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Gregor Schöner and Jan Tekülve and Stephan Zibner

Institut für Neuroinformatik

Ruhr-Universität Bochum

Germany

September 18, 2017

1 Introduction

Reaching and grasping objects is an evolutionarily late achievement. Throughout the

animal kingdom, much object oriented action is achieved with the whole body, in mam-

mals often with the head and snout. Because the vision sensor is anchored in the head,

such object-oriented movements can be achieved with simple control strategies, such

as visual servoeing (Ruf & Horaud, 1999), that make limited demands on perception,

estimation, and movement planning. Reaching with an actuator that is separate from

the main visual sensor is prevalent in primates. Humans excel at object oriented ma-

nipulation tasks, much exceeding the skills of other primates. This is a developmental

achievement as witnessed by the long and intense period of learning to reach (von

Hofsten, 1984, 1991; Thelen, Corbetta, & Spencer, 1996; Berthier & Keen, 2006)

Spatial orientation and navigation may be achieved based on unsegmented visual

information (Schöne, 1984; Hermer & Spelke, 1994). In contrast, reaching makes con-

siderable demands on object perception. (1) To reach and grasp an object, that object

must be visually segmented against the background and its pose be estimated. (2)

Spatial information about the object must be transformed from a visual reference

frame into a reference frame in which motor commands to the hands may be formed.

Such coordinate transforms are computationally demanding (Pouget & Snyder, 2000;

Schneegans, 2015) and learning them is a challenge (Chao, Lee, & Lee, 2010; San-

damirskaya & Conradt, 2013). (3) Motor commands must be generated that drive the

hand toward the object and bring it into contact with the object with a small enough

terminal velocity that enables grasping. This is particularly challenging as infants are

weak relative to the mass of their limbs. Because the force/weight relationship changes

during growth, the motor commands must be updated over development. (4) Gen-

erating and controlling successful reaches also entails solving the degree of freedom

problem, that is, distributing to the many muscles that contribute to arm movement a

1

In: The selection and production of goal-directed behaviors:
Neural correlates, development, learning, and modeling of reach-to-grasp movements 
Daniela Corbetta, Marco Santello (eds.), Tayler & Francis, (in press, 2017/2018)



coordinated set of commands that achieve contact with the hand (Sporns & Edelman,

1993; Latash, 2008). Little is known to date about how this problem is solved during

development. (5) Finally, reaching movements must be initiated and then terminated

when the hand makes contact with the object. Typically, successful reaches and grasps

are followed by further actions like mouthing or banging the object on a table. The se-

quential organization of such component movements is part of the motor skill involved

in reaching.

This broad range of component processes that span perception, cognition, and

motor control, may be a reason why many questions about object-oriented reaching

and grasping behavior remain unanswered (see e.g., section on motor control in Lisman

(2015)). At one level, a developmental perspective may be particularly attractive. In

order for an infant to successfully reach and grasp an object, all processes must be

in place and coordinated with each other. Observing how reaching is assembled over

development may help understanding how the pieces come together.

Alas, studying the development of reaching empirically is very hard. Babies do not

follow task instructions. They must be seduced to repeatedly reach and parametric

manipulations of the reaching movements are di�cult to impose. Reaches are highly

variable and individual di↵erences important (Thelen et al., 1996). It is hard to measure

movement trajectories in detail, as preparing infants with markers takes time and

patients, inducing attrition. Once movement trajectories have been obtained, their

analysis is hampered by the di�culty to reliably detect onsets and o↵sets of individual
movements and thus, to align trajectories across trials (see, however, (Corbetta &

Thelen, 1995) for a systematic trial-by-trial solution). In fact, young infants often

move continuously, sometimes in approximately periodic fashion.

To date, three data sets about the development of reaching are most elaborate

(von Hofsten, 1991; Thelen et al., 1996; Berthier & Keen, 2006). Their properties are

reviewed in detail and commented upon in (Caligiore, Parisi, & Baldassarre, 2014).

Unfortunately, the data are not strongly constraining for theoretical accounts as of

now, even though they include longitudinal studies that provide samples of reaching

behavior in individuals along developmental time. A principle problem of all accounts

of motor learning during development is, of course, that the actual process of motor

learning is di�cult to observe, because it takes place every hour of the awake and

behaving time when infants work on they motor skills with intensity and dedication.

The development of reaching is also hard to study theoretically. First, there is

currently no complete neurally grounded theory of reaching! A model from our own

group (Martin, Scholz, & Schöner, 2009) integrates process accounts for the generation

of timed movement commands, for movement initiation and termination, for solving

the degrees of freedom problem, and for muscular control. An account for the scene

and object perception, and the processes through which such perceptual information is

transformed into motor frames is missing. Also, the solution of the degree of freedom

problem is not neurally grounded and questions persist about how well the muscle

model solves control problems in reaching. A model based on the framework of opti-

mal control (Shadmehr & Krakauer, 2008) does a better job at addressing these control

problems, but is far from neurally grounded, does not address muscle properties, and
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is also missing a perceptual and movement preparation component. A recent model

of learning to reach (Caligiore et al., 2014) takes muscle properties into account while

providing an account for control, and addresses the neural grounding of movement

parameters, but is not addressing movement initiation and termination nor scene per-

ception and the associated coordinate transformations. The most neurally grounded

models of reaching are still those from the Grossberg school (Cisek, Grossberg, & Bul-

lock, 1998), which have been mapped in quantitative detail to neural data for some

components (Cisek, 2006). They fall short of addressing scene and object perception

as well as the initiation and termination of movements. Closest to integrating all pro-

cesses come recent proposals based on Dynamic Field Theory (Strauss & Heinke, 2012;

Strauss, Woodgate, Sami, & Heinke, 2015; Fard, Hollensen, Heinke, & Trappenberg,

2015). The synthesis (Zibner, Tekülve, & Schöner, 2015a, 2015b; Tekülve, Zibner,

& Schöner, 2016) we review here is very similar in spirit and strongly overlaps with

these proposals with respect to scene perception and motor planning. We elaborate

movement timing, motor control, and the sequential organization of movement in more

detailed ways, using di↵erent process models.

