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Activation

how to represent the inner 
state of the Central Nervous 
System? 

=> activation concept

source1 source2



Activation

neural state variables

membrane potential of neurons?

spiking rate? 

... population activation... 



Activation

activation as a real number, abstracting from 
biophysical details

low levels of activation: not transmitted to other systems (e.g., 
to motor systems)

high levels of activation: transmitted to other systems

as described by sigmoidal threshold function 

zero activation defined as threshold of that function 
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Activation

compare to connectionist notion of activation: 

same idea, but tied to individual neurons

compare to abstract activation of production 
systems (ACT-R, SOAR)

different... really a function that measures how far a module 
is from emitting its output... 

but related: sigmoidal function gives meaning to activation 



Activation dynamics

activation variables u(t) as time continuous 
functions... 

what function f? 

⌧ u̇(t) = f(u)

du(t)/dt

u(t)



Activation dynamics

start with f=0

⌧ u̇ = ⇠t

time, t
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Activation dynamics

need stabilization

⌧ u̇ = �u+ h+ ⇠t.
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Neural dynamics

In a dynamical system, the present predicts the future: given 
the initial level of activation u(0), the activation at time t: 
u(t) is uniquely determined

du(t)

dt
= u̇(t) = �u(t) + h (h < 0)

du/dt = f(u)
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Neural dynamics
stationary state=fixed point= constant solution

stable fixed point: nearby solutions converge to the 
fixed point=attractor

du(t)

dt
= u̇(t) = �u(t) + h (h < 0)

du/dt = f(u)
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Neural dynamics

exponential relaxation to fixed-point attractors

=> time scale

⌧ u̇(t) = �u(t) + h

du/dt = f(u)

u

resting
level

vector-field

time

u(t)
u(0)

u(0)/e

u( )



Neural dynamics

attractor structures ensemble of solutions=flow

⌧ u̇(t) = �u(t) + h

du/dt = f(u)
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Neuronal dynamics

inputs=contributions to 
the rate of change

positive: excitatory

negative: inhibitory

=> shifts the attractor

activation tracks this 
shift (stability)

⌧ u̇(t) = �u(t) + h + inputs(t)
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=> simulation in live exercise 
session



Neuronal dynamics with self-excitation

stimulus

input

output

self-excitationu c
s

⌧ u̇(t) = �u(t) + h + s(t) + c g(u(t))



Neuronal 
dynamics 
with self-
excitation u 

du/dt 

resting
level, h
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=> nonlinear dynamics!

⌧ u̇(t) = �u(t) + h + s(t) + c g(u(t))
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Neuronal 
dynamics 
with self-
excitation

⌧ u̇(t) = �u(t) + h + s(t) + c g(u(t))



at intermediate stimulus 
strength: bistable

“on” vs “off” state

u

du/dt

time, t

u(t)<0

u(t)>0

Neuronal 
dynamics 
with self-
excitation

⌧ u̇(t) = �u(t) + h + s(t) + c g(u(t))



increasing input strength => 
detection instability
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decreasing input strength 
=> reverse detection 
instability
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the detection and the 
reverse detection instability 
create discrete events out of 
input that changes 
continuously in time

time, t
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=> simulation in live exercise session 


