

Three SMO-like working set selection policies were compared, namely the LIBSVM-2.71 MVP
algorithm, the second order LIBSVM-2.8 algorithm, and HMG working set selection.

To provide a baseline, we additionally compared these three algorithms to SVMlight (Joachims
1999) with a working set of size ten. In these experiments we used the same configuration and
cache size as for the SMO-like algorithms. It is worth noting that neither the iteration count nor
the influence of shrinking are comparable between LIBSVM and SVMlight. As we do not want
to go into details on conceptual and implementation differences between the SVMpackages, we
only compared the plain runtime for the most basic case as it most likely occurs inapplications.
Still, as the implementations of the SMO-like algorithms and SVMlight differ, the results have to be
interpreted with care.

We consider 1-norm soft margin SVM with radial Gaussian kernel functions

kσ(xi ,x j) := exp

(

−‖xi−x j‖2
2σ2

)

(6)

with kernel parameterσ and regularization parameterC. If not stated otherwise, the SVM was given
40 MB of working memory to store matrix rows. The accuracy of the stopping criterion was set to
ε = 0.001. This value is small compared to the components of the gradient of the target function in
the starting positionα(0). The shrinking heuristics for speeding up the SVM algorithm is turned on,
see Section 4.4. Shrinking may cause the decomposition algorithm to require more iterations, but
in most cases it considerably saves time. All of these settings correspond to the LIBSVM default
configuration. If not stated otherwise, the hyperparametersC andσ were fixed to values giving well
generalizing classifiers. These were determined by grid search optimizing the error on independent
test data.

For the determination of the runtime of the algorithms we used a 1533 MHz AMD Athlon-XP
system running Fedora Linux.

In most experiments we measured both the number of iterations needed and theruntime of
the algorithm.5 Although the runtime depends highly on implementation issues and programming
skills, this quantity is in the end the most relevant in applications.

The comparison of the working set selection algorithms involves one major difficulty: The
stopping criteria are different. It is in general not possible to compute the stopping criterion of one

5. We did not investigate the classification performance of the different approaches. As we are comparing algorithms
converging to the exact solution of the SVM problem and the stopping criteriaare chosen appropriately, we can
expect that the machines trained using the different methods are equallywell suited for classification. Due to the
finite accuracy, the direction from which the optimum is approached, the exact path taken by the optimization, and
the stopping criterion influence the value of the final solution. Thus, small differences in classification performance
may occur between the algorithms. In contrast to the comparison of rough approximation methods or completely
distinct types of classifiers, these effects are highly random, as they can depend on the presence of single input
patterns or even on the order in which the training examples are presented. Another well known effect is that the
classification accuracy measured on a test set does not necessarily increase with the solution accuracy. Thus, besides
the prior knowledge that the differences are negligible, a comparisons of the classification accuracy is not meaningful
in this context.
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algorithm in another without additional computational effort. As the comparability of the runtime
depends on an efficient implementation, each algorithm in the comparisons uses its own stopping
criterion. The computation of the final value of the objective function reveals that the two stopping
conditions are roughly comparable (see Section 4.2 and Table 2).

As discussed in Section 1.3, the order in which the training examples are presented influences
the initial working set and thereby considerably the speed of optimization. Whether a certain or-
dering leads to fast or slow convergence is dependent on the working set selection method used.
Therefore, we always consider the median over 10 independent trials with different initial working
sets if not stated otherwise. In each trial the different algorithms started from the same working
set. Whenever we claim that one algorithm requires less iterations or time theseresults are highly
significant (two-tailed Wilcoxon rank sum test,p < 0.001).

Besides the overall performance of the working set selection strategies we investigated the influ-
ence of a variety of conditions. The experiments compared different values of the kernel parameter
σ, the regularization parameterC, and the cache size. Further, we evaluated the performance with
LIBSVM’s shrinking algorithm turned on or off. Finally, we compared variants of the HMG strategy
using different numbers of cached matrix rows for the gain computation.

4.1 Data Set Description

Four benchmark problems were considered. The 60,000 training examplesof theMNIST handwrit-
ten digit database (LeCun et al., 1998) were split into two classes containingthe digits{0,1,2,3,4}
and{5,6,7,8,9}, respectively. Every digit is represented as a 28×28 pixel array making up a 784
dimensional input space.