Second, understanding how reaching develops requires an understanding not just

of motor learning, but of learning in the many di↵erent component processes from per-

ception to control. Current accounts typically focus on an individual component.The

most complete model so far (Caligiore et al., 2014), for instance, focuses on learning to

control the arm by predicting the torque profiles needed to reach. Other models look

at the learning of kinematic movement plans (Schlesinger, Parisi, & Langer, 2000), of

kinematic models (Sun & Scassellati, 2005; Herbort & Butz, 2009; Narioka & Steil,

2015), or of feedback control parameters (Savastano & Nolfi, 2013).

Finally, accounts for learning are often based on a learning regime in which the or-

ganization in time of the learning process is not achieved autonomously by the learning

system itself, but imposed from the outside (see Sandamirskaya and Storck (2015) for

discussion). In particular, autonomously learning from experience requires much pro-

cessing “infra-structure”. For instance, to learn from the correlation between a motor

command and the perceived outcome, as assumed in many of the “motor babbling”

accounts, the movement system must be able to keep the motor command in working

memory to bridge the considerable delay between the two neural events.

Goals of this chapter

In this chapter our goal is to review the component processes that must be in place

to successfully reach for and grasp objects. The review will be conceptual first, but

will also discuss relevant neural principles. We will illustrate the concepts through a

concrete neural dynamic model that provides a process account from sensory inputs

to generating movement of a simulated biomechanical plant. The model is not quan-

titatively anchored in experimental data, but we do discuss the link to experimental

signatures.

A second step we want to make is expose what happens when some of the com-

ponents are not in place. By comparing the various ways the model may break down
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in a form of reverse development, we aim to uncover potential behavioral signatures

of development, and also highlight all the problems the human nervous system must

solve to reach successfully.

A key contribution of the model is that the reaching behavior itself is entirely

autonomous. There is no hidden “script” that activates each component process as

required (as is the case for many robotic demonstrations of reaching). In particular, we

will show how correction movements emerge from the time continuous neural dynamics

when an initial reach is not complete, and use this observation to account for the

emergence of multiple movement units.

Finally, within a limited setting we will show how the organization of motor acts can

be learned autonomously from behavior. This demonstration of principle will highlight

all the processing infra-structure required to achieve such autonomous learning and

provides a perspective for what a full account for learning to reach may need to address.

2 A neural process account of reaching

In a neural process account of reaching, the neural networks of the brain are linked

to sensory and motor systems to bring about the motor behaviors that achieve the

reaching act. Such an account may be contrasted to abstract“curve fitting” models,

which by themselves do not explain how behavior emerges. For instance, to postulate

that an infant selects the interpretation of a stimulus that maximizes its likelihood

does not explain how its nervous system actually does that even while such a model

may provide a fit to certain psychometric curves.

Theoretical models that are process accounts may ultimately be linked to real sen-

sors and real actuators, in robotic demonstrations of reaching. Of course, such robotic

demonstrations are never perfectly consistent with what is known about how organ-

isms generate movement. No actuator perfectly mimics real muscles nor do technical

sensors mimic the neural function of the retina or other sensory organs.

A neural process account is always based on the choice of a particular level of

description that entails a particular level of neurally mechanistic detail. That choice is

constrained by what is known about the neural substrate of motor behavior. In spite

of enormous progress, the exact neural circuitry underlying motor behavior remains

unknown (Lisman, 2015). Neural process accounts are thus usefully founded on neural

principles, rather than on a detailed description of the neural substrate and associated

neural mechanisms. We know, of course, that the central nervous system is not a

digital computer and does not have a CPU, into which it can load data to operate on.

Thus, process accounts that depend conceptually on algorithms are not by themselves

compatible with neural principles.

The most commonly accepted level of description at which neural principles can

be articulated and used to develop process accounts of behavior is the level of neural

population activity (Georgopoulos, 1986; Bullock, Cisek, & Grossberg, 1998; Cisek &

Kalaska, 2005). The framework of Dynamic Field Theory (DFT) is positioned at this

level (Erlhagen & Schöner, 2002; Schöner, Spencer, & the DFT Research Group, 2015).
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In DFT, properties of the strongly recurrent neural networks that generate behavior

are formalized into a set of mathematically expressed concepts. Central is the notion

of stability, the capacity of neural activation patterns to resist change. Rather than

review yet again the neural principles formalized in DFT, we introduce them as we go

through the neural process model of reaching behavior and its development.

What is entailed in making a reaching movement oriented toward an object? Fig-

ure 1 illustrates the five processes that are minimally required to generate such behav-

ior.

movement
preparation

movement
timing

motor 
control

scene 
perception

movement
initiation/
termination

Figure 1: A schematic illustration of five component processes entailed in generating

a reaching movement aimed at an object.

2.1 Scene perception

Object oriented movement behavior requires, first of all, perception of the environment

and attentional selection of the object, toward which the behavior is directed. Such

scene perception is predominantly visually driven, although reaching toward haptically

identified or memorized object locations is possible. Humans are very good at perceiv-

ing and memorizing visual scenes, much better than at memorizing arbitrary material.

For instance, individuals who looked at 10 objects per naturalistic scene, for 10 seconds

each, had 90% recall of object identity or pose even a week later (Hollingworth, 2004).

Our visual cognition is particularly well tuned to this problem.

Scene perception clearly is tightly linked to looking and attention. Only portions

of a scene that have been attended to are memorized well enough to detect change

(when transients are masked, (Simons, 2000)). The attentional selection of visual

objects as well as the selection of gaze locations is commonly accounted for through

the notion of visual salience that characterizes the stimulus properties determining the

probability of attraction gaze or covert attention (Itti & Koch, 2000). The process of

such selection decisions is captured by strongly recurrent neural networks, formalized

as neural dynamics (Kopecz & Schöner, 1995; Schöner et al., 2015), as illustrated in

Figure 2. In the neural field version of neural dynamics, visual space is represented
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by an activation field in which localized peaks of activation indicate a selected visual

location. Such peaks may be induced by localized input, which may reflect the saliency

of the visual array, and are stabilized against decay by local excitatory interaction.

