Embodied nervous systems

Gregor Schöner

Braitenberg vehicles

=embodied nervous systems with:

sensors

a nervous system

📕 a body

- + situated in a structured environment
- = emergent function

Sensors

are characterized by a sensor characteristic= relationship between the physical quantity (e.g. sound, luminance, chemical concentration, mechanical pressure....) and an inner state variable: "activation"

Effectors

are defined by a motor characteristic = a functional relationship between an inner activation state and a physical effect generated in the world (e.g., turning rate (rotations per minute rmp), force level, stiffness, ...)

Body

mechanically links the sensors to effectors

Nervous system

links sensors to effectors through the inner activation state

Environment

is structured at a relevant scale in terms of the physical variables to which organism is sensitive

Emergent behavior: taxis

Behavior emerges as the solution of a dynamical system

feedforward nervous system

+ closed loop through environment

=> (behavioral) dynamics

Behavior emerges as the solution of a dynamical system

feedforward nervous system

- + closed loop through environment
- => (behavioral) dynamics

- bistable dynamics for bimodal intensity distribution
- => nonlinear dynamics makes selection decision

=> instabilities lead to qualitative change of behavior

- transition to monostable for mono-modal distribution
- => instabilities lead to qualitative change of behavior

distance between sources

Beyond sensory-motor cognition...

source₁ < source,

Beyond sensory-motor cognition...

Beyond sensory-motor cognition...

- if sensory information about source not always available on the sensory surface
- => working memory

=> activation

need "inner state" that is independent of body or sensors:

Braitenberg vehicles

=embodied nervous systems with:

sensors

a nervous system

📕 a body

- + situated in a structured environment
- = emergent function

Sensors

defined by sensor characteristic =relationship between

the physical stimulus intensity

e.g., sound, luminance, chemical concentration, mechanical pressure....

and an activation variable

Effectors

- defined by the motor characteristic =functional relationship between
- an activation level
- and a physical effect generated
 - for example: turning rate (rotations per minute rmp), force level, stiffness, ...)

Body

the body links the sensors and effectors mechanically

Nervous system

links sensors to effectors

Environment

Emergent behavior: taxis

Emergent behavior: this is a dynamics

feedforward nervous system

- + closed loop through environment
- => (behavioral) dynamics

- bistable dynamics for bimodal intensity distribution
- => nonlinear dynamics makes selection decision

- transition to monostable for mono-modal distribution
- => instabilities lead to qualitative change of behavior

- transition to monostable for mono-modal distribution
- => instabilities lead to qualitative change of behavior

source
$$\swarrow$$
 source 2

- that generate cognition: internal decisions...
- bifurcations => different cognitive regimes

- if sensory information about source not always available on the sensory surface
- => working memory

=> activation

need "inner state" that is independent of body or sensors:

neural dynamics