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Abstract

Unsupervised learning of a generalizable model of the visual appearance of humans from video data is of major importance for com-
puting systems interacting naturally with their users and others. We propose a step towards automatic behavior understanding by mak-
ing the posture estimation cycle more autonomous. The system extracts coherent motion from moving upper bodies and autonomously
decides about limbs and their possible spatial relationships. The models from many videos are integrated into a meta-model, which shows
good generalization with respect to different individuals, backgrounds, and attire. This model allows robust interpretation of single video
frames without temporal continuity and posture mimicking by an android robot.
� 2017 Elsevier B.V. All rights reserved.
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1. Introduction

Humans show unmatched expertise in visually analyzing
and interpreting the movements of other humans. This skill
of social perception is one of the foundations of effective
and smooth interaction of humans inhabiting a complex
environment. The benefits of machines capable of inter-
preting human motion would be enormous: applications
in health care, surveillance, industry and sports (Gavrila,
1999; Moeslund, Hilton, & Krüger, 2006) promise a broad
market. Despite significant effort (Poppe, 2007) to transfer
human abilities in motion estimation and behavioral inter-
pretation to synthetic systems, automatically looking at

people (Gavrila, 1999) remains among the ‘most difficult
recognition problem[s] in computer vision’ (Mori, Ren,
Efros, & Malik, 2004) there is still no technical solution
matching human competency in vision-based motion cap-
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turing (VBMC). Furthermore, humans can understand
body poses even in still images.

Artificial vision systems must be enhanced by learning
lessons from human perception. Here, we present a system
that is able to acquire conceptual models of the upper
human body in a completely autonomous manner: the
learning procedures are based on only a few general princi-
ples, namely the gestalt rule of ‘‘common fate”, which
states that coherently image parts with coherent motion
belong to a single object, and the rule that object properties
persistent over time are important for recognizing the
object, while malleable ones should be ignored. This strat-
egy significantly reduces human workload and allows self-
optimization of the generated models. While autonomous
model learning and knowledge agglomeration take place
in simple scenarios, the conceptual nature of the retrieved
body representations allows for generalization to more
complex scenarios and holds opportunities for model adap-
tation and enhancement loops, which might perform contin-
uous, non-trivial learning as found in the human brain. A
much simpler example of such a system has been presented
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by Prodöhl, Würtz, and von der Malsburg (2003), where a
neural network learns the gestalt rule of collinearity from
common fate.

Fig. 1 provides a schematic overview of the system and
is referred to throughout the paper for all components. In
Section 2 we give an overview of VBMC approaches that
have been considered or used in this work and discuss their
strengths and weaknesses. Section 3 describes the details of
learning a body model from a single video of human
motion. This consists of the following subsystems:

� A central requirement for autonomous model learning is
the exclusion of irrelevant features. This is achieved by
motion-based background elimination (Section 3.1,
Fig. 1(c)).

� The ‘‘common fate” rule is implemented by measuring
and clustering point trajectories to select coherently
moving parts, called limb patterns, and constraints on
relative motion (Section 3.1, Fig. 1(d)).

� For a matchable description of limbs we extract skele-
tons from those limb patterns (Section 3.2, Fig. 1(e)).

� The next step is the generation of limb templates to be
filled with color (Fig. 1j), shape (Fig. 1i), and texture
(Fig. 1k) (Section 3.3).

� Single limbs are combined into a complete body model,
which describes the encountered relative movements and
their constraints as well as the appearance of each limb
template to a pictorial structure (Section 3.4, Fig. 1(e)).

Each of these subsystems is constructed by using rele-
vant techniques from the literature described in Section 2,
and we describe all modifications that were necessary for
autonomous learning.

A general model must include more than a single video
in order to capture possible variations in appearance and
movements. Therefore, in Section 4 many such models
are combined into a meta-model, which captures the
invariant cues of the single models. In Section 5 we test
the learned meta-model on still images with different back-
grounds, individuals, attire, etc. This is a much harder task
than evaluating more videos of a single person, and the
failures point to ways to improve the system by adding
more training. We provide test results on single images
varying considerably in person, attire, and background.
Then we show how the learned representations can be used
to mimick observed postures on a humanoid robot. The
paper ends with a brief discussion.

2. Previous work in vision-based human motion capturing

Following Poppe (2007), VBMC methods can be classi-
fied into model-based, generative approaches and model-

free, discriminative methods (cf. also (Navaratnam,
Fitzgibbon, & Cipolla, 2006)). Model-based schemes incor-
porate top-down and bottom-up techniques, while the
model-free domain employs learning-based and exemplar-

based pose estimation.
To stay in scope, we leave an in-depth discussion of top-
down and discriminative techniques to Poppe (2007) or
Walther (2011). Bottom-up solutions form an important
mainstay of our own approach and are thus investigated
more closely. Nevertheless, our focus is on autonomous,
fully unsupervised VBMC strategies.
2.1. Bottom-up posture estimation

A generic bottom-up (or combinatorial (Roberts,
McKenna, & Ricketts, 2007)) posture estimation system
follows the principle formulated by Sigal and Black
(2006a): ‘measure locally, reason globally.’ Local measure-
ment treats the human body as an ensemble of ‘quasi-inde
pendent’ (Sigal, Isard, Sigelman, & Black, 2003) limbs,
which much alleviates the complex model coupling inher-
ent in top-down approaches. Imposing independence, ‘im-
age measurements’ (Sigal et al., 2003) of single limbs can be
performed separately by a dedicated limb detector (LD)
(Ramanan, Forsyth, & Zisserman, 2007; Sigal & Black,
2006b), which moves the burden of matching a given body
part model to some well-chosen image descriptors
(Kanaujia, Sminchisescu, & Metaxas, 2007; Poppe, 2007).
The selection of appropriate images descriptors as well as
construction and application of LDs require domain
knowledge of and concept building by human supervisors.
For many object categories, histograms of oriented gradi-
ent (HOG) features seem to be a good choice, allowing
object classification by linear discriminant analysis
(Hariharan, Malik, & Ramanan, 2012).

To organize the data from local measurements, pending
inter-limb dependencies come into play during global rea-
soning. ‘Assemblies’ (Moeslund et al., 2006) of detector
responses are retrieved that comply well with kinematically
meaningful human body configurations. The majority of
bottom-up systems employ graphical models (Sigal &
Black, 2006a) (GMs) to encode human body assemblies:
each node in the model’s graph structure correlates to a
dedicated body part, whereas the graph’s edges encode
(mostly) ‘spring-like’ (Lan & Huttenlocher, 2005; Sigal
et al., 2003) kinematic relationships between single limbs.

Using GMs for global inference, a configuration
becomes more ‘human-like’ (Felzenszwalb &
Huttenlocher, 2000) if all LDs return low matching cost
and the ‘springs’ between the body parts are close to their
resting positions. This can conveniently be formulated by
means of an energy functional, whose global minimum rep-
resents the most probable posture of the captured subject.
However, minimization for arbitrary graphs and energy
functions is NP-hard (Felzenszwalb & Huttenlocher,
2005). Thus, Felzenszwalb and Huttenlocher (2000) pro-
pose to restrict the graphs to be tree-like and further
restrictions on the energy function to allow for computa-
tionally feasible posture inference using dynamic program-
ming (Felzenszwalb & Huttenlocher, 2005). We follow
this approach by boosting the pictorial structure (Fischler
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Fig. 1. Schematic overview of the proposed VBMC system: green dots surround autonomous learning components, blue dots envelop standard bottom-up
VBMC (cf. Section 2) components. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)
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& Elschlager, 1973) (PS) approach of Felzenszwalb and
Huttenlocher (2000, 2005) to maximize system autonomy.