Selection is enabled by longer-range inhibitory interaction. When neural interaction

within the activation field is su�ciently strong, peaks may be sustained even as localized

input is removed. Sustained activation provides an account for visual working memory

(Johnson, Spencer, Luck, & Schöner, 2009).

dimension

local excitation

global inhibition

input

activation field

Figure 2: A neural activation field is defined over some dimension and receives bimodal

input. The field selects the left-most local maximum of input through local excitatory

interaction, which lifts activation to above threshold values at that location (more acti-

vation than input) and global inhibition which suppresses activation at other locations

(below the level of input).
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Here is a very brief mathematical tutorial on dynamic neural fields, expressed

for a neural activation field, u(x, t), defined over a single dimension, x (in the

model, the fields comprise multiple dimensions such as the two-dimensional

visual array or two movement parameters). Activation evolves according to

this integro-di↵erential equation:

⌧ u̇(x, t) = �u(x, t) + h+ s(x, t) +

Z
dx0w(x � x0

)g(u(x, t)). (1)

The terms up to the integral are a time continuous version of an input driven

neural dynamics as it is commonly used to model the time courses of neural

activation. Without input, s, activation is in a resting state, h < 0, that is

stable with time constant, ⌧ . Weak localized input, s(x), shifts that stable

state to u(x) = h + s(x). The neural dynamics (through the “�u“ term)

creates time courses through which activation tracks changes in input s(x, t)
as an exponential low-pass filter.

This input driven regime becomes unstable once the activation level at any

location, x, approaches the threshold at zero defined by the sigmoidal nonlin-

earity, g(u) (in the modeling below chosen as g(u) = (1 + �u/(1 + �|u|))/2).
This is when neural interaction within the field engages as g(u) becomes posi-

tive. Locations, x0
, close to the activated location, x, provide excitatory input

(w(x � x0
) > 0). Locations, x0

, far from the activation location, x, provide
inhibitory input (w(x � x0

) < 0). This pattern of neural interaction within

the field stabilizes peaks of activation centered on the location at which input

first pushed activation beyond threshold. When activation is pushed above

threshold at more than one location, such peaks may instantiate selection de-

cisions in which one activation peak suppresses peaks at alternate locations.

Which location is selected depends on the timing and strength of input, on the

prior patterns of activation, and on random fluctuations of activation. When

neural interaction is su�ciently strong, peaks may be sustained even after the

inducing localized input is removed. The location of the peak then encodes a

working memory for the past selection decision.

Because scene perception involves gaze and attentional shifts, only a part of the

visual array is in the attentional foreground at any moment in time. Scene perception is

thus largely based on memory (Hollingworth, 2004), in what may be more appropriately

called scene representation.

Early forms of reaching are not always associated with looking at the object (von

Hofsten, 1984). As reaching develops, that link becomes closer. Coordinating attention

and reaching is, therefore, a developmental achievement rather than a logical necessity.

After reaching has been established, the relationship between looking and reaching

remains complex, however. Corbetta and associates (Corbetta, Thurman, Wiener,

Guan, & Williams, 2014) presented infants with object large enough for them to reach

toward di↵erent locations on the object. These infants were followed longitudinally

from about 2 to 12 months of age. Early in that developmental window, the location
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at which infants looked did not predict the location toward which infants reached. Over

time, infants looked more to the location on the object to which they reached.

In this chapter, we will use a simplified neural process model of reaching to illustrate

ideas. Figure 3 provides an overview over the architecture. The entire topic of scene

perception has been trivialized in this model by assuming that a distribution of acti-

vation defined in body-centered coordinates is available to the processes of movement

preparation. Visual locations of reachable objects are marked by localized maxima of

that distribution of activation.

reaching
    target

initial eef
 position

dx1

dx2

(0,0)
.

muscle model

upex

upin

oscillator

λ integrator

x1

x2

x1

x2

x1

x2

eef

goal

robot

movement
plane

current eef
position

x1

x2

*

movement plan

corollary discharge

virtual trajectory

the world / visual scene

arm movement

Figure 3: A survey over the neural dynamic architecture used in this chapter to illus-

trate the five key processes of movement generation

2.2 Movement preparation

There is ample behavioral and neural evidence, that movements are prepared ahead of

their initiation (see Erlhagen and Schöner (2002) for review). Thus, for instance, the

time needed to initiate movement after a stimulus has specified the movement goal, the

reaction time, reflects the metrics of the movement alternatives. If those alternatives

are metrically closer to each other, reaction time is shorter, reflecting more overlap

between the neural activation states that correspond to either movement (McDowell,
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Jeka, Schöner, & Hatfield, 2002). In fact, these neural activation states can be directly

observed in motor and pre-motor cortex in the form of peaks of activation in a dis-

tribution of population activation (Georgopoulos, 1986; Bastian, Schöner, & Riehle,

2003; Cisek & Kalaska, 2005). Activation even in motor cortex precedes movement

initiation and predicts movement parameters. Finally, at the kinematic level, reaching

movements directed at an object start out in the direction of the object in adults, so

that from the first milliseconds of its trajectory, the path of the hand and the move-

ment time can be predicted. This is a consequence of the robust kinematic regularity

that characterizes adult movement (Soechting & Lacquaniti, 1981).

It is the movement parameters, that characterize movements as a whole, that have

specific values from the very start of the motor act. Most prominent among these is

the direction of the hand’s movement in space, the extend of the movement of the

hand through space (amplitude), the overall duration of the movement (movement

time) and other parameters such as the anticipated level of resistance to the move-

ment. Movement preparation thus means determining the values of such movement

parameters.

Once an object has been selected in the scene representation as the target of a reach-

ing movement, specifying kinematic movement parameters like movement direction and

amplitude involves some simple geometrical computations (Bullock & Grossberg, 1988).