The next two data sets are available from the UCI repository (Blake and Merz, 1998). The
spam-database contains 4,601 examples with 57 features extracted from e-mails. There are1,813
positive examples (spam) and 2,788 negative ones. We transformed every feature to zero mean and
unit variance. Because of the small training set, HMG is not likely to excel atthis benchmark.

The connect-4 opening database contains 67,557 game states of the connect-4 game after 8
moves together with the labels ‘win’, ‘loose’, or ‘draw’. For binary classification the ‘draw’ ex-
amples were removed resulting in 61,108 data points. Every situation was transformed into a 42-
dimensional vector containing the entries 1, 0, or−1 for the first player, no player, or the second
player occupying the corresponding field, respectively. The representation is sparse as in every vec-
tor only 8 components are non-zero. The data were split roughly into two halves making up training
and test data. For the experiments only the training data were used.

The face data set contains 20,000 positive and 200,000 negative training examples.Every ex-
ample originates from the comparison of two face images. Two pictures of the same person were
compared to generate positive examples, while comparisons of pictures of different persons make
up negative examples. The face comparison is based on 89 similarity features. These real-world
data were provided by the Viisage Technology AG and are not available to the public.

Training an SVM using the large data setsface andMNIST takes very long. Therefore these two
problems were not considered in all experiments.

We determined appropriate values forσ andC for each benchmark problem, see Table 1. We did
coarse grid searches. The parameter combinations resulting in the smallest errors on corresponding
test sets were chosen.
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We want to pay special attention to the size of the kernel matrices in comparisonto the cache
size (see Table 1). The data sets cover a wide range of kernel matrix sizes which fit into the cache
by nearly 50% to only 0.02%. It is a hopeless approach to adapt the cache size in order to fit larger
parts of the kernel matrix into working memory. Because the space requirement for the kernel
matrix grows quadratically withℓ, large scale real world problems exceed any physically available
cache.

data set dim. ℓ cache σ C SV BSV
spam-database 57 4,601 47.2 % 10 50 18.5 % 11.7 %
connect-4 42 30,555 1.07 % 1.5 4.5 27.0 % 7.7 %
MNIST 784 60,000 0.28 % 3,500 50 10.5 % 4.6 %
face 89 220,000 0.02 % 3 5 2.6 % 1.2 %

Table 1: SVM parameters used in the comparison together with solution statistics.The column
“dim.” gives the input space dimension whileℓ is the number of training examples. The
“cache”-column shows how much of the kernel matrix fits into the kernel cache. The
fractions of support vectors and bounded support vectors are denoted by “SV” and “BSV”.
These percentage values might slightly differ between the algorithms because of the finite
accuracy of the solutions.

4.2 Comparison of Working Set Selection Strategies

We trained SVMs on all data sets presented in the previous section. We monitored the number
of iterations and the time until the stopping criterion was met. The results are shown in Table 2.
The final target function valuesf (α∗) are also presented to prove the comparability of the stopping
criteria (for the starting state it holdsf (α(0)) = 0). Indeed, the final values are very close and which
algorithm is most accurate depends on the problem.

It becomes clear from the experiments that the LIBSVM-2.71 algorithm performs worst. This
is no surprise because it does not take second order information into account. In the following we
will concentrate on the comparison of the second order algorithms LIBSVM-2.8 and HMG.

As the smallest problem considered thespam-database consists of 4,601 training examples.
The matrixQ requires about 81 MB of working memory. The cache size of 40 MB shouldbe
sufficient when using the shrinking technique. The LIBSVM-2.8 algorithmprofits from the fact
that the kernel matrix fits into the cache after the first shrinking event. It takes less iterations and (in
the mean) the same time per iteration as the HMG algorithm and is thus the fastest in theend.