2.2. Autonomous VBMC

We now discuss a novel generation of autonomous
VBMC methods — these systems learn body models auton-
omously from unlabeled training input and tend to show
fair generalization performance while applying the learned
patterns to novel scenarios. We discuss a selection of
recent, autonomous VBMC approaches; as the techniques
come closer to the focus of this paper we step into more
detail.

Inspired by point-light display experiments (Song, 2003)
learns decomposable triangulated graph (DTG) models of
the human body. DTG nodes correspond to single limbs,
edges express mutual dependencies. Implying that limbs
far apart in the kinematic chain have no significant influ-
ence on each other, it seems reasonable to postulate condi-
tional independence of the triangle cliques (Song, 2003) in
the DTG, which leads to efficient mechanisms for human
detection/posture retrieval in scenarios of increasing com-
plexity. Tracked Kanade-Lucas-Tomasi (KLT) (Yan &
Pollefeys, 2006) features act as ‘virtual markers’ (one per
body part) during pose inference, indicating temporally
varying limb positions. The quality of the automatically
generated models does not reach that of hand-crafted body
representations. Further, single KLT features are unlikely
to behave like physical markers and trace limb movements
exactly because of feature loss and background
distractions.

Yan and Pollefeys (2008) also propose to infer body
structure automatically from point features. Representing
moving limbs by a multitude of trackers, that scheme can
cope with moderate feature loss and extends standard
structure from motion (SFM) to deal with non-rigid and
articulated structures. Their main assumption is that ‘tra-
jectories from the same motion lie in the same rigid or non-
rigid motion subspace, whereas those from different
motions do not.’ Each feature’s motion subspace is esti-
mated by manually adjusted local sampling, distances
between feature trajectories are measured by the principal

angle (Golub & Van Loan, 1996) between the respective
subspaces. The inter-trajectory distances form an affinity

matrix (Yan & Pollefeys, 2008), upon which recursive spec-
tral clustering (von Luxburg, 2007) identifies groups of
coherently moving features, and minimum spanning tree

(Yan & Pollefeys, 2008) techniques based on the principal
angles succeed to retrieve a kinematic skeleton. This system
has a high degree of autonomy as almost no human super-
vision is required in the model learning loop, and the qual-
ity of the body parts and the kinematic skeleton comes
close to human intuition.

Ross, Tarlow, and Zemel (2010) follow the same para-
digm to human articulation structure from point feature
motion: a body model is set up that includes latent struc-
tural variables describing the assignment of tracked fea-
tures to the skeletal bones and the connectivity of the
body structure. Residual model varies identify limb feature
coordinates and locations of potential joints. The ‘expected
complete log-likelihood of the observed [point motion]
data given the model’ (Ross et al., 2010) should obviously
be maximized if the model parameters closely match the
true structure of the captured entity. This optimal model
is acquired by a combined learning scheme: first, affinity

propagation (Frey & Dueck, 2007) finds an initial point-
to-limb assignment, temporarily neglecting skeletal connec-
tions. Then, other model variegates (excluding latent struc-
tural connectivity) are refined, making intense use of
expectation maximization (Dempster, Laird, & Rubin,
1977) (EM). Based on these preparations, iteration starts:
joints between limbs are putatively introduced, and the
most likely joint is kept. With the updated topology, the
EM loop repeats, simultaneously performing a periodic
update of all latent feature-to-limb assignments. The model
evoking maximal complete log-likelihood is output as the
optimal solution. The system can handle articulated SFM
tasks for human, animal, and technical structures without
supervision. Non-rigidity like cloth deformation gives rise
to unreasonable limb estimates/kinematic skeletons.

Those schemes yield sparse limb representations,
Krahnstoever (2003) takes one step beyond; beginning with
sparse SFM-like techniques based on KLT feature tracking
and standard K-means trajectory clustering, groups of
coherently moving features are identified in fronto-
parallel scenarios. The basic clustering objective yields per-
ceptually acceptable approximations of the true limb struc-
ture in all performed experiments if K is properly selected
manually. The tracked features act as seeds to an EM seg-
mentation scheme relying on shape, color, and motion cues
that yields fleshed-out limb templates precisely encoding
the appearance of the captured subject. Based on the
motion behavior of these templates, probabilistic tree span-
ning techniques identify likely joints between the extracted
body parts and generate a well-defined kinematic skeleton
for the articulated target. Krahnstoever (2003) successfully
extracts body appearance and topology from synthetic and
real input. Except the selection of K, the method is unsu-
pervised and thus a good starting point for autonomous
learning.

Similarly, Kumar, Torr, and Zisserman (2008) extract
coherent motion layers from video footage: input frames
are first split into rectangular patches, over which a condi-
tional random field (Wallach, 2004) is defined. Belief prop-
agation then identifies patches that follow the same rigid
motion model between consecutive frames (Kumar et al.,
2008). From those coherently moving motion components,
initial body part segments are formed by integrating compo-
nent information from all input frames, which carry suffi-
cient information to seed limb refinement (Kumar et al.,
2008): a-expansion and a-b-swap mechanisms (Veksler,
1999) cut out precise templates for each limb. This scheme
achieves competitive limb segmentation results that corre-
spond well to human intuition, while maintaining a signif-
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icant degree of autonomy. On the other hand, it requires
computationally demanding algorithms and has an
unwieldy system structure. Skeleton retrieval and non-
rigidity are not discussed.

Kumar, Torr, and Zisserman (2010) build upon (Kumar
et al., 2008) in order to learn object category models
(OCMs) of animals. These OCMs are encoded as layered

pictorial structures (LPSs) which can be learned autono-
mously from multiple video sequences that contain a ded-
icated animal category. LPS nodes comprise sets of
category-specific shape and texture exemplars for each limb,
edges express spatial relations between the body parts.
Kumar et al. (2010) use their OCMs to guide a probabilistic
foreground segmentation scheme that shows acceptable
performance in cutting out members of the encoded cate-
gories from cluttered images. This method shows a promis-
ing capability of concept building and generalizes well to
novel situations. Using exemplar sets instead of limb proto-
types, memory requirements are likely to become an issue
for larger training databases, and accessing specific tem-
plates in large exemplar populations might be computa-
tionally demanding. Kumar et al. (2010) draw inspiration
from Stenger, Thayananthan, Torr, and Cipolla (2004)
and organize exemplar data in a hierarchical manner to
speed up access during LPS matching.

Ramanan, Forsyth, and Barnard (2006) use the pictorial
structure paradigm, learning tree-like PS representations of
animals from given video input: assuming that animal
limbs can roughly be described by rectangular approxima-
tions, rectangle detectors identify candidate body parts in
all input frames. Candidates that keep up ‘coherent appear-
ance across time’ (Ramanan et al., 2006) are found by clus-
tering, resulting in ‘spatio-temporal tracks of limbs,’ tracks
violating a predefined model of smooth motion are pruned.
The remaining clusters are interpreted as body parts whose
appearance is in LDs at the PS nodes. Skeletal structure is
derived via a ‘mean distance-based’ minimum spanning
tree approach. The method operates without human guid-
ance and displays fair generalization. It has been further
developed by Yang and Ramanan (2013), where limbs
are modeled as mixtures of undeformable parts. This
achieves excellent performance on difficult datasets like
Buffy (Ferrari, Eichner, Marin-Jimenez, & Zisserman,
2012) but was not considered during development of our
model.