The direction, for instance, is the angle that the line connecting the initial position

of the hand to the object forms relative to some reference axis (see Figure 4) . Such

computations are trivial to implement on a computer, but not in a neural network.

Neural networks do not take an “argument” and “operate” on it. They need a partic-

ular pattern of connectivity that brings about the computation and that is linked to a

neural representation of the argument. In this instance, the computation amounts to

a coordinate transform (Figure 4): If the spatial representation of the target is trans-

formed into a reference frame that is centered in the initial position of the hand, then

the direction and amplitude of the reaching movement can be read o↵ with a fixed

neural mapping. For instance, all field locations along a line from the center out vote

for the corresponding movement direction. Similarly, all field locations on a circle of a

given radius vote for the matching movement amplitude.

movement
direction

movement

amplitude

Figure 4: The kinematic movement parameters that characterize a reach toward an

object may be obtained by transforming the neural representation of the location of

the object into a frame of reference anchored in the initial position of the hand.
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The mathematics of the coordinate transform from a visual reference frame to a

frame anchored in the initial position of the hand is sketched here. Let u
ini

(x, t)
be a neural field that represents the initial position of the hand through a peak

at the appropriate location (x is a two-dimensional position vector that spans

all possible initial positions of the hand). The location of the target object

is represented as a peak in the neural field, u
tar

(x), t), defined over the same

two-dimensional space (both spatial representations could be thought of being

body-centered). A hand-centered neural representation of the target object

can be obtained from this neural map:

s
plan

(x, t) =

ZZ
dx0

1

dx0
2

�(u
ini

(x � x

0
))�(u

tar

(x

0, t)) (2)

Every location, x

0
= (x0

1

, x0
2

), in the target field has a connection to every

location, x in the movement planning field. At any given moment, only a

subset of these connections is active, those selected by the peak in the field that

represents the initial position of the hand. The selection mechanism formalized

here is a form of “shunting” in which the activation in one set of neurons can

turn of and on the connection between two other sets of neurons (the map is

also referred to as “sigma-pi” connectivity). This is not the only possible neural

implementation of the transform (see Pouget and Snyder (2000); Schneegans

(2015) for more). The transform is essentially a “steerable” neural map: the

mapping from one space, in which the visual object is represented, onto another

space, in which the movement direction is represented, is steered by the initial

position of the hand. Such transforms are costly: many connections and many

neurons are needed and their connectivity pattern needs to be just right. The

maps create invariance: no matter where the hand is initially posted, the

direction of the movement can be determined. The learning of such transforms

is a likely developmental challenge (Sandamirskaya & Storck, 2015).

2.3 Movement timing

Reaching movements, like most voluntary human movement, are timed. That is, the

hand’s trajectory and velocity profile has a characteristic shape that is reproducible

across repetitions and scales with movement amplitude (Morasso, 1981). If a movement

sequence (for example, in hand writing) is performed at di↵erent spatial scales, the

relative timing of the corresponding pieces of movement (the arc forming the letter

“e”, for instance), remains invariant (the “e” takes up the same percentage of the total

movement time) (Viviani & Flash, 1995). Reaching movements are coordinated across

limbs so that when timing demands on one limb are varied, the movement timing of

the other limb adjust to retain the same relative timing (Kelso, Southard, & Goodman,

1979). Reaching movements may also be coordinated with perceived events such as

when moving objects are intercepted. That coordination is stable in the sense that the

reaching movement is updated in response to visual information about the timing of
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the movement target (Brenner, Driesen, & Smeets, 2014). Coordination is maintained

even where it is not strictly necessary. The opening and closing movement that achieves

grasping is coordinated with the transport component that moves the hand toward the

grasping object (Jeannerod, 1984). In principle, the hand could just open and stay

open until the object is reached. Coordination means, however, that a later reach is

accompanied by a later opening of the hand for the grasp as well.

The theoretical understanding of timing is based on the notion of an oscillator

(Schöner, 2002). More precisely, clocks are dynamical systems that generate repro-

ducible and stable time courses formalized as stable limit cycles. The stability of limit

cycles means that the time courses generated resist change. Coupling multiple limit

cycles generically leads to their synchronization, an account for coordination.

The concept of a dynamical system generating stable time courses is not restricted

to accounts of periodic movement. Temporally discrete motor acts such as a single

reaching movement can be understood on the same basis (Schöner, 1990). The idea

is that the dynamical system generates a stable time course, which ends, however, in

a stable stationary state. (We will address below the processes of initiation and ter-

mination required in such a view.) More specifically, a neural oscillator consists of an

excitatory population that is reciprocally coupled to an inhibitory population (Amari,

1977; Ermentrout, 1998). An initial stimulus sets in motion an “active transient” in

which activation first rises, then falls as inhibition cancels activation. Di↵erent dynamic

properties of such neural oscillators may generate trajectories of di↵ering amplitude and

duration. Our account of reaching movement postulates an ensemble of such neural

oscillator. When a peak forms that represents a movement plan, it drives a subpopula-

tion of these neural oscillators that has the appropriate amplitude and movement time

to ultimately generate a successful reaching movement (after going through kinematic

transformations, muscle activation, and biomechanics, to be discussed below). The

projection from these neural oscillators to the downstream neural processes is learned

so as to achieve these movement goals (Figure 3).

There are good arguments as to why the timing signals are generated in spatial

terms, such as the direction and speed of the hand’s movement in space. Neural data

are supportive of that idea (Schwartz, 1994; Moran & Schwartz, 1999) as are data

about movement coordination (Mechsner, Kerzel, Knoblich, & Prinz, 2001) that are

consistent with the ideomotor principle according to which movement is generated in

the same reference frame in which it is perceived. The ease with which we coordinate

the hands timing with the motion of perceived objects is suggestive of such a reference

frame as is the invariance of movement timing with scale (see above).

