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Gradient-based optimizing of gaussian kernel functions is considered.
The gradient for the adaptation of scaling and rotation of the input space
is computed to achieve invariance against linear transformations. This is
done by using the exponential map as a parameterization of the kernel
parameter manifold. By restricting the optimization to a constant trace
subspace, the kernel size can be controlled. This is, for example, use-
ful to prevent overfitting when minimizing radius-margin generalization
performance measures. The concepts are demonstrated by training hard
margin support vector machines on toy data.

1 Introduction

We consider hyperparameter selection for kernel methods using general
gaussian kernels,1

K B(x, z) = e− 1
2 (Bx−Bz)T (Bx−Bz), (1.1)

where x, z ∈ R
n, and B is a positive definite symmetric n × n matrix. The

most elaborated methods for adjusting these kernels are gradient-based ap-
proaches (Chapelle, Vapnik, Bousquet, & Mukherjee, 2002; Keerthi, 2002;
Chung, Kao, Sun, & Lin, 2003; Gold & Sollich, 2003) that restrict B to diag-
onal matrices. However, only by dropping this restriction can one achieve
invariance against linear transformations of the input space. A related ge-
ometrically inspired idea is carried out by Galleske and Castellanos (2002)
for probabilistic neural networks. Indeed, it has been shown empirically

1 The more common notation K (x, z) = e− 1
2 (x−z)T Q (x−z) is recovered by using the map

B �→ BT B = Q, which is a diffeomorphism on the manifold of symmetric positive definite
matrices. Many implementations of kernel-based methods support gaussian kernel only
with BT B = γ I , where I is the unit matrix. Transforming the input space according to
B and using the standard gaussian kernel for training is a simple way to overcome this
restriction in practice.
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by direct search that adapting the rotation of gaussian kernels improves
the performance on benchmark problems (Friedrichs & Igel, 2005). There-
fore, we compute the gradient for optimizing B in the manifold of pos-
itive definite symmetric matrices. We show how to decouple adaptation
of shape and orientation from the size of the kernel, which becomes neces-
sary, for example, to overcome inherent problems when minimizing radius-
margin generalization performance measures for support vector machines
(SVMs).

2 Kernel Parameterization and Gradient

In order to ensure that gradient-based optimization does not lead to invalid
matrices, we use a parameterization that maps symmetric to symmetric
and positive definite matrices. Let m := {A ∈ R

n×n | A = AT } be the vector
space of symmetric n × n matrices. The manifold M := {B ∈ R

n×n | ∀x �= 0 :
xT Bx > 0 ∧ B = BT } of positive definite symmetric n × n matrices can be
parameterized using a single map.2 The natural choice is

exp : m → M, A �→
∞∑

i=0

Ai

i !
. (2.1)

It holds exp(0) = I and ∂
∂ai j

∣∣A=0 exp(A) = ∂ A
∂ai j

for each of the n(n + 1)/2 hy-
perparameters ai j = a ji . The idea is to use at each point B, a parameteriza-
tion that maps the origin 0 ∈ m to B. We define the map

M → M, H �→ H B H, (2.2)

which is a diffeomorphism3 mapping the unit matrix I to B. To compute
the gradient of equation 1.1, we express B by exp(A)B exp(A) with A = 0. In
A = 0, the partial derivatives of exp(A) can be computed easily. We consider
∂

∂ai j

∣∣A=0 Kexp(A)B exp(A) for each hyperparameter ai j = a ji :

ξi j := ∂

∂ai j

∣∣∣∣
A=0

Kexp(A)B exp(A)(x, z)

= ∂

∂ai j

∣∣∣∣
A=0

e− 1
2 · (x−z)T exp(A)T BT exp(A)T exp(A)B exp(A)(x−z)

2 The manifold M is a subset of the Lie group GLn(R) and the vector space m a corre-
sponding subspace of the Lie algebra gln(R) (cf. Baker, 2002).

3 The map is invertible, and the map as well as its inverse map are differentiable.
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= −1
2

K B(x, z)

· (x − z)T ∂

∂ai j

∣∣∣∣
A=0

(
exp(A)B(exp(A))2 B exp(A)

)
(x − z)

= −1
2

K B(x, z) · (x − z)T
(

∂ A
∂ai j

B2 + 2B
∂ A
∂ai j

B + B2 ∂ A
∂ai j

)
(x − z).

Setting S := ∂ A
∂ai j

B + B ∂ A
∂ai j

and using S = ST it follows:

= −1
2

K B(x, z) · (x − z)T (SB + BS) (x − z)

= −1
2

K B(x, z) · [
(x − z)T S(B(x − z)) + (B(x − z))T S(x − z)

]
= −1

2
K B(x, z) · (x − z)T (S + ST )(B(x − z))

= −K B(x, z) · (x − z)T SB(x − z). (2.3)

For example, a simple steepest-descent step with learning rate η > 0
would lead to the new matrix exp(−ηξ )B exp(−ηξ ).

Adapting the parameters changes three properties of the kernel: the
shape, which is determined by the eigenvalues of B; the orientation, when
nondiagonal matrices B are allowed; and the size, which we define as the
smallest volume where a certain amount, say 95%, of the kernel is concen-
trated. The size is controlled by the determinant of B.