Ramanan et al. (2007) extends Ramanan et al. (2006)’s
approach to humans: The PS model is defined a priori,
making it unnecessary to perform an unreliable guess on
the correct number of body parts or the desired kinematic
skeleton. Limb appearance is found by applying Ramanan
et al. (2006)’s track clustering algorithm to the first few
frames of an input stream. The resulting PS representations
generalize well to all residual frames of the sequence.
Despite good results, the weak rectangle detectors easily
go astray in complex scenarios, possibly spoiling PS pat-
tern formulation. They are replaced by stylized detectors

defined as a body configuration that is ‘easy to detect
and easy to learn appearance from’. Both desiderata hold
for lateral walking poses, which can be detected with a
specifically tuned PS body model. Once such a stylized pose

pictorial structure reliably locked on to a lateral walking
pose in some input frame, the appearance (color
distribution) of each limb can be retrieved and used to
form classifiers for the single body parts, which act as
LDs in a general pose pictorial structure model that allows
to infer posture in the residual frames of the processed
sequence. From the perspective of system autonomy, the
approach by Ramanan et al. (2007) is promising, but the
evolved PS patterns become ‘highly person-specific’ and
would probably generalize poorly to differently dressed
individuals. The structure of the initial PS models is
defined through human expertise. For the case of sign
language this method is enhanced by Pfister, Charles,
and Zisserman (2013) through correlations with mouth
movements.

3. Autonomous acquisition of human body models

A graphical human body model (HBM) with well-
designed limb detectors is one mainstay of successful
bottom-up human posture estimation/human motion anal-
ysis (HPE/HMA). In the OC context, modeling effort
should be left to the machine learning model structure
and salient features autonomously from input data. How-
ever, this strategy is hampered by real-world phenomena
like limited camera performance, background clutter, illu-
mination changes, occlusion issues, etc., all of which have
dramatic impact on the model learning process, cf.
(Walther, 2011).

To reduce these problems we impose restrictions like a
single individual controlled illumination, and slow and
smooth movement on our learning scenarios, but include
all movements supposed to be learned. We will assume that

1. limbs are coherently moving subparts of the human
body, connected by a tree-like kinematic skeleton,

2. throughout a given input sequence, the appearance of all
limbs can be assumed near constant,

3. all limbs of interest are exercised vividly in a given train-
ing sequence.

Based on these fundamental rules, fully autonomous
extraction of sequence-specific HBMs from short input
video streams of low visual complexity becomes viable
(Fig. 1b). Three exemplary frames from an input sequence
are sketched in Fig. 2a–c.

3.1. Acquiring limb patterns from video input

We begin by retrieving sequence-specific limb representa-

tions via coherent motion analysis (Fig. 1d): let DDItðxÞ rep-
resent the number of foreground active motion pixels
(AMPs) in morphologically manipulated double difference

images (DDI) (Kameda & Minoh, 1996) derived from a



Fig. 2. Frames 30 (a), 115 (b), and 147 (c) from a standard scenario. (d) Shows the reference frame from that sequence. Graph cut results are given in (e),
the resulting feature placement is sketched in (f). (g) Shows the trajectory segmentation for the reference frame, (h) the corresponding skeleton, and (i) the
resulting limb template masks.
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given input stream. From those, the reference frame t� is
defined as the one with maximal average DDI. The DDI-

based foreground estimate in I t
� ðxÞ yields a rough approx-

imation of the foreground shape (the moving subject). A
relatively sparse foreground map and a compact, dense
background map are constructed using the graph cut seg-
mentation of Boykov and Jolly (2001). Based on the max-

imum flow technique (Boykov & Kolmogorov, 2004), we
employ the graph cut scheme of Mannan (2008) to perform

precise foreground extraction in I t
� ðxÞ, (Fig. 2e). Remain-

ing outliers in the resulting foreground proposal map

P t�
FðxÞ are eradicated via morphological closing (Fig. 1c).
Next, the motion of the subject’s upper body is traced

through all frames t – t� by applying Kanade-Lucas-

Tomasi (Tomasi & Kanade, 1991) forward/backward
tracking to NF features, which are distributed isotropically
on the extracted foreground entity, (Fig. 2f). Inter-feature
distance is automatically tuned using a test-and-repeat
scheme to achieve constant NF for all input scenarios.

From the so generated feature trajectories initial esti-
mates of body parts are retrieved. The trajectory for feature

i is the spatial time series f0i ; . . . ; f
ðNL�1ÞDT
i , where NL is the
number of frames and 1
DT the frame rate. V is the complete

set of NV trajectories v0; . . . ; vNV�1. The pairwise trajectory
distances are expressed via (modified from (Krahnstoever,
2003))

dðvi; vjÞ ¼ a
XNL�1

t¼0

ðDt
ij � DijÞ2 þ ð1� aÞ

XNL�2

t¼0

1� velti; vel
t
j

D E� �
ð1Þ

with Dt
ij ¼ f ti � f tj

��� ���, velti ¼ f tþ1
i � f ti, and Dij is the mean of

Dt
ij over all frames. �; �h i represents the scalar product,

a ¼ 0:01.
Eq. (1) is plugged into a self-tuning (Zelnik-Manor &

Perona, 2004) framework to extract perceptually consistent
limb representations without manual intervention. We
employ iterative normalized cut clustering to segment the
trajectory dataset. Instead of NCutðV0;V1Þ (Shi & Malik,
2000) that splits the trajectory set V in two child clusters
we use

NCut0ðV0;V1Þ ¼ NCutðV0;V1Þe�
r2
b
�ab
bb ; ð2Þ
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with empirically determined values of ab ¼ 20:0 and
bb ¼ 200:0. If this value exceeds sNC ¼ 0:35, or if the num-
ber of features in any child cluster becomes 6 10, splitting
is stopped. With such a large threshold, the trajectory sets
may become oversegmented; excess clusters are primarily
caused by non-rigid cloth motion. Cloth-induced clusters
generally arise from distortion of attire, and rarely show
significant motion relative to the respective limbs. Clusters
representing true body parts tend to move vividly and to
rotate relative each other due to the rotatory connections
enforced by the underlying kinematic skeleton (cf.
(Walther, 2011)). As a consequence, all feature clusters
with a relative rotation of less than 15� and with a mutual
barycenter shift of less than 10 pixels are merged, which
reliably eliminates cloth-induced excess clusters. Prior to
the merging stage, statistical outlier removal eliminates
all features whose time course strays significantly from that
of their host cluster. The number of clusters after merging
is NG, the clusters are identified by Gi and shown for the
reference frame in Fig. 2g.

3.2. Retrieving kinematic skeletons

Recent skeleton extraction approaches include (Ross
et al., 2010; Yan & Pollefeys, 2008) – for the current work,
the one by Krahnstoever (2003) is favored. There, skeleton
extraction is applied to full limb templates, here we retrieve
skeletons at an earlier stage directly from feature group
data; the quality of the results is comparable to those of
Krahnstoever (2003). We use a different distance-based
joint plausibility criterion:

skij ¼ min
u

x0�
ij;wrl � f0u

��� ���; f0u 2 Gk; k 2 fi; jg: ð3Þ

x0�
ij;wrl is the world position at t ¼ 0 of a putative joint

between feature groups Gi and Gj. Eq. (3) causes alteration
of Krahnstoever’s (2003) (Krahnstoever (2003)) original
values from aþs ¼ 1 and a�s ¼ 10 to aþs ¼ 20; a�s ¼ 100 in
our implementation (see (Walther, 2011) for details).
Fig. 2h demonstrates the performance of this scheme on
the previously segmented input scenario (Fig. 2g).

3.3. Generating limb templates

Although sufficient for skeleton extraction, the sparse
body part patterns give only an approximation of true
human limb shape and must be fleshed to compact limb

templates. All pixels x : P t�
FðxÞ ¼ 1 of It

� ðxÞ (color frame)
are assigned to limb template i using

DkðxÞ ¼min
ft
�
j 2Gk

f t
�
j � x

��� ���
ifor pixel x ¼ arg min

i0¼0;...;NG�1
Di0 ðxÞ: ð4Þ

The resulting limb masks are exemplarily depicted in
Fig. 2i, color templates for each body part i can easily be

learned by collecting information in areas of It
� ðxÞ covered
by the respective limb masks. Shape templates are con-
structed by scanning the outer perimeter of each mask, thus
avoiding shape contributions from the foreground area.
The learned body part templates do not take into account
deformation behavior of human limbs, but in downstream
processing, such deformation will be averaged out anyway.