That movement timing poses a developmental challenge is intuitive, although there

seems to be little direct empirical evidence about the development of movement co-

ordination. Counter-intuitively, analysis of spontaneous kicking movements in infants

revealed that in-phase and alternating coordination patterns are observable from ear-

liest infancy (Thelen, 1981).
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A possible mathematical form of the neural dynamics of movement timing

invokes two fields that together form neural oscillators. The excitatory layer,

u
ex

(x, t), and the inhibitory layer, u
in

(x, t) are coupled as follows:

⌧
ex

u̇
ex

(x, t) = �u
ex

(x, t) + h+ s
plan

(x, t) + c
mov

g(uint

mov

(t)) (3)

�
Z

dx0w
ex,in(x � x

0
) ⇢(u

in

)(x

0, t)

⌧
in

u̇
in

(x, t) = �u
in

(x, t) + h+ s
plan

(x, t) + c
mov

g(uint

mov

(t)) (4)

where ⌧
ex

< ⌧
in

and w
ex,in(x�x

0
) is an interaction kernel with local excitatory

and lateral inhibitory interaction. Anywhere across these homogeneous fields,

a local region may generate an active transient, once it receives input from

the motor plan, s
plan

(x, t). Activation in both excitatory and inhibitory layers

then rises. The slower rise of inhibition begins to suppress activation in the

excitatory layer, eventually suppressing activation below the threshold of the

semi-linear transfer function

⇢(x, t) =

⇢
u(x, t) for u(x, t) > 0

0 else.
(5)

This dynamics thus performs a one-shot active transient in response to in-

put. Input by a neural node, uint

mov

, is required to induce the active transient.

This node is part of a neural dynamics of behavioral organization, that gener-

ates the sequence of initiation and termination events that organizes reaching

movements (see Section 2.5).

The field of neural oscillator generates a (virtual) velocity vector

v(t) =

ZZ
dx

1

dx
2

!(x) ⇢(u
ex

(x, t)). (6)

as its output. The weight function, !(·), is learned using gradient descent as a

linear function of x = (x
1

, x
2

). These weights define tuning curves of the neural

oscillator field, in which each field site is sensitive to both the orientation and

the distance (and thus peak velocity) of the movement.

2.4 Motor control

To physically generate the movement, actuators must be given motor commands in

such a way that deviations from average trajectory are limited by stability properties

of the plant or the control. In human reaching movements, the actuators are, of

course, muscles attached to the skeletal musculature. The fact that limbs are actuated

at the joint level alone generates challenges for motor control: As a joint is accelerated,

interaction torques act on other joints that may move these o↵ a commanded path.

For instance, if you rapidly move your elbow while relaxing your wrist, your hand flaps

around. This movement at the wrist is a consequence of interaction torques. The wrist
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is in an accelerating reference frame, inducing inertial interaction torques, that also

rotates, inducing coriolis and centrifugal interaction torques.

Conventional robot arms deal with such interaction torques with “brute force”:

servo controllers keep each joints velocity and position close to the commanded values,

applying higher forces to control away these disturbances. Humans motor control is

very di↵erent. Muscles are relatively weak. As elastic elements, they are generally

weaker than the inverse pendulum that body segments form with the vertical gravita-

tional form (Loram & Lakie, 2002). Muscles do have feedback control loops, including

those through the spinal cord. But the delay in these reflex loops, on the order of

about 50 ms, are relatively long compared to movement times as short as 300 ms.

In what form do motor commands ultimately bring about muscle activation? Be-

cause the activation of muscles depends on their length and inner state, motor com-

mands do not directly specify muscle forces. More appropriately one may conceive of

muscle commands as parameters modulating the peripheral reflex loops that establish

the length dependency of muscle activation (Feldman, 1986, 2011). Specifically, the

descending motor command could be viewed as setting a threshold for the activation

of the muscle. When the muscle length is above that threshold, muscle activation is

induced that leads to the generation of muscle force that contract the muscle. That re-

lationship between muscle length and muscle force implies that muscles are e↵ectively
non-linear springs, whose the resting length can be varied by the descending motor

command.

Because motor commands are thus spatial in nature, they may be derived from

the spatial timing signal through a kinematic transform: From the hand’s movement

direction and speed to muscle lengths and their rates of change. This transformation

is complex and contains problems not fully understood at this time. First, multiple

muscles act on each joint. The muscles that act in opposing directions of movement,

agonists and antagonists, may have di↵erent levels of co-contraction that do not a↵ect
the joint angle, but joint sti↵ness. Joint sti↵ness is not specified by the kinematic

transformation and the control of the related joint compliance is one of many open

issues. In our model, we assume a particular level of sti↵ness that remains constant

through movement, and thus neglect the known variation of joint sti↵ness during move-

ment. Second, the redundancy of muscles acting in the same direction on a joint is

also a topic of much research. We neglect that issue by lumping all muscles acting on

a joint into a single muscle model. The muscle lengths are thus combined into a single

joint angle. This is a “virtual” joint angle that describes the motor command given

to this ensemble of muscles. The real joint angle then evolves in a way that may not

always be close to the virtual joint angle depending on interaction torques and other

factors. Third, the kinematic transform faces kinematic redundancy: In most move-

ment systems and certainly for reaching, there are more joints available to achieve the

movement of the relevant end-e↵ector (here the hand in space) than necessary. There

is extensive research on how these many degrees of freedom are harnessed to realize a

particular trajectory of the hand in space (Todorov & Jordan, 2002; Latash, Scholz, &

Schöner, 2007; Martin et al., 2009). We condense all that into a kinematic transform

that at any moment in time selects one particular virtual joint angle velocity vector
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across all joints.

The mathematical formalization of the sketched ideas is as follows: The vir-

tual velocity vector, v, is transformed into a virtual joint velocity vector,

˙

�,

using the pseudo-inverse (upper index

+

) of the manipulator Jacobian, J , that

depends on the current virtual joint configuration �(t):

˙

� = J

+

(�(t)) v(t). (7)

The virtual joint trajectory, �(t), is obtained by integrating over time.