In theconnect-4 problem the kernel matrix does not fit into the cache even if shrinking is used
to reduce the problem size. Thus, even in late iterations kernel evaluations can occur. Here, HMG
outperforms the old and the new LIBSVM algorithm. This situation is even more pronounced for
the MNIST data set and theface problem. Only a small fraction ofQ fit into the cache making
expensive kernel evaluations necessary. Note that for all of these large problems the LIBSVM-2.8
algorithm minimizes the number of iterations while HMG minimizes the training time. The HMG
algorithm is the fastest on the three large scale problems, because it makes use of the kernel cache
more efficiently.
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data set (ℓ) algorithm iterations runtime f (α∗)
LIBSVM-2.71 36,610 11.21 s 27,019.138

spam-database (4,601) LIBSVM-2.8 9,228 8.44s 27,019.140
HMG 10,563 9.17 s 27,019.140
LIBSVM-2.71 65,167 916 s 13,557.542

connect-4 (30,555) LIBSVM-2.8 45,504 734 s 13,557.542
HMG 50,281 633 s 13,557.536
LIBSVM-2.71 185,162 13,657 s 143,199.142

MNIST (60,000) LIBSVM-2.8 110,441 9,957 s 143,199.146
HMG 152,873 7,485 s 143,199.160
LIBSVM-2.71 37,137 14,239 s 15,812.666

face (220,000) LIBSVM-2.8 32,783 14,025 s 15,812.666
HMG 42,303 11,278 s 15,812.664

Table 2: Comparison of the number of iterations of the decomposition algorithm and training times
for the different working set selection approaches. In each case thebest value is high-
lighted. The differences are highly significant (Wilcoxon rank sum test,p< 0.001). Addi-
tionally, the final value of the objective function showing the comparability of the results
is given.

We performed the same experiments with the SVMlight support vector machine implementation.
The results are summarized in Table 3. We relaxed the stopping condition suchthat the SVMlight

solutions are less accurate than the LIBSVM solutions. Nevertheless, the SVM light algorithm is
slower than the LIBSVM implementation using the SMO algorithm (see Table 2). Please note
that according to the numerous implementation differences these experiments do not provide a fair
comparison between SMO-like methods and decomposition algorithms using larger working sets.

data set (ℓ) iterations runtime f (α∗)
spam-database (4,601) 9,450 23.97 s 27,019,125
connect-4 (30,555) 17,315 5,589 s 13,557.520
MNIST (60,000) 42,347 282,262 s 143,175.447
face (220,000) 9,806 51,011 s 15,812.643

Table 3: Iterations, runtime and objective function value of the SVMlight experiments with working
set sizeq = 10. Because of the enormous runtime, only one trial was conducted for the
MNIST task.
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4.3 Analysis of Different Parameter Regimes

The choice of the regularization parameterC and the parameterσ of the Gaussian kernel (6) influ-
ence the quadratic problem induced by the data. We analyzed this dependency using grid search on
theconnect-4 problem. The results are plotted in Figure 6.

All parameter configurations where LIBSVM-2.71 or LIBSVM-2.8 outperformed HMG have
one important property in common, namely, that it is a bad idea to reselect an element of the previous
working set. This is true when after most iterations both coordinates indexedby the working set are
already optimal. This can happen for different reasons:

• Forσ→ 0 the feature vectors corresponding to the training examples become more and more
orthogonal and the quadratic problemP becomes (almost) separable.

• For increasing values ofσ the example points become more and more similar in the feature
space until they are hard to distinguish. This increases the quotient of the largest and smallest
eigenvalue ofQ. Thus, the solution ofP is very likely to lie in a corner or on a very low
dimensional edge of the box constraining the problem, that is, many of theα∗i end up at the
constraints 0 orC. This is even more likely for small values ofC.

We argue that in practice parameter settings leading to those situations are notreally relevant be-
cause they tend to produce degenerate solutions. Either almost all examplesare selected as support
vectors (and the SVM converges to nearest neighbor classification) orthe information available are
used inefficiently, setting most support vector coefficients toC. Both extremes are usually not in-
tended in SVM learning. In our experiments, HMG performs best in the parameter regime giving
well generalizing solutions.

4.4 Influence of the Shrinking Algorithm

A shrinking heuristics in a decomposition algorithm tries to predict whether a variableαi will end up
at the box constraint, that is, whether it will take one of the values 0 orC. In this case the variable
is fixed at the boundary and the optimization problem is reduced accordingly. Of course, every
heuristics can fail and thus when the stopping criterion is met these variablesmust be reconsidered.
The temporary reduction of the problem restricts working set selection algorithms to a subset of
possible choices. This may cause more iterations but has the potential to savea lot of runtime.