3.4. Pictorial structures for upper human body modeling

It remains to cast the extracted templates and kinematic
constraints into a concise body pattern, which is repre-
sented by a pictorial structure model (Fischler &
Elschlager, 1973; Felzenszwalb & Huttenlocher, 2000).
These models are tree-shaped graphs, with vertices and
edges labeled with appearance information and movement
constraints. Our upper-body PS representations (Fig. 1h)
allow to unify appearance and kinematic constraints of
the observed subject. Each model comprises a tree-like
graph with vertices representing the appearance of the
body parts found in the limb extraction stage. Each graph
edge encodes the ‘bones’ (kinematic constraints) of the pre-
viously extracted skeleton. The PS is further augmented
with an array of joint angles learned for each retrieved
body joint incorporating sequence-specific limb orientation
information.

A pictorial structure is matched to an image by calculat-
ing appearance cues on the image and evaluating the devi-
ations by means of a match cost function miðli; IðxÞÞ that
evaluates the compatibility between model limb i’s features
(assuming that the limb is positioned according to location
li) and the corresponding observations in IðxÞ.

For calculating the shape features and their distances
the input color image is first converted to a binary line
image using the EDISON algorithm (Christoudias,
Georgescu, & Meer, 2002). Using oriented chamfer distance

(Shotton, Blake, & Cipolla, 2008), thinned (thinning routi-
nes from (Eriksen, 2006) representations of the learned
limb perimeters are matched to the EDISON-based line
representation.

Large differences in appearance lead to high values of
this function. Strong deformations are penalized by a
deformation cost function Felzenszwalb and Huttenlocher
(2000) dijðli; ljÞ, which evaluates given joint constraints
between body parts i and j, taking on high values for model
configurations that do not comply with valid human body
assemblies. Putting both together yields the PS model’s
energy/matching cost functional (adopted from
Felzenszwalb & Huttenlocher (2005))

EPðLÞ ¼
X

vP;i2VP

miðli; IðxÞÞ þ
X

ðvP;i;vP;jÞ2EP
dijðli; ljÞ ð5Þ

The best match between the PS and an image is found
by optimizing this cost function with respect to limb place-
ments. Efficient methods to carry out this optimization are
described in Felzenszwalb and Huttenlocher (2000, 2005).
We extend them with the following modifications: A
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‘switched’ slope parameter kh (which is constant in
Felzenszwalb & Huttenlocher (2000)) allows for integra-
tion of joint angle limits: if a joint’s rotation angle is within
limits, kh remains small, ensuring nearly unconstrained
joint motion, otherwise kh is significantly increased to
penalize posture estimates violating learned joint ranges.
Additionally, kinematic flips (Sminchisescu & Triggs,
2003) are tolerated in PS matching, deviating from
(Felzenszwalb & Huttenlocher, 2000): model limbs may flip
their principal axes to better accommodate complex body
postures. Joint angles are automatically adopted during
the flipping process, which is restricted to both forearms.

This matching procedure, PS matching for short, is used
for creating sequence-specific models into the meta-model
(Fig. 1(b)), for creating the meta-model (Fig. 1(m)), and
for inferring probable configurations of limb candidates
(Fig. 1(m)).

4. Meta model formulation

These PS models are highly scenario-specific and will be
inadequate for posture estimation in novel situations. A
model learned from a subject wearing a red short-sleeve
shirt will likely fail to match another subject wearing a
green long-sleeve shirt. Nevertheless, the sequence-specific
PS models created above might well be consolidated to
yield a more generic and powerful meta model (Walther
& Würtz, 2010) Mmeta that represents the upper human
body on an abstract, conceptual level (Fig. 1m).

To that end, let M ¼ ½M0; . . . ;MNM�1� represent an
array of body models extracted from NM sequences using
the techniques proposed above. For each model Mi

Si ¼ ½si;0; . . . ; si;NG�1� is the array of smoothed and normal-
ized shape templates. Smoothing is of Gaussian type (using
a standard deviation of 5 pixel) and helps to cope with
moderate cloth deformation, cf. (Walther, 2011). Subse-
quent normalization forces all values in the smoothed tem-
plate into ½0; 1�. In addition, let Ci ¼ ½ci;0; . . . ; ci;NG�1�
constitute the color templates retrieved for each limb of
Mi. Further, be Oi;j an array containing all observed orien-
tations of Mi’s jth limb. Any model i contains a constant
number N J of joints, and comprises an array W i;k, which
aggregates all joint angles observed for joint k.

Mmeta also holds a shape accumulator array
Sacc ¼ ½sacc;0; . . . ; sacc;NG�1� and a color accumulator array
Cacc ¼ ½cacc;0; . . . ; cacc;NG�1� for each meta limb. The accumu-
lators for meta limb j are related to the meta model’s body
part representations according to

smeta;j ¼ sacc;j

N I

; cmeta;j ¼ cacc;j

N I

: ð6Þ

N I indicates the number of sequence-specific models
already integrated into Mmeta. There is also a joint position

accumulator array, discussed by Walther (2011).
To initialize the meta model, let Mmeta ¼ M0. Limb tem-

plates from M0 are copied into the accumulators of the
meta model, N I is accordingly set to 1. In addition, topol-
ogy and connectivity are cloned from M0, as well as joint
limits and angular distributions.

4.1. Aligning the input models

Integrating information from each Mi (i > 0) into the
evolving meta model is a concept building task. The meta
limb prototypes (i.e., the limb templates of Mmeta) are
updated by sequentially adding information from all Mi

(i > 0) to Mmeta. To ease that process, the structure of each
incoming model Mi is aligned to match the current meta
model structure w. r. t. body part alignment, limb enumer-
ation, and joint enumeration. To that end, Mi is instanti-
ated to take on a typical posture by setting each of the
model’s joints to the center angle halfway in between the
links’ upper and lower limits. Directional statistics

(Mardia & Jupp, 2000) are used to find these center angles.
The designated root limb acts as an anchor in the instanti-
ation process and is fixed to its mean orientation. Thinned
limb shapes of the instantiated model are then projected to
an artificial query image IaðxÞ. Barycenter coordinates of
each projected shape template si;j are stored in bi;j. The cur-
rent Mmeta is matched to IaðxÞ, using the PS matching rou-
tines discussed in Walther (2011). After matching,
barycenters bmeta;k of the meta model should project near
the bi;j if only if meta limb k corresponds to limb j in Mi.
Then meta limb k is defined to correspond to model limb

j ¼ argmin
j0

bmeta;k � bi;j0
�� �� ð7Þ

Knowing all limb correspondences, Mi can readily be
manipulated to comply with the meta model’s current
structure: limb and joint enumeration are unified by rein-
dexing, using the retrieved correspondences. After reindex-
ing, limb j in model i corresponds to meta limb j and joint k
of Mi corresponds to meta joint k. With that, body-centric
coordinate systems of all limbs in Mi are adjusted such that
limb focusing in Mi and Mmeta becomes identical; thorough
bookkeeping is necessary to keep values in each Oi;j and
each W i;k consistent. After these preparations, Mi is aligned
with the current meta model.