The virtual joint trajectory defines a set of motor commands to all muscles

that transitions from an initial to a final equilibrium length of each muscle. In

a simplified, second order linear model of the muscle and its reflex loops, the

virtual joint trajectory sets the time-varying equilibrium point for each joint,

combining the contributions of all agonist and antagonist muscles converging

on each joint:

¨

✓ = �K(✓ � �) � B

˙

✓, (8)

where ✓ is the joint angle vector, and K and B are the e↵ective sti↵ness and
viscosity matrices of the muscle groups.

The simple model does not address biomechanics. The kinematics of a seven

degrees-of-freedom arm was solved numerically to compute the hand’s trajec-

tory in space (see Section 3).

2.5 Movement initiation and termination

All voluntary movement consists of sequence of events. A reach is initiates and ends,

but may also entail the initiation of the opening movement of the hand and then its

closing for a grasp. Other movements may follow once an object has been grasped. A

reaching movement may be interrupted or aborted at any time (Bullock & Grossberg,

1988).

The sequential organization of movement is a special case of the problem we like to

call behavioral organization, a problem much overlooked in neural models of behavior

and cognition (Graziano, 2006; Sandamirskaya, 2015; Pezzulo & Cisek, 2016). In motor

control, models will often focus on a single phase of the motor act, such as the phase

of movement generation itself. Cognitive models may talk about the serial order of

events, but fail to address how these events are organized in time and interact with the

time course of behavior generation between events (Botvinick & Plaut, 2004).

An account for behavioral organization is necessary to endow neural models with a

form of autonomy: No outside “script” or algorithm must be invoked to understand how

neural systems move from one task to another. To date, many connectionist models

are limited in their degree of process autonomy. This is true for learning processes as

well, in which a learning protocol is often imposed from outside of the connectionist

model (we will come back to this topic in Section 4).
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One particular challenge to a neural process account for behavioral organization is

the need to understand the relationship between events that occur at discrete moments

in time, the transitions from one action to another, and the movements themselves that

take varying amounts of time. For instance, when a reaching movement takes longer

because an obstacle is avoided (Grimme, Lipinski, & Schöner, 2012), then the switch

to the next phase of the object-oriented action must occur later.

Clearly, behavioral organization is a developmental challenge. Infants do not get

the orders of movement tasks right a lot of the time (von Hofsten, 1984). And getting

them right is a prerequisite to success.

In saccadic eye movement, the neural basis of aspects of behavioral organization is

understood somewhat. A population of neurons in the superior colliculus is known to be

active, while the animal fixates gaze on a visual structure. A saccade is initiated when

the fixation population becomes deactivated. Theoretical accounts for this form of

transition (Kopecz, 1995; Wilimzig, Schneider, & Schöner, 2006) were the origin of the

ideas we now sketch (Richter, Sandamirskaya, & Schöner, 2012). The key idea is that

motor behaviors are activated or deactivated by dedicated neural nodes that reflect the

activation in small populations of neurons that have common input. These nodes may

shunt neural connections or act by boosting or suppressing activation in a population.

Only neural populations in the self-stabilized state of supra-threshold activation are

“active” in the sense that they may can impact on the downstream processes. The

transition from inactive to active takes the form of the detection instability discussed

earlier. The transition from active to inactive takes place of through a separate, reverse

detection instability. In both cases, even graded changes of input lead to events at a

discrete moment in time, when the instability is induced.

The neural nodes modulate the conditions at which these instabilities may occur.

They are themselves governed by the same type of neural dynamics and thus their

own activation may undergo the dynamic transition from “o↵” to “on” and vice versa.

Three types of neural nodes are distinguished based on their functional role in orga-

nizing sequences of neural states. “Intention” nodes represent neural populations that

enable a behavior by boosting its processes to push them through the detection insta-

bility if the appropriate sensory inputs are available. “Condition of satisfaction” (CoS)

nodes become activated when input from an associated intention node is matched by

input from sensory or internal sources predicted to signal the successful completion of

the intended motor behavior (Sandamirskaya & Schöner, 2010). “Condition of dissatis-

faction” (CoD) nodes becomes activated when input from an associated intention node

is matched by input from sensory or internal sources predicted to signal the failure of

the intended motor behavior.
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Mathematically, the sequential organization of movement is achieved by a neu-

ral dynamic architecture illustrated in Figure 5 (and expanded in Section 4 to

include grasping and looking behaviors). While the intention node, uint

reach

, is

active, reaching is being pursued. A single timed movement act is initiated

when the intention node, uint

mov

, becomes active. The neural dynamics of this

node

⌧ u̇int

mov

(t) = � uint

mov

(t) + h+ cu,u g(uint

mov

(t)) + c
mov,reach g(uint

reach

(t))

� c
int,CoS

g(uCoS

mov

(t)) � c
int,CoD

g(uCoD

mov

(t)). (9)

is analogous to that of activation fields (Equation 1), with the interaction

kernel being replaced by self-excitation of strength, cu,u. The activated state

of the node with an activation level above the threshold of the sigmoid function,

g(·) is analogous to the self-stabilized peaks of activation in neural fields. The

node becomes activated when input from the reaching intention node, uint

reach

,

pushes the sub-threshold state, uint

mov

⇡ h+ inputs, to the detection instability.

Inhibitory coupling from Condition of Satisfaction (CoS) and Condition of

Dissatisfaction (CoD) nodes may induce loss of stability of the activated state

in the reverse detection instability.

Once the intention to move is activated, it enables the neural timing field

to generate a virtual velocity trajectory: In Equation 4, an activated uint

mov

is

necessary for localized input from the movement plan, s
plan

(x, t), to drive the

neural oscillator field above threshold to generate an active transient (some-

what analogously to the “go” signal of Bullock et al. (1998), although it does

not shape the velocity profile).