We repeated our experiments with the LIBSVM shrinking heuristics turned off to reveal the
relation between the working set selection algorithms and shrinking, see Table 4. The experiments
show that the influence of the shrinking algorithm on the different workingset selection policies is
highly task dependent. The time saved and even the algorithm for which more timewas saved differs
from problem to problem. For some problems the differences between the methods increase, for
others they decrease. Compared to the experiments with shrinking turned onthe results qualitatively
remain the same.

4.5 Influence of the Cache Size

The speed (in terms of runtime, not iterations) of the SVM algorithm depends on the fraction of
matrix rows fitting into the cache. We used theconnect-4 data set to test the dependency of speed
on the cache size. The full representation of the matrixQ requires nearly 3.5 GB of working memory
for this problem. We trained SVMs with 20 MB (0.56% of the matrix), 40 MB (1.12%), 100 MB
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Figure 6: Influence ofC andσ on the runtime for theconnect-4 data set. The plots show on loga-
rithmic scales the runtime of the SVM depending onC andσ. The comparison of HMG
to LIBSVM-2.71 is plotted in (A), while plot (B) shows the comparison of HMG to
LIBSVM-2.8. The colored shapes indicate the method needing less runtime, inlight and
dark gray for LIBSVM and HMG, respectively. Only the lower surfacecorresponding
to the faster algorithm is drawn solid while the higher surface is indicated by thedotted
grid lines. Bothγ = 1/(2σ2) andC are considered in a range of factor 10,000 containing
the well generalizing parameter regime, see Table 2. The dots mark degenerate (and thus
not desirable) solutions. The gray dots indicate that the solution uses at least 99 % of the
training data as support vectors. If at least 99 % of the support vectors are at the upper
boundC the solution is marked with a black dot.

(2.8%) and 200 MB (5.6%) cache. Because the shrinking heuristics reduces the amount of memory
required for the storage of the relevant part ofQ, the percentage values should be viewed with care.
If all variables ending up at the box constraints are removed, the storagesize of the matrixQ is
about 134 MB. This matrix already fits into the 200 MB cache.

The results listed in Table 5 and plotted in Figure 7 clearly show that for small cache sizes the
HMG algorithm is advantageous while for a large cache the LIBSVM-2.8 algorithm catches up.

These results can easily be explained. As long as there is a considerable chance to find a matrix
row in the cache it is not necessary to use the cache friendly HMG strategy. In this case it is reason-
able to minimize the number of iterations. This is best achieved by the LIBSVM-2.8algorithm. If
the cache is too small to store a relevant part of the kernel matrix it becomes advantageous to use
HMG, because HMG produces at most one cache miss per iteration. We conclude that the HMG
algorithm should be used for large scale problems.
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data set algorithm iterations runtime
LIBSVM-2.71 33,340 91.1 % 12.77 s 114 %

spam-database LIBSVM-2.8 9,123 98.9 % 8.98 s 106 %
HMG 9,342 88.4 % 11.41 s 124 %
LIBSVM-2.71 65,735 100.9 % 2,223 s 243 %

connect-4 LIBSVM-2.8 45,466 99.9 % 1,567 s 213 %
HMG 49,512 98.5 % 1,005 s 159 %
LIBSVM-2.71 187,653 101.3 % 94,981 s 695 %

MNIST LIBSVM-2.8 110,470 100.0 % 58,213 s 585 %
HMG 155,182 101.5 % 41,097 s 549 %
LIBSVM-2.71 37,060 99.8 % 55,057 s 387 %

face LIBSVM-2.8 32,796 100.0 % 48,922 s 349 %
HMG 43,066 101.8 % 33,001 s 293 %

Table 4: Iterations and time needed for solving the quadratic problem withoutshrinking. The per-
centage values refer to the corresponding results with shrinking turned on, that is, iterations
and runtime of the experiments with shrinking turned on define the 100% mark. Due to
the enormous runtime, for the data setsMNIST andface only one trial was conducted.

cache size LIBSVM-2.71 LIBSVM-2.8 HMG
20 MB 958 s 766 s 656 s
40 MB 916 s 734 s 633 s

100 MB 758 s 649 s 583 s
200 MB 603 s 547 s 555 s

Table 5: The training time for theconnect-4 task for the different working set selection algorithms
depending on the cache size.