4.2. Learning meta shape prototypes

Formulating prototypical shapes (Fig. 1i) for a structure
that deforms as vividly as a dressed human limb is not triv-
ial, we rely on the approximate registration between each
shape template si;j of Mi and the corresponding meta shape
prototype smeta;j. Based on that, a registration operator

applies the 2D iterative closest point (ICP) method of Besl
and McKay (1992), accelerated according to
Rusinkiewicz and Levoy (2001), to compensate for the
residual alignment failure between the shape representa-
tions. Following ICP registration, si;j and smeta;j are
assumed to be aligned optimally in the sense of Besl and
McKay (1992). The aligned si;j is eventually summed into
sacc;j; this summation for all i > 0 yields a voting process
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(Lee & Grauman, 2009): shape pixels strongly voted for by
constantly high accumulator values evolve into persistent

outline modes, whereas areas not supported by given evi-
dence fade out during aggregation. After adding sNM�1;j,
the weakest 25 percent of the collected votes are removed
from the accumulator in order to memorize only reliable
outline segments for each processed body part.
4.3. Acquiring meta color prototypes

Learning meta color prototypes (Fig. 1j) is more
involved than shape prototype construction: assuming that
color information from some sequence-specific model Mi

shall be exploited to update the meta color prototypes,
results from above matching/ICP registration can be car-
ried forward to align color prototype ci;j with the corre-
sponding color accumulator cacc;j. The aligned color
representations are mapped to HSV color space and pixel-
wise color similarities are measured by HS-histogram-
based windowed correlation. The V-component is dropped
in order to increase robustness against illumination varia-
tion (Elgammal, Muang, & Hu, 2009). A binary persistent

color mask Mi;jðxÞ is then defined such that pixels in Mi;jðxÞ
take on ‘1’ values if and only if the correlation result at
image location x exceeds a threshold of 0.25. Guided by
Mi;jðxÞ, information from ci;j is used to update the meta
model’s jth color accumulator, according to

cacc;jðxÞ ¼
cacc;jðxÞ þ ci;jðxÞ if Mi;jðxÞ > 0

0 otherwise

�
: ð8Þ

When applied to all ci>0;j, Eq. (8) suppresses color infor-
mation that varies significantly between sequences. Persis-
tent colors are preserved as desired and yield, via Eq. (6),
the prototypes cmeta;j; j 2 f0; . . . ;NG�1g. Any cmeta;j is con-
sidered valid if it contains at least one nonzero pixel.

Now each cmeta;j is augmented with an HS-histogram
Hmeta;j that allows for histogram backprojection (Swain &
Ballard, 1991). To populate Hmeta;j, a complex sampling
scheme is employed; see (Walther, 2011) for details. Back-
projecting Hmeta;j to novel image content yields the back-

projection map CjðxÞ for the corresponding body part.
Windowed histogram backprojection is employed here in
order to increase compactness of the generated maps. For
posture estimation the backprojection maps are thresh-
olded at 10% of their peak and blurred by a Gaussian with
a standard deviation of 5.0 pixel. Follow-up normalization
forces CjðxÞ into ½0; 1�, all entries in backprojection maps
corresponding to meta limbs without valid color prototype
are set to 1.0. Fig. A.7b (additional material) exemplarily
shows CtorsoðxÞ resulting from backprojection of Hmeta;torso

to the query image in Fig. A.7a (additional material).
Based on CjðxÞ, the color cue map Chj;sjðxÞ for meta limb

j with orientation hj and scale sj is readily defined: let
c0meta;j be a binarized representation of cmeta;j, with

c0meta;jðxÞ ¼ 1 if and only if cmeta;jðxÞ
�� �� > 0. Then be
c0meta;hj;sj
an instance of c0meta;j, oriented and scaled as to

match meta limb j’s desired state. With that

Chj;sjðxÞ ¼
CjðxÞ � c0meta;hj;sjP

c0meta;hj;sj

; ð9Þ

where ‘�’ is convolution and the sum aggregates all nonzero
pixels in c0meta;hj;sj

.

4.4. Gabor prototype generation

Besides shape and color information persistent texture

can be learned autonomously from given input data
(Fig. 1k). To that end, we employ Gabor wavelets as tun-
able, localized frequency filters in the construction of
Gabor grid graphs for each meta limb i. Graph nodes cor-
respond to mean Gabor magnitude jets (cf. (Lades et al.,
1993)) Ji;j; j ¼ 0; . . . ;NQ;i � 1 learned from the input
streams. The jet learning scheme uses the same batch pro-
cess as employed for color prototyping (cf. (Walther,
2011)). Given the mean jets, batch learning is restarted to
calculate each jet j’s covariance matrix, whose largest eigen-
value k�i;j provides a convenient measure of the node’s reli-

ability gi;j ¼ 1=
ffiffiffiffiffiffi
k�i;j

q
. In our approach, two normalized

complex jets JA and JB are compared by inspecting their
absolute parts only (Lades et al., 1993).

SAbs JA; JBð Þ ¼
X
j

aA;jaB;j ð10Þ

Being exclusively interested in persistent texture, all
nodes with reliabilities gi;j < 5:0 are pruned. The largest

connected subgraph G�
G;i that survives this procedure

makes up a valid Gabor prototype for meta limb i if and
only if its node count N �

Q;i exceeds 50; this large threshold

restricts prototype learning to meaningful Gabor patches.
Henceforth, define the nodes of prototype graph i to be
gi;j; j ¼ 0; . . . ;N �

Q;i � 1. In our experiments, a valid Gabor

prototype evolved exclusively on the head region; potential
Gabor patterns for all other limbs were depleted of nodes
by pruning and became invalid. Note that our system
learns to treat the head and the thorax region of an
observed subject as a single torso entity, because the train-
ing data did not include movement between the two. Thus,
the evolved Gabor prototype can be seen as a generic
texture-based torso detector that optimally responds to
human torsi in upright position.

A Gabor jet representation GI xð Þ of query image IðxÞ
yields a Gabor cue map for meta limb i in orientation hi
and with scale si:

Ghi ;siðxÞ ¼1� 1

N �
Q;i

X
gi;j2G�

G;i

SAbs Ji;j; JI

� �
;

JI ¼GI xþ Phi;si gi;j
� �� �

; ð11Þ
where Phi ;si �ð Þ projects nodes of G�

G;i into IðxÞ. Fig. A.8

(additional material) demonstrates application of the
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learned torso detector (in upright position and with scale
1.0) to the image in Fig. A.8a: the observed torso barycen-
ters correspond to pronounced minima in the Gabor cue
map depicted in Fig. A.8b.

4.5. Limb pre-detection

Rotation of any meta limb i with valid Gabor prototype
G�

G;i can safely be assumed negligible (Walther, 2011). This

allows to condense the orientation dimension of the meta
limb’s state space to a single, typical value htyp;i which cor-
responds to the mean of all body part orientations
observed during model learning. Accordingly, we define
the color-augmented Gabor detection map for meta limb i,
presuming that a valid G�

G;i exists

Ghtyp;i;siðxÞ ¼
1
2
GðxÞ if GðxÞ < bG

2
and CðxÞ > bC

2

GðxÞ otherwise;

(
ð12Þ

where GðxÞ is a shortcut for Ghtyp;i;siðxÞ;CðxÞ stands for

Chtyp;i ;siðxÞ; bG is the peak value of Ghtyp;i ;siðxÞ and bC repre-

sents the largest value of Chtyp;i ;siðxÞ. Combining the two

‘weak’ cues in Eq. (12), the system successfully eliminates
wrong detection optima in all performed experiments. With
that,

spre;i ¼ argmin
s

min
x

Ghtyp;i ;sðxÞ
� �

ð13Þ

yields the most probable scale estimate for meta limb i

given texture and color evidence in input image IðxÞ. Min-
imization in Eq. (13) is performed with 30 discrete scales
between 0.7 and 1.0. Going beyond scale, let

xpre;i ¼ argmin
x

Ghtyp;i ;spre;iðxÞ ð14Þ

and eventually assume meta limb i to be pre-detected in

location lpre;i ¼ xpre;i; htyp;i; spre;i
� �

. In the following experi-

ments, positional search space for any pre-detectable meta
limb i is restricted to �10 pixel around xpre;i. Such body
part anchoring acts, via given articulation constraints, on
the complete meta model and allows to circumnavigate
false local posture optima induced by background clutter.
Thus, limb anchoring renders the final posture estimate
more robust. Higher processing speed can be expected as
a positive side effect of the anchoring procedure, as fewer
state space locations have to be probed in the model match-
ing cycle. This procedure is used for predetecting limb can-
didates before PS matching to reduce the complexity of the
latter (Fig. 1h).