The end of a single time movement is signaled by the activation of the condition

of satisfaction, uCoS

mov

:

⌧ u̇CoS

mov

(t) = � uint

CoS

(t) + h+ cu,u g(uCoS

mov

(t))

� c
CoS,ex g(upd

ex

(t)) + c
CoS,in g(upd

in

(t)) (10)

that is driven by the oscillator field through peak-detectors (upper index pd)

that spatially integrate over the output of an activation field. A peak in the

inhibitory layer excites, a peak in the excitatory layer inhibits. Thus, the CoS

is activated one a peak in the inhibitory, but not in the excitatory layer, signals

that a single movement event has taken place.

The intention to move may also be deactivated if the neural representations

of the initial position of the hand or the target are lost (Figure 5), signaled by

the CoD. The position of the hand is continuously updated by integrating in

time the virtual velocity. This corollary discharge signal updates the neural

representation of the initial position of the hand when the movement has been

terminated. The reaching intention remains activated until a match is detected

between the updated initial hand position and the target position, so that the

hand has reached the target.

16



intention move CoS moveCoD move

corollary
discharge

update

virtual
trajectory

generation

intention reach CoS reach

intial eef and target
position match 

intial eef or target
representation

vanished

task input

one-shot
oscillation
finished

Figure 5: A part of the neural dynamic network that organizes reaching movements.

Arrows indicate excitatory input, lines with a circle at its end indicated inhibitory

input.

3 Results

To illustrate properties of the neural process model of movement generation and its

developmental implications we show simulation results of the complete model. For all

experiments, we use artificial visual inputs in the form of localized peaks of activation

in a simulated visual array. Compared to using real camera input, this gave us full

control of stimulus strength and position for reproducibility. We used the simulation

solution Webots (http://www.cyberbotics.com) to execute the movements with the

seven degrees-of-freedom arm. This made it possible to simulate neural dynamics

that reflected imperfect control (the “impaired” system, see Section 3.2) and produced

jerky motor commands without risking damage to robotic hardware. The correctly

tuned architecture was tested on hardware as well (using a RGB camera and the Kuka

lightweight arm), but this will not be discussed here (see Zibner et al. (2015a) for more

details).

3.1 Making a movement

Figure 6 illustrates how the model makes individual movements from an initial hand

position to three di↵erent visual targets. The parameters of the model were tuned to

put the di↵erent components of the model into the dynamic regime described. The

movement paths (left) are approximately straight with slight outward curvature. They

are generated by the virtual hand velocity profile (right panel, left-most curves). Be-

cause movement time was set to be equal across the three movements, peak velocity

scaled with movement amplitude. The resulting real velocity profiles of the hand’s

movement in space (right panel, right-most curves) are considerably delayed over the
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virtual velocity profiles due to the low-pass filter properties of the muscle model. Near

peak real velocity, the virtual velocity has already returned to zero. This is consistent

with experimental estimates of the timing relationship between virtual and real trajec-

tories (Ghafouri & Feldman, 2001). Note that in more realistic muscle models there

are additional sources of delay such as transmission delays in the reflex loop and the

slow build up of muscle force due to calcium dynamics (Gribble, Ostry, Sanguineti, &

Laboissière, 1998). The qualitative picture is, therefore, adequate.

Such o↵sets between the timing signal generated by the neural oscillator system and

the realized movement trajectory raise a range of interesting challenges. In particular,

the organization of movement sequences must take into account such delays. Moreover,

coordination among di↵erent e↵ector systems or with external timing events need to

be robust against such timing o↵sets.
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Figure 6: Exemplary trajectories (top left) and profiles of tangential velocity for virtual

movements (top right) and end-e↵ector movements (bottom right) for di↵erent move-

ment targets. The bottom left plot shows a combination of virtual and external profiles

to show that the virtual movement ends roughly at peak velocity of the end-e↵ector
movement.

3.2 Developmental signatures

We argued that all components of the movement generation system must be in place

and functional in order to bring about reaching movements directed at objects. The

simplified integrated model enables us now to examine the ways object-oriented move-

ment fails when di↵erent components of the model are not in place. We examine three

di↵erent ways the model may be “degraded” to explore potential developmental signa-

tures of early stages of reaching. (A) Movement plan: The lateral neural interaction

within the neural field that represents the initial position of the hand was weakened.

As a result, the working memory of that initial position required for the duration of the

movement becomes unstable, leading to a potential loss of the movement plan. The
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Table 1: Mean and variance of number of movement units and straightness index for

di↵erent impairment conditions

Conditions A B C A+B+C N

Mean # of MUs 3.00 4.00 1.89 7.56 1.00

Variance 0.00 0.00 0.61 7.53 0.00

Mean straightness 0.998 0.983 0.845 0.941 0.989

Variance < 0.001 < 0.001 0.017 0.002 < 0.001

virtual movement trajectory may then be terminated prematurely. (B) Movement tim-

ing: Neural connectivity from the field of neural oscillators that generates the timing

of the virtual trajectory may be not be appropriately tuned so that virtual trajectories

do not reach the target in a single cycle. This was simulated by setting some of the

weights from the oscillator field to random values. (C) Motor control: The kinematic

mapping from the virtual hand trajectory to the joint-level motor commands may not

be appropriately tuned. This was modelled by adding a random o↵set to the inverse

kinematic mapping.

We performed experiments in each of these three forms of “impairment” as well as

when all three forms were combined (A+B+C). In each condition, we simulated move-

ments from three starting positions to three target positions, repeating each simulation

once with di↵erent random values of di↵erent forms of degradation. This made for a

total of 2·9 = 18 repetition. We analyzed the resulting trajectories and velocity profiles

for the number of movement units (MUs) and for the straightness of the movement path

and computed the variance of either measure across the 18 trials. Movement units are

segments of the real hand velocity profile between two minima of velocity. Straightness

was measured as done in experimental analyses (Thelen et al., 1996). Table 1 provides

an overview of the results. Individual sample trajectories from one starting position to

three target positions are shown in Figure 7, which may be compared to the sample

trajectories of the intact system in Figure 6.