4.6 Number of Matrix Rows Considered

In the definition of the HMG algorithm we restrict ourselves to computing the gainusing the two
cached matrix rows corresponding to the previous working set. This seemsto be an arbitrary re-
striction. To determine the influence of the number of rows considered we compared the HMG
algorithm to two modified versions.

We computed the gain using only one matrix row corresponding to one element of the working
set. The element chosen was alternated in every iteration such that a selected variable was used in
exactly two successive iterations. This policy reduces the time required forthe working set selection
by about 50%. It can be considered as the minimal strategy avoiding asymmetries between the
variables. The results comparing the usage of one and two rows are shown in Table 6.

Although the stopping criteria used are the same we get different final target function values.
This happens due to the reduced number of pairs over which the maximum is taken in the one-row
strategy. The values listed indicate that the experiments are roughly comparable, but the one-row
strategy produces less accurate solutions in general.
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Figure 7: The training time in seconds for theconnect-4 data set is plotted over the cache size in
MB.

two rows one row
data set iterations runtime f (α∗) iterations runtime f (α∗)
spam-database 10,563 9.17 s 27,019.140 14,023 10.99 s 27,019.134
connect-4 50,281 633 s 13,557.536 83,305 4,967 s 13,557.529

Table 6: Comparison of the one-row and the two-row strategy. The better values are printed in bold
face. The differences are highly significant (Wilcoxon rank sum test,p< 0.001). The final
target function values are lower using the one-row strategy.

The two-row strategy performed clearly better. The reasons for the poor performance of the
one-row strategy are the higher number of iterations and, what is worse,the far higher number of
unshrinking events. Because of the reduced amount of pairs considered this strategy is endangered
to wrongly detect optimality on the shrunk problem causing a costly unshrinking process. Simple
experiments indicated that the one-row strategy can compete if the problem is small. However, in
this case both HMG strategies were outperformed by the LIBSVM algorithm.

The other strategy tested is to compute the gain for every cached matrix elementavailable. Of
course this algorithm is extremely time consuming and thus not practical for applications. This test
gives us the minimum number of iterations the HMG working pair algorithm can achieve, as it is
the strategy using all information available. It thus provides a bound on the performance of possible
extensions of the algorithm using more than two cached matrix rows to determine the working pair.
In the case where the whole matrixQ fits into the cache and all rows have already been computed,
the strategy coincides with the exact greedy policy w.r.t. the gain. We compared the results to the
the two-row strategy, see Table 7.

Again it is difficult to compare the experiments because the algorithm using all cached rows
available generally stops later than the two-row strategy. We will nevertheless interpret the results,
although this difficulty indicates that the bound on the possible performance of HMG algorithms
using more than two rows may not be tight.

The behavior is clearly problem specific. On theconnect-4 task both strategies nearly showed
the same performance. This reveals that on some real world problems the two-row strategy cannot
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two rows whole cache iterations
data set iterations f (α∗) iterations f (α∗) saved
spam-database 10,563 27,019.140 7,280 27,019.143 31 %
connect-4 50,281 13,557.536 51,285 13,557.538 0 %

Table 7: Comparison of the strategies using two matrix rows and the whole matrix cache available.

be outperformed by HMG strategies using more than two matrix rows. In contrast for thespam-
database, the whole-cache strategy saved 31 percent of the iterations. This is a considerable amount
which was bought dearly using all cached matrix rows for the working setselection. In practice one
would like to use a faster method, which, for example, looks at a small fixed number of matrix
rows. The reduction of the number of iterations will presumably be less for such strategies. Addi-
tionally, the non-trivial question for the row selection policy arises. Thus,for simplicity as well as
performance we recommend to stick to the two-row HMG algorithm.