4.6. Enforcing color constancy

Scenarios with unrestricted illumination conditions
require chromatic adaptation (Finlayson & Süsstrunk,
2000) like human perception (Hsu, Mertens, Paris,
Avidan, & Durand, 2008) to achieve approximate color

constancy (Fig. 1l). This relies on persistently colored parts
of the body to act as intrinsic color reference for autono-
mous chromatic adaptation, similar to (Montojo, 2009):
first, input image IðxÞ is transformed to Lab opponent color

space(Margulis, 2006; Montojo, 2009), yielding ILabðxÞ.
Lab space allows to remove unwanted color deviations
by balancing the each pixel’s chromaticity coordinates until
the cast vanishes while leaving luminance values largely
unaltered. A shift vector of length Ri 2 f0; 2; 4; 8; 16; 32g
and direction ci 2 fvi 2p8 : vi ¼ 0; . . . ; 7g is added to the (a,

b)-components of each pixel in ILabðxÞ and results in a
color-shifted Lab input image ILab;Ri;ciðxÞ. Conversion of
ILab;Ri;ciðxÞ to HSV yields IHSV;Ri ;ciðxÞ. A windowed backpro-
jection (window size: 7x7 pixel) of Hmeta;i onto IHSV;Ri ;ciðxÞ
gives the color similarity map URi;ciðxÞ, whose values are
normalized to ½0; 1�.

Assuming existence of a valid Gabor prototype (and
thus a valid lpre;i) for meta limb i, the binary c0meta;i are pro-

jected into the image plane (according to the parameters in
lpre;i); morphological opening follows to get rid of noise in
the induced projection map c0meta;lpre;i

. From that we define

the color similarity measure

CRi ;ci ¼
P

x:hðxÞ¼1URi ;ciðxÞP
c0meta;lpre;i

; ð15Þ

where hðxÞ ¼ c0meta;lpre;i
ðxÞ. Additionally, approximate a

probability distribution

pRi;ci
ðxÞ ¼ URi ;ciðxÞP

URi;ci

ð16Þ

with
P

URi ;ci being the sum of all entries in the color sim-
ilarity map. This allows to set up the entropy of the color
similarity map, according to

SRi ;ci ¼ �
X
x2X

pRi;ci
ðxÞ lnðpRi;ci

ðxÞÞ: ð17Þ

SRi;ci grows large if the color distribution in URi ;ciðxÞ
becomes diffuse, well-defined clusters bring the entropy
down (Fig. A.9, additional material). As persistent color
patches stored in the meta limbs generally constitute coher-
ent, compact structures, their footprints in URi;ciðxÞ should
(in the case of correctly chosen hyperparameters Ri; ci)
become blob-like; thus, color distributions with lower
entropy are preferable. Optimal hyperparameters ðR�

i ; c
�
i Þ

are found according to

ðR�
i ; c

�
i Þ ¼ argmax

Ri;ci

CRi ;ci

SRi ;ci

: ð18Þ

The corresponding Lab space shift vector that causes image
colors (after conversion to RGB) to near persistent colors
of meta limb i to the utmost possible extent (w.r. t. color
similarity and entropy) is defined as s�i ¼ sR�

i ;c
�
i
. Fig. A.10

(additional material) shows the efficiency of the chromatic
adaptation routines employed here: the depicted backpro-
jection maps for the torso’s histogram Hmeta;torso show sig-
nificant improvement due to automatic color correction.
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4.7. Augmenting the matching cost function

Given chromatically corrected input material, color
information can be used to enhance the PS model matching
procedure so far based on pure shape information. We
define a negative stimulus map NiðxÞ that encodes a stan-
dard distance transformation on a morphologically
opened, inverted instance of c0meta;lpre;i

. Subsequent normal-

ization forces elements of NiðxÞ to lie in [0;1]. The comple-
mentary positive stimulus map is defined by
P iðxÞ ¼ 1� NiðxÞ. The negative stimulus map is truncated
at 0.3 to limit its influence on distant image structures.
With that, a range of spatially biased backprojection maps

for all meta limbs is initialized as CiðxÞ ¼ CiðxÞ, with
i ¼ 0; . . . ;NG � 1. For any pre-detectable meta limb i, these
maps are updated according to

CjðxÞ ¼ CjðxÞ � P jðxÞ if j ¼ i

CjðxÞ � NjðxÞ if j– i

(
; ð19Þ

Chi;siðxÞ ¼
CiðxÞ � c0meta;hi;siP

c0meta;hi ;si

ð20Þ

These modified color cue maps give rise to a color-
augmented matching cost function (see (Walther, 2011)
for details)

miðli; IðxÞÞ ¼ � log 1� Shi;siðxÞ½ � � 0:65 � Chi ;siðxÞ þ 0:35
� �� �

;

ð21Þ
where scaling and offsetting prevent color from dominating
shape information. As shown in Fig. 3, this can disam-
biguate complex double-counting (Ferrari, Marı́n-Jiménez,
& Zisserman, 2008) situations.

5. Experimental evaluation

To test the posture inference (Fig. 1q) capabilities of the
proposed meta model ‘in the wild’, we have recorded the
INIPURE (Institut für NeuroInformatik – PostURe Esti-
Fig. 3. Without stimulus maps, double-counting (Ferrari et al., 2008) can yield
this issue and yields perceptually valid results.
mation) database. This image set contains 63 upper body
shots of adult subjects of different genders and age groups
at a resolution of 1000 	 750 pixel. Inter-subject variance
in physique and worn attire is significant; a subject’s body
pose may be severely foreshortened, background clutter
and scene illumination are relatively unconstrained. For
evaluation of matching, all images in the database have
been manually annotated with ground-truth 2D posture
information. All images (together with the system perfor-
mance) are shown in Figs. A.11–A.21. Raw images for
comparison with other systems are available from the
authors on request. This allows to compare our system’s
matching performance with human intuition: let DTb;iðxÞ
be a distance transformation map that stores the minimum
Euclidean distance of any pixel in an INIPURE benchmark

image b (henceforth represented by IbðxÞ) to body part i’s
manually labeled perimeter. Further, be s�u;i a binarized

and thinned representation of meta model u’s i’th shape
template, projected to IbðxÞ according to our system’s opti-
mal posture estimate. Nonzero pixels hu;i 2 s�u;i shall be pro-
vided in IbðxÞ’s coordinate system. With that, the
untruncated chamfer distance between s�u;i and the anno-

tated perimeter of body part i in benchmark image b

becomes (Shotton et al., 2008)

du;i;b ¼ 1P
s�u;i

X
hu;i2s�u;i

DTb;i hu;ið Þ; ð22Þ

where
P

s�u;i is the total number of nonzero pixels in s�u;i.
Eq. (22) allows to set up the limb-averaged model registra-
tion error Eu;b as the average of all NG du;i;b.

