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evolution of activation fields in 
time: neuronal dynamics
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the dynamics such 
activation fields is 
structured so that 

localized peaks 
emerge as attractor 
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mathematical formalization
Amari equation
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Interaction: convolution
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where ! = (! − 1)/2 is the half-width of the kernel. The sum extends to indices outside the 

original range of the field (e.g., for m=0 at ! = −!). But that doesn’t cause problems because we 

extended the range of the field as shown in Figure 2.18.  

Note again that to determine the interaction effects for the whole field, this computation 

has to be repeated for each point !!. In COSIVINA all these problems have been solved for you, 

so you don’t need to worry about figuring out the indices in Equations like B2.2 ever again!  

[End Box 2.1] 

 
Figure 2.18 Top: The supra-threshold activation, !(!(!!)), of a field is shown over a finite range (from 0 to 180 deg). 
Second from top: The field is expanded to twice that range by attaching the left half of the field on the right and the right 
half on the left, imposing periodic boundary conditions. Third from top: The kernel has the same size as the original field 
and is plotted here centered on one particular field location, ! = !" deg. Bottom: The matching portions of supra-
threshold field (red line) and kernel (blue line) are plotted on top of each other. Multiplying the values of these two 
functions at every location returns the black line. The integral over the finite range of the function shown in black is the 
value of the convolution at the location ! = !". 
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Relationship to the dynamics of 
discrete activation variables
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=> simulations



solutions and instabilities

input driven solution (sub-threshold) vs. self-stabilized 
solution (peak, supra-threshold)

detection instability

reverse detection instability

selection

selection instability 

memory instability 

detection instability from boost
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the detection instability helps 
stabilize decisions

threshold piercing detection instability
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the detection instability helps 
stabilize decisions

self-stabilized peaks are macroscopic neuronal 
states, capable of impacting on down-stream 
neuronal systems

(unlike the microscopic neuronal activation that 
just exceeds a threshold)



emergence of time-discrete events

the detection instability also explains how a 
time-continuous neuronal dynamics may create 
macroscopic, time-discrete events



behavioral signatures of  
detection decisions

detection in psychophysical paradigms is rife with 
hysteresis

but: minimize response bias



Detection instability

in the detection 
of Generalized 
Apparent 
Motion

Generalized Apparent Motion

(Johansson, 1950)
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Detection instability

varying 
BRLC



Detection instability

hysteresis of motion detection as BRLC is varied

(while response bias is minimized)

184 H. S. Hock, G. Schöner / Seeing and Perceiving 23 (2010) 173–195

Figure 5. Hysteresis effect observed by gradually increasing or gradually decreasing the background
relative luminance contrast (BRLC) for a participant in Hock et al.’s (1997) third experiment. The
proportion of trials with switches from the perception of motion to the perception of nonmotion, and
vice versa, are graphed as a function of the BRLC value at which each ascending or descending
sequence of BRLC values ends. (Note the inversion of the axis on the right.)

which there were switches during trials with a particular end-point BRLC value
was different, depending on whether that aspect ratio was preceded by an ascend-
ing (vertical axis on the left side of the graph) or a descending sequence of BRLC
values (the inverted vertical axis on the right side of the graph). For example, when
the end-point BRLC value was 0.5, motion continued to be perceived without a
switch to non-motion for 90% of the descending trials, and non-motion continued
to be perceived without a switch to motion for 58% of the ascending trials. Percep-
tion therefore was bistable for this BRLC value and other BRLC values near it; both
motion and non-motion could be perceived for the same stimulus, the proportion of
each depending on the direction of parameter change. It was thus confirmed that
the hysteresis effect obtained for single-element apparent motion was indicative of
perceptual hysteresis, and was not an artifact of ‘inferences from trial duration’.

7. Near-Threshold Neural Dynamics

The perceptual hysteresis effect described above indicates that there are two stable
activation states possible for the motion detectors stimulated by generalized ap-
parent motion stimuli, one suprathreshold (motion is perceived) and the other sub-
threshold (motion is not perceived). Because of this stabilization of near-threshold
activation, motion and non-motion percepts both can occur for the same stimu-
lus (bistability), and both can resist random fluctuations and stimulus changes that
would result in frequent switches between them.