When the movement planning system is impaired (A) , the velocity profiles are less

smooth, featuring more than one movement unit. This is due to the intermittent inter-

rupt of movement generation when a planning peaks is lost. The system autonomously

resets the movement plan and make a new movement attempt. When movement timing

is impaired (B), the virtual trajectory generated typically does not reach the target.

This number of movement is large and the movement path is less smooth as a result.

When the motor control system is impaired (C), movement paths are no longer ap-

proximately straight. Multiple movement units are observed as the system does not

reach the target in response to a single virtual velocity profile. The combination of all

impairments generates variance in the movement path and velocity profile that may

begin to approximate reaches of young infants. These observations are born out by the

statistical analysis of the two indices analyzed here (Table 1). The developmental path

suggests that impairment in motor control induces the strongest variance, followed by

impairments in movement timing, followed by impairments in movement planning.

It is actually di�cult to generate the kind of macroscopic variance of movement
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Figure 7: This figure shows trajectories (top) and velocity profiles (bottom) for starting

position S
1

to the three targets (solid red for T
1

, bold-dotted green for T
2

, dotted blue

for T
3

) and, from left to right, the conditions A, B, C, and the combination of all three.

paths and trajectories observed in infants from a neural processing model while still

reaching the target. Noise added to the model at the processing level (e.g., in the

muscle model) will typically show up as high-frequency fluctuations of the movement

trajectories around a mean that is close to the intact model. We believe that the

structural sources of variance high-lighted here point the way toward a correct account

for movement variance in development.

4 The developmental learning process

We have sketched how di↵erent stages of development may be associated with graded

di↵erences in the underlying neural processing structure of movement generation. How

may changes in these processes emerge from experience? This is the question of au-

tonomous learning: How may learning processes unfold in a spontaneously behaving

system rather than in a special “learning mode” in which actions are elicited and

rewarded from the outside.

We all know that this is a di�cult question. It is di�cult in experiment because

we cannot readily observe infants and children as they gather experience, practice

skills, and learn. Typically, even in longitudinal studies, we may only have a chance

to occasionally take a measurement that reflects the current level of competence. But

this is also di�cult in theoretical modeling. Autonomous learning is not well under-

stood. The majority of neural models are “learned up” in special learning scenarios

(Sandamirskaya & Storck, 2015).

We we illustrate the conceptual issues in learning from experience by restricting

ourself to one particular subproblem, the problem of learning to sequentially organize

di↵erent elementary behaviors. We expand the reaching model of the previous section

to include looking behavior, opening and closing the hand, as well as moving the hand
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back to a resting position. We know that the sequential order of these elementary

movement behaviors is not a given as young infants do not necessarily get the order

right. von Hofsten (1984) reported that infants of up to four weeks of age generated

pre-reaches, movements of the hand in the general direction of an object, even though

they often did not visually fixate the object. The frequency of such pre-reaches then

decreased while the total time of looking at objects increased. At around 10 weeks of

age, pre-reaches re-emerged, now often accompanied by visual fixation of the object.

Later, a similar transition led to serial organization of reaching and hand opening and

closing.

pre

sensorimotor surface

A B

A¬B A∧B

reward

int CoS

inh

int CoS

inh

Figure 8: The processing structure for learning the behavioral organization of move-

ment is illustrated for a pair of two elementary movement behaviors, A and B. The

same structure exists for all pairs of elementary behaviors. Solid lines are fixed weights

assumed to exist from the outset. Dashed line illustrate weights that are learned au-

tonomously from an initial value of zero. The dashed lines reflect the process structure

for learning the boosts of each elementary behavior. The dotted lines reflect processes

structure for learning the sequential order of the two elementary behaviors.

Structural support for the sequential organization of di↵erent elementary behaviors

is a prerequisite for learning that organization. Figure 8 illustrates the neural dynamics

for two elementary behaviors, A and B. In the simple model (Tekülve et al., 2016) we

use five such elementary movement behaviors: visual fixation, bringing the hand to a

resting position, reaching, opening the hand, and closing the hand. Each elementary

behavior consists of two neural nodes that directly interact with sensorimotor processes:

(1) An intention node, that projects onto the sensorimotor layer and initiates the

motor behavior, and (2) a condition of satisfaction (CoS) node that receives input

from the sensorimotor layer that signals the completion of the motor behavior. The

intention node is self-excitatory and coupled to an inhibitory node. Together, these

21



two nodes may be in di↵erent dynamic regimes, including bi-stable “on” and “o↵”
states, a sustained “on” state, and a neural oscillation between “on” and “o↵”. This

is the basis for autonomous activation of an elementary behavior, that plays a role in

learning: In a form of “behavioral babbling”, the intention node may activate itself in

the presence of noise, and remain activated for a certain amount of time as illustrated

in Figure 9.
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Figure 9: Activation trace of a single intention node (dotted line) and its output (solid

line) during behavioral “babbling”. The neural dynamics generates a highly unstable

oscillatory pattern.

We also postulate structural support for behavioral organization by assuming that

each behaviors condition of satisfaction is coupled to each other behavior’s intention

node. This connection is doubly inhibitory, consistent with the organization of behav-

ioral selection in the basal ganglia (Chevalier & Deniau, 1990), through an intermediary

“pre-condition” node (Figure 8). If the pre-condition node between behavior A and

behavior B is activated, it inhibits its target, behavior B. If the condition of satisfaction

of the source behavior, A, then becomes activated, it inhibits the pre-condition node

and releases the target from inhibition. This double inhibitory coupling from behavior

A to behavior B thus organizes a sequential pattern of activation in which behavior B

can only become active once behavior A has been previously activated. The connec-

tivity is e↵ective only if the pre-condition neuron is active in the absence of input from

its source.

The learning process varies the resting level of activation of any elementary be-

havior, seb
A

, and of the pre-condition nodes, spre
AtoB

and thus modulates how easy it is

to activate which elementary behavior in which order. We were led to introduce yet

more specific processing structure for the learning process, inspired by Houk’s model

of the basal ganglia (Beiser & Houk, 1998). Two additional interneurons represent