5.1. Validating the meta model

Based on Eu;b, the quality and robustness of our meta
model can be assessed: in real-world settings, the succession
of sequence-specific body models integrated into the meta
model can hardly be controlled. Consequentially, the meta
model’s matching performance has to be invariant against
wrong posture estimates (s. a). Activating the stimulus maps (s. b) corrects
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changes in model integration order. To check for such
invariance, basic permutation tests suffice: a permutation

table with NT ¼ 50 rows and NM columns is set up with
each row r containing a random permutation of all NM

body model indices. Processing the table row by row,
sequence-specific body models are aggregated according
to the row entries, forming interim meta models Mmetar .
These models are then matched to 6 benchmark images
manually selected from the INPURE database to cover
the most important variations. To indicate good matching
performance, both mean registration error lP;b and stan-

dard deviation rP;b should stay as low as possible for all
benchmark images; in particular, small standard deviations
allow to deduce that model integration order does not sig-
nificantly impact quality of posture inference. Cols. 2 and 3
of Table 1 shows that this requirement is fulfilled, even for
complex outdoor scenarios with severely cluttered
background.

A follow-up benchmark test aims at assessing the sys-
tem’s invariance against redundant information: given that
the meta model assembly routines operate properly and
Table 1
Mean and standard deviation of matching results when permuting meta
model assembly order (cols. 2, 3) and influence of redundant information
(cols. 4, 5) on selected images (col. 1).

Benchmark image Permutation Redundancy

lP;b rP;b lR;b rR;b

A 9.8 0.92 9.3 0.3
B 9.1 3.8 6.6 0.5
C 8.8 1.8 8.9 0.5
D 11.2 1.4 10.8 0.4
E 9.5 2.3 9.5 0.3
F 7.1 1.4 6.5 0.5
extract all accessible information from the sequence-
specific models, adding identical models multiple times
should not significantly alter matching performance. Prob-
ing this hypothesis is straightforward: as model integration
order was experimentally shown to be meaningless, a fixed,
canonical sequence of input models is selected first.

Meta models Mmetam are then learned by integrating the
canonical model sequence m times, where m 2 ½0;NC � 1�,
with NC ¼ 10. Posture estimation using each Mmetam is per-
formed on the above benchmark images; mean registration
error and standard deviation are evaluated, and cols. 4 and
5 of Table 1 shows that posture estimation results remain
precise (small lR;b’s) and stable (small rR;b’s), regardless

of artificially enforced data redundancy.

5.2. Hyperparameter settings

As both metamodel construction and matching are nec-
essarily based on a combination of several methods from
the literature, the number of hyperparameters from all
these methods adds up, amounting to some 20 thresholds,
template sizes, and other hyperparameters in this work.
Fortunately, these are not independent but can be adjusted
sequentially. Working on the given training set, the hyper-
parameters for background suppression, tracking and tra-
jectory clustering were adjusted one after the other to get
reasonable behavior. None of them are critical, no system-
atic optimization has been applied. The same goes for the
hyperparameters of shape, color and Gabor cues as well
as the combination parameters, which have been chosen
using a subset of 6 images from the INIPURE dataset.
These have been applied to the full dataset. The Perona
dataset has been evaluated without any hyperparameter
change. Of course, several hyperparameters imply assump-
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tions about ranges of scale, image resolution, etc., which
might need to be adjusted for new training data.

5.3. Experiments on real-world footage

Stepping beyond these demonstrations of algorithmic
soundness, benchmarking was extended to real-world ima-
gery. We have applied the trained meta model with all cues
to all 63 images in the INIPURE database. The results
were inspected by the first author and the images divided
in two categories, 17 complete failures and 46 acceptable
matches. Some of the latter are depicted in Fig. 5, full
results are provided as additional material. The optimal
posture estimate for the canonical meta model has been
overlaid to the query images, qualitatively demonstrating
that inferred posture comes close to human intuition.

Increased visual complexity will cause posture analysis
to become less precise and might even evoke partially
wrong estimation results like in Figs. A.12c and A.12d.

With the acceptable matches, we further investigated the
contributions of the meta model’s single cues to the match-
ing success. To that end, let meta model MmetaC be assem-
bled from the canonical input sequence introduced above.
Further, assume that use of shape and color features in

MmetaC can selectively be controlled via ‘switches’ eS , resp.eC . Other switches are deemed available for Gabor-based

limb pre-detection (eG), search space restriction by htyp;ð�Þ
(eR), application of stimulus maps ( eM ), and image enhance-

ment by chromatic adaptation (eA), allowing to activate/
Fig. 5. Examples of successful posture matching by the learned model (top
deactivate them on demand. The switch configuration vari-
able C shall represent the set of engaged switches; for

instance, C ¼ feS ; eG; eR; eC ; eM ; eA; g indicates that MmetaC ’s
capabilities are in full function, while C ¼ fg identifies an
inactivated meta model that becomes powerless in match-
ing attempts.

As the following statistics serve for system intrinsic com-
parison, it is reasonable to defer overly complex outlier
cases and focus on the NB image subset during evaluation
of the average lC and standard deviation rC of EC;b. Table 2
shows that pure shape information does not remotely suf-
fice to ensure reliable posture inference (row 1), as back-
ground clutter induces a large number of false positive
shape elements, causing imprecise (excessively large mean)
and unstable (large standard deviation) results. By adding
Gabor-based limb pre-detection routines (row 2), matching
precision increases, yet, as indicated by the large standard
deviation, remains unstable.

Locking body part rotation of all pre-detected meta
limbs i to htyp;i (row 3) not only speeds up the matching pro-
cess but also allows to circumnavigate a range of false local
optima. Nevertheless, obtained results are still far from
being useful for reliable posture analysis. Exploiting color
information (row 4) further increases systemic perfor-
mance. By activating the stimulus maps (row 5), both mean
error and standard deviation show another sudden drop
and registration quality increases significantly. Switching
on chromatic adaptation (row 6) additionally boosts
matching quality by allowing for more reliable color anal-
ysis. Wrapping up, Table 2 clearly demonstrates sophisti-
row) and posture mimicry performed by the NAO robot (bottom row).



Table 2
Mean and standard deviation of matching quality for different chosen
cues. Image resolution is 1000 	 750 pixel.

Active switches lC (pixel) rC (pixel)eS 171 113eS ; eG 62 71eS ; eG; eR 27 19eS ; eG; eR; eC 23 19eS ; eG; eR; eC ; eM 14 10eS ; eG; eR; eC ; eM ; eA 11 3

Table 3
Construction times for sequence-specific models.

Model Frames Seconds total Seconds per frame

0 200 42 0.21
1 200 46 0.23
2 200 58 0.29
3 600 80 0.13
4 185 42 0.22
5 109 29 0.26
6 270 60 0.22
7 232 56 0.24
8 207 49 0.24
9 193 50 0.26
10 249 58 0.23
11 331 77 0.23
12 248 53 0.21
13 379 75 0.19
14 115 28 0.24
15 75 21 0.27
16 460 83 0.18

ø ¼ 0:23
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cated cue fusion to be an inevitable mainstay of successful
meta model registration in significantly complex real-world
situations. Note that the above results were achieved using
a ‘well-behaved’ image subset for system intrinsic testing.
Stepping to the unbiased image set with NB=63 images,
including all outlier cases, lC becomes 25 pixel, while rC
takes on a value of 30 pixel (with all switches active).

To get a more comparative overview of the performance
of our solution in publicly available ‘real-world’ scenarios,
we tested our routines on the ‘Perona November 2009
Challenge’ (Perona, 2012) dataset. While performing pos-
ture estimation on this less complex image ensemble, poses
were correctly recognized on 10 images out of 32, yielding
Rok ¼ 31:25. Here Rok defines the percentage of ‘correctly’
recognized poses by means of human intuition. While this
measure is no true quantitative value, it allows to check the
estimation performance of our system on external image
benchmarks without the necessity for extensive pose tag-
ging. As our system learns from a single subject and has
to generalize from autonomously acquired knowledge
(compared to massive training found in standard posture
estimation approaches) this value seems quite acceptable.
Image resolutions take the values 553 	 800, 600 	 800,
800 	 553, 800 	 600. Some matches are shown in 4, full
results in the additional material, Figs. A.22–A.25. For
the INIPURE dataset Rok becomes equal to 69.84.