7.1. Why Stabilization Is Necessary

Whether an individual detector is activated by a stimulus or not, a random per-
turbation will with equal probability increase or decrease its activation. Assume it



selection 
instability

input

activation
field

input

dimension

activation
field

input

activation
field

dimension

dimension



stabilizing selection decisions



behavioral signatures 
of selection decisions

in most experimental situations, the correct 
selection decision is cued by an “imperative signal” 
leaving no actual freedom of “choice” to the 
participant (only the freedom of “error”)

reasons are experimental 

when performance approaches chance level, then 
close to “free choice” 

because task set plays a major role in such tasks, I 
will discuss these only a little later



one system of “free choice”

selecting a new saccadic location

Analysis of the eye movement trace may allow us to understand why
changes are so hard to detect and what is the origin of the difference between
the Central and Marginal Interest cases.

Eye Movement Measures

Figure 2 shows a typical eye movement scanning pattern for a picture. It is seen
that even though the observer was looking at the picture for 48 sec, and search-
ing actively for possible changes that might occur anywhere in the picture, the
eye continued to follow a surprisingly stereotyped, repetitive, scanpath in
which large areas of the picture are never directly fixated. Similar observations
were made by Yarbus (1967) and other authors, who observed that many por-
tions of a picture are never directly fixated, and that the particular scanpath that
is used depends on what the observer is looking for in the picture.

Could this be the reason why some changes are not noticed? Could it be that
those cases when the change is missed correspond to cases where the scanpath
happens not to include the change location? This hypothesis might explain the
difference between the MI and CI changes: Thus, it might be that MI locations,
being less “interesting” to observers, tend to be less likely to be included in the
scanpath than CI locations.

198 O’REGAN ET AL.

FIG. 2. Typical scanpath while a subject searched for changes. The original picture was in colour. The
change that occurred in this picture was a vertical displacement of the railing in the background to the
level of the man’ s eyes. In this record, the change was detected at the moment that the observer blinked
for the fourth time. The positions of the eye when the blinks occurred are shown as white circles. The
last, “effective” blink, marked “E”, occurred when the eye was in the region of the bar.

[O’Reagan et al., 2000]
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2 layer Amari fields

to comply with Dale’s 
law

and account for 
difference in time 
course of excitation 
(early) and inhibition  
(late)
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[figure: Wilimzig, Schneider, Schöner, Neural Networks, 2006]



2 layer Amari model



time course of selection 

early: input driven

intermediate: dominated by excitatory interaction

late: inhibitory interaction drives 
selection

Wilimzig, Schneider, Schöner, Neural Networks, 2006



=> early fusion, late selection
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studying selection decisions in the 
laboratory

using an imperative signal... 



reaction time (RT) paradigm
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task set

that is the critical factor in most studies of 
selection! 

for example, the classical Hick law, that the number of choices affects 
RT, is based on the task set specifying a number of choices

(although the form in which the imperative signal is 
given is varied as well... )

how do neuronal representations reflect the task 
set? 
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weak preshape 
in selection

specific (imperative) 
input dominates and 
drives detection 
instability

[Wilimzig, Schöner, 2006]
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using preshape to account for 
classical RT data 

Hick’s law: RT increases 
with the number of 
choices
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metric effect

predict faster response 
times for metrically 
close than for 
metrically far choices
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experiment:  
metric effect

[McDowell, Jeka, Schöner ]
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boost-induced detection instability
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boost-driven detection instability

inhomogeneities in the field existing prior to a 
signal/stimulus that leads to a macroscopic 
response=“preshape”

the boost-driven detection instability amplifies 
preshape into macroscopic selection decisions



this supports 
categorical 
behavior

when preshape 
dominates

[Wilimzig, Schöner, 2006]



weak preshape 
in selection

specific (imperative) 
input dominates and 
drives detection 
instability

[Wilimzig, Schöner, 2006]
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distance effect

common in categorical tasks

e.g., decide which of two sticks is longer... RT is larger when sticks are 
more similar in length 



interaction metrics-probability 

Wilimzig, Schöner, 2006

opposite to that 
predicted for 
input-driven 
detection 
instabilities: 

metrically close 
choices show 
larger effect of 
probability
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“space ship” task probing spatial working 
memory

Metric�Working�Memory�Tasks
10 sec delay2000 ms Ready, Set, Go!