As we will see, it is sometimes reasonable to restrict the adaptation to ker-
nels with a fixed size. This is achieved by considering the one codimensional
linear subspace,

n := {A ∈ m | tr(A) = 0} ⊂ m,

of matrices A fulfilling det(exp(A)) = 1. The gradient descent can be re-
stricted to this subspace4 by orthogonally projecting the gradient matrices
ξ to n subtracting tr(ξ )/n from the diagonal entries of ξ .

3 Application to Radius-Margin Quotients of Hard Margin SVMs

As an example, we consider model selection for hard margin SVMs
for binary classification (e.g., Vapnik, 1998). The most frequently used

4 n = m ∩ sln(R) is the subspace of the Lie-algebra sln(R) corresponding to m.
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differentiable performance measure, derived from a bound on the gener-
alization error, is the radius-margin quotient

(
R
γ

)2

, (3.1)

where R denotes the radius of the smallest ball in feature space containing
all training examples and γ the margin of the SVM classifier (Schölkopf,
Burges, & Vapnik, 1995; Vapnik, 1998; Chapelle et al., 2002; Keerthi, 2002;
Chung et al., 2003; Gold & Sollich, 2003). Of course, our approach also
works in combination with other performance criteria, such as those dis-
cussed by Chapelle et al. (2002). The advantage of the quantity 3.1 is that
its gradient can be computed very efficiently (Chapelle et al., 2002; Keerthi,
2002).

As a proof of concept, we consider an artificial chessboard test problem.
Each of the � training patterns (x, y) is generated by drawing a vector x̃ =
(x1, . . . , xd )T from a uniform distribution on ]−2, 2[d⊂ R

d labeled using the
rule

y =
{+1 if

∑d
j=1
xj� is even

−1 if
∑d

j=1
xj� is odd
.

Then x is determined from x̃ by multiplication with a fixed positive definite
symmetric matrix x := B · x̃. In the experiments, we set d = 2, � = 500, and
B = DT · diag(3, 1

3 ) · D, where in each trial, an orthogonal matrix D is drawn
randomly from the uniform distribution on the (compact Lie group On(R)
of) orthogonal n × n matrices.

Five different kernel parameterizations are optimized (Table 1).
Gradient descent (using adaptive individual step sizes) is performed us-

ing the parameterization 2.1 and 2.2 with derivative 2.3 combined with the
results from Chapelle et al. (2002). The optimization starts from an isotropic
kernel whose standard deviation is initialized to the median of the distances

Table 1: Kernel Parameterizations in the Experiments.

Constraint Number of # Variables Impact on Kernel

(A) B = λI 1 Size
(B) B diagonal, det(B) const. n − 1 Shape
(C) B diagonal n Size and Shape
(D) det(B) const. n(n + 1)/2 − 1 Shape and Orientation
(E) none n(n + 1)/2 Size, Shape, and Orientation
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from each positive training point to the nearest negative training point, a
heuristics suggested by Jaakkola, Diekhaus, and Haussler (1999). In param-
eterizations B and D the optimization is restricted to n.

In all five scenarios, the radius-margin generalization performance mea-
sure decreases (see Figure 1). However, in all cases where the size of the
kernels is not kept constant (parameterizations A, C, and E), the number of
support vectors drastically increases due to an inherent disadvantage of the

squared radius
margin quotient
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Figure 1: The diagrams show the radius-margin generalization performance
measure (R/γ )2/(� · 20), the fraction of support vectors, and the test error on a
large, separate data set over the number of gradient descent steps. All quantities
are averaged over 20 trials. From left to right: (A) multiples of the unit matrix,
(B) diagonal with fixed trace, (C) diagonal, (D) fixed trace, (E) no constraints.
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optimization criterion: having a training data set consisting of � elements,
the radius is bounded by R ≤ √

1 − 1/� ≈ 1 − 1/(2�). In many applications,
this bound is almost reached, such that the derivative of R is compara-
tively small and the gradient of quantity 3.1 with regard to the kernel pa-
rameters is governed by the gradient of γ −2. Then the margin can easily
be enlarged by increasing det(exp(A)), that is, by concentrating the kernel
mass to smaller areas in input space. This leads to solutions with smaller
radius-margin quotient but an increasing number of support vectors. These
complex solutions using nearly all points as support vectors are highly
adapted to the training data set and are not desirable, because they tend
to overfit (leading to worse test error in parameterizations A and C; see
Figure 1). This effect can be avoided by early stopping, changing the opti-
mization criterion (e.g., to the smoothed error of an external validation data
set; see Chapelle et al., 2002), or controlling the kernel size (e.g., by fixing the
trace).

Comparing parameterizations C with E and in particular B with D
demonstrates, in accordance with Friedrichs and Igel (2005), that better
results can be achieved when the kernel adaptation is not restricted to
diagonal matrices. The final test error in parameterization D is signifi-
cantly (20 trials, Wilcoxon rank-sum test, p < 0.01) lower than in all other
cases.
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