5. Conclusion

The time needed by a decomposition algorithm to solve the support vector machine (SVM) opti-
mization problem up to a given accuracy depends highly on the working setselection. In our experi-
ments with large data sets, that is, when training time really matters, our new hybridmaximum-gain
working set selection (HMG) saved a lot of time compared to the latest secondorder selection algo-
rithm. This speed-up is achieved by the avoidance of cache misses in the decomposition algorithm.
In contrast, for small problems the LIBSVM-2.8 algorithm is faster. This result suggest a mixed
strategy which switches between the algorithms depending on cache and problem size.

The main advantage of the HMG algorithm is its efficient usage of the matrix cache. It reselects
almost always one element of the previous working set. Therefore, at most one matrix row needs to
be computed in every iteration. The new algorithm obtains strong theoretical support as it is known
to converge to an optimum under weak prerequisites, see Section 3.

The HMG algorithm is especially efficient for appropriate kernel and regularization parameter
settings leading to well-generalizing solutions. Thus, it is the method of choice when parameters
suiting the problem at hand areroughlyknown. It is for example a good idea to find out well working
parameters using a small subset of the data and then train the SVM with the HMG algorithm using
the whole data set.

Although LIBSVM-2.8 and HMG both select working sets using second order information,
different target functions and variable sets are considered. It is an issue of future work to investigate
the performance and the convergence properties of possible combinations of methods. In particular,
an elaborate cooperation between the kernel cache strategy and the working set selection algorithm
is promising to increase the efficiency of future algorithms.
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A. Bordes, S. Ertekin, J. Weston, and Léon Bottou. Fast kernel classifiers with online and active
learning.Journal of Machine Learning Research, 5:1579–1619, 2005.

C.-C. Chang and C.-J. Lin.LIBSVM: a library for support vector machines, 2001. http://www.
csie.ntu.edu.tw/∼cjlin/libsvm.

N. Cristianini and J. Shawe-Taylor.An Introduction to Support Vector Machines and other kernel-
based learning methods. Cambridge University Press, 2000.

R.-E. Fan, P.-H. Chen, and C.-J. Lin. Working set selection using the second order information for
training support vector machines.Journal of Machine Learning Research, 6:1889–1918, 2005.

D. Hush and C. Scovel. Polynomial-time decomposition algorithms for support vector machines.
Machine Learning, 51:51–71, 2003.

T. Joachims. Making large-scale SVM learning practical. In B. Schölkopf, C. Burges, and A. Smola,
editors,Advances in Kernel Methods – Support Vector Learning, chapter 11, pages 169–184. MIT
Press, 1999.

S. S. Keerthi and E. G. Gilbert. Convergence of a generalized SMO algorithm for SVM classifier
design.Machine Learning, 46:351–360, 2002.

S. S. Keerthi, S. K. Shevade, C. Bhattacharyya, and K. R. K. Murthy.A fast iterative nearest point
algorithm for support vector machine classifier design.IEEE Transactions on Neural Networks,
11(1):124–136, 2000.

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document
recognition.Proceedings of the IEEE, 86(11):2278–2324, 1998.

C.-J. Lin. On the convergence of the decomposition method for support vector machines.IEEE
Transactions on Neural Networks, 12:1288–1298, 2001.

N. List and H. U. Simon. A general convergence theorem for the decomposition method. In John
Shawe-Taylor and Yoram Singer, editors,Proceedings of the 17th Annual Conference on Learn-
ing Theory, COLT 2004, volume 3120 ofLNCS, pages 363–377. Springer-Verlag, 2004.

N. List and H. U. Simon. General polynomial time decomposition algorithms. In Peter Auer and
Ron Meir, editors,Proceedings of the 18th Annual Conference on Learning Theory, COLT 2005,
volume 3559 ofLNCS, pages 308–322. Springer-Verlag, 2005.

E. Osuna, R. Freund, and F. Girosi. Improved training algorithm for support vector machines. In
J. Principe, L. Giles, N. Morgan, and E. Wilson, editors,Neural Networks for Signal Processing
VII, pages 276–285. IEEE Press, 1997.

1465



GLASMACHERS AND IGEL

J. Platt. Fast training of support vector machines using sequential minimal optimization. In
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