+++

-40°

[Schutte, Spencer, JEP:HPP 2009]
1977; Compte et al., 2000, for neural network models that use
similar dynamics).

Considered together, the layers in Figure 3 capture the real-time
processes that underlie performance on a single spatial recall trial.
At the start of the trial, the only activation in the perceptual field
is at the location associated with the perceived reference axis (see
highlighted reference input in Figure 3a). This is a weak input and
is not strong enough to generate a self-sustaining peak in the
SWM field, though it does create an activation peak in the
perceptual field (PFobj). Note that this input to the model is
assumed to be generated by relatively low-level neural pro-
cesses that extract symmetry using the visible edges of the task
space (for evidence that symmetry axes are perceived as weak
lines, see Li & Westheimer, 1997). We have not included the
visible edges in simulations of the model because they are quite
far from the target locations probed in our experiments. Given
that neural interactions in the DFT depend on metric separation,
these additional inputs far from the targets would have negli-
gible consequences.

The next event in the simulation in Figure 3a is the target
presentation. This event creates a strong peak in PFobj (see target
input in Figure 3a) which drives up activation at associated sites in
the SWM field (SWMobj). When the target turns off, the target
activation in PFobj dies out, but the target-related peak of activation
remains active in SWMobj. In addition, activation from the refer-
ence axis continues to influence PFobj because the reference axis is
supported by readily available perceptual cues (see peak in PFobj

during the delay).
Central to the DFT account of geometric biases is how the

reference-related perceptual input affects neurons in the working
memory field during the delay. Figure 3c shows a time slice of the
SWMobj field at the end of the delay. As can be seen in the figure,
the working memory peak has slightly lower activation on the left
side. This lower activation is due to the strong inhibition around
midline created by the reference-related peak in PFobj (see high-

lighted reference input in Figures 3a & 3c). The greater inhibition
on the left side of the peak in SWM effectively “pushes” the peak
away from midline during the delay, that is, the maximal activity
in SWM at the end of the trial is shifted to the right of the actual
target location (for additional behavioral signatures of these inhib-
itory interactions, see Simmering et al., 2006). Note that working
memory peaks are not always dominated by inhibition as in Figure
3c. For instance, if the working memory peak were positioned very
close to or aligned with midline (location 0), it would be either
attracted toward or stabilized by the excitatory reference input.
This hints at how the DFT accounts for developmental changes in
geometric biases.

A simulation of the model with “child” parameters is shown in
Figure 3b. This simulation is the same as the adult simulation in
Figure 3a, except the interaction among neurons within each field
and the projections between the fields have been scaled according
to the spatial precision hypothesis: the neural interactions within
the SWMobj and PFobj fields are weaker (relative to the adult
parameters), the widths of the projections between the fields are
broader, and the excitatory and inhibitory projections are
weaker (for a more detailed discussion see below). As can be
seen in Figure 3b, these changes in interaction result in a
broader peak in the SWMobj field. Additionally, the reference
input is broader and weaker to reflect young children’s diffi-
culty with reference frame calibration, that is, their ability to
stably align and realign egocentric and allocentric reference
frames (see Spencer et al., 2007). The result of these changes is
that neural interactions in PFobj are not strong enough to build
a reference-related peak during the delay. Consequently,
SWMobj is only influenced by the broad excitatory input from
detection of midline in the task space and the SWMobj peak
drifts toward the reference axis instead of away from the axis.

The simulations in Figure 3 demonstrate that the spatial preci-
sion hypothesis and the DFT can capture the general pattern of
geometric biases in early development and later development, but

Figure 4. Apparatus used for spaceship task. Inset shows sample target locations relative to the starting point.
Targets are projected onto the table from beneath and responses are recorded using an Optotrak movement
analysis system. Note that the lights in the room are turned on for the photograph. During the experiment the
lights were dimmed, and the table appeared black.

1702 SCHUTTE AND SPENCER



repulsion from midline/landmarks
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DFT account of 
repulsion: 
inhibitory 
interaction with 
peak 
representing 
landmark
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Working memory as sustained peaks

implies metric drift of WM, which is a marginally 
stable state (one direction in which it is not 
asymptotically stable) 

=> empirically real.. 