5.4. Timing considerations

Calculations were done on an AMD PhenomTM II X4
965, 3.4 GHz unit with 4 GB of RAM, and an NVIDIA� -
GeForce�9800 GT graphics adapter.

Table 3 shows processing times (third column) are
logged for each sequence-specific model from initial motion
segmentation to final PS generation. Normalization by the
number of frames in each sequence yields comparable per-

frame figures (fourth column), whose mean of 6 0:25 s per
frame indicates that sequence-specific upper body models
can be learned reasonably fast.

With that, it becomes interesting to analyze meta model
construction timings; necessary figures are logged while
performing above permutation tests: be T ðMmetarÞ the time
(in seconds) it takes to assemble Mmetar from row r of the
permutation table. As meta model construction periods lin-
early depend on the number of integrated, sequence-
specific models, the mean of all observed T ðMmetarÞ,
r ¼ 0; . . . ;NT � 1 is divided by NM, such that Tmeta

expresses the average meta model construction time per
integrated body pattern. Given the above hardware/soft-
ware configuration, values of Tmeta 
 45 s per integrated
model are achieved, allowing to assemble meta models
swiftly, even for growing NM, as meta model construction
time is linear in the number of integrated models. Eventu-
ally, assume that meta model registration timings have
been logged for all ‘non-outlier’ experiments. Finding the
mean of the recorded figures, the meta model matching
cycle can be stated to consume 178 s per image. This value
could be improved with additional GPUs.

5.5. Controlling the NAO robot device

For the VBMC framework proposed in this paper, our
experiments demonstrate good generalization performance
in weakly constrained scenarios. To demonstrate another
use, we have implemented a behavior on a NAO robot
device (manufactured by Aldebaran Robotics), which uses
the learned meta model to compare an externally observed
posture to its own posture and then making appropriate
movements to assume the same posture, thus mimicking
a human example.

Using the NAOqi framework, the robot’s kinematic con-
figuration can be controlled. From NAOqi’s access to
NAO’s kinematics, an upper body skeleton can be assem-
bled that reliably traces the robot’s posture changes.
Assuming fronto-parallel motion patterns under ortho-
graphic projection, the single ‘bones’ of the skeleton are
expected to move parallel to the image plane, relative to
which the rotation axes of the connecting joints should
remain perpendicular. Therefore, the 3D skeleton is pro-
jected to the image plane by dropping depth information.
The resulting skeletal footprint F ðPÞ yields a good 2D
approximation of NAO’s effective 3D pose P, given that
foreshortening is kept at bay (ensured manually). Each
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projection is augmented with the parameters of the 3D con-
figuration it approximates; this way, NAOqi’s actuator
control routines can later be invoked to restore 3D posture
corresponding to any particular skeletal footprint. With
these preparations, NAO is guided manually through a
range of fronto-parallel, collision-free upper body poses
that are deemed typical for human beings. Footprints for
each of the trained poses are sampled and stored, yielding
an ample footprint repository R.

Now, if NAO is actuated to take on ‘T-like’ posture PT;
a ‘snapshot’ of this scenario is provided by ITðxÞ. Mmeta is
matched to ITðxÞ; all cues other than shape are turned off in
this registration process, realizing that NAO’s appearance
(w. r. t. color and texture) does not even remotely resemble
the human look encoded in Mmeta. Thus, stepping beyond
shape features would only hamper reliable model registra-
tion here. Following successful matching, structural corre-
spondences between the matched meta model and the
skeleton encoded by F ðPTÞ are learned. Assuming persis-
tence of the established correspondences allows to find,
for any meta model configuration L, the most similar skele-
tal footprint in R.

To actually mimic posture observed in an image IQðxÞ,
the above relations come in handy: let L� represent the
globally optimal posture inferred by matching Mmeta to
IQðxÞ. Let further skeletal footprint F �ðP�Þ 2 R be the
one most similar to L�. The observed upper body pose is
then replicated by sending parameters encoded in P� to
NAOqi, which in turn actuates NAO as to take on the
desired kinematic configuration. For a graphical overview
of the described posture mimicking cycle, see Fig. 6.
Meta model

Query input

Query posture

Mimicked posture

NAO input

Match

Learn correspondences

Sample valid postures
Find 2D footprints

Mimic query
 posture

NAOqi
WebotsRobot device

TM

Fig. 6. NAO’s mimicking behavior.
Due to the discrete nature of footprints collected in R,
posture mimicking results will necessarily be an approxi-
mation to L�. In addition, NAO’s hardware limits the spec-
trum of natural upper body poses that can be emulated (for
instance, folding the robot’s arms seems physically impos-
sible). Notwithstanding these limitations, Fig. 5 qualita-
tively demonstrate the proposed framework’s effectiveness
in mirroring posture observed in real-world footage.

6. Comparison with supervised approaches

We also challenged our system with publicly available
benchmarks like the ‘Buffy Stickmen’ (Ferrari et al.,
2012) image ensemble. Here, recognition rates were negligi-
ble compared to contemporary posture estimators includ-
ing, for instance (Eichner, Marin-Jimenez, Zisserman, &
Ferrari, 2012). In fact, our system occasionally found cor-
rect postures, yet these data didn’t suffice to set up mean-
ingful statistics. However, such behavior was expected:
images in the ‘Buffy’ set are extremely complex, showing
strong illumination, pose, and scale variations. As our sys-
tem had to learn posture estimation from scratch without
human guidance, it can by no means compete with contem-
porary pose estimation solutions like (Eichner et al., 2012)
who make intense use of manual training and inject signif-
icant a priori knowledge into their system (for instance, by
utilizing pre-made upper body detectors).

The current state of the art in human pose estimation in
still images is defined by Toshev and Szegedy (2014). The
system consists of a body detector, which preprocesses all
images. Afterwards, a cascade of convolutional neural net-
works is trained on 11000 images from the FLIC Sapp and
Taskar (2013) and Leeds Johnson and Everingham (2011)
datasets. Each of these images is manually annotated with
the position of 10 upper body joints. Data augmentation
by mirroring and crop box variation yields a total of 12
million training images.

Like in all feedforward neural network approaches,
evaluation of a single image is extremely fast at 0.1s on a
12 core CPU. Training is more laborious and takes some
24 days on 100 ‘‘workers” (presumably combined CPU/
GPU machines). Success rates are around 80% for arms.
The corresponding numbers for our system are 4253 video
frames at 1000 	 600 pixel, none of which is annotated for
training. Training time is 16 min on a PC, and evaluation
of a single still image takes about 3 min. It is successful
in 70% of the cases on our own dataset, and 31% on the
Perona challenge.

Clearly, our system cannot match the performance of
supervised systems but it demonstrates a reasonable learn-
ing success in a different setting with much fewer resources.
Furthermore, enhancing our matching with preprocessing
by a body detector would certainly yield much better
results, especially on the multiple person images. The goal
of our experimentation was to show the capabilities and
shortcomings of a body model learned in an unsupervised
way.
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7. Conclusion

The promising results above allow to state that OC prin-
ciples might well be used to alleviate the obstructive need
for human supervision that plagues conventional HPE/
HMA solutions. Our system learns conceptual representa-
tions of the upper human body in a completely autono-
mous manner, the experiments show that the resulting
meta model achieves perceptually acceptable posture infer-
ence in moderately complex scenes. Nevertheless, much
work remains to be done: one idea would be to replace
our motion segmentation scheme; switching to methods
found, e.g., in Kumar et al. (2008) could allow for system
training in scenarios of increased complexity. Beyond that,
parallelization techniques show potential in boosting
model matching; avoiding registration jitter in the learning
stage would probably result in improved Gabor models for
the single meta limbs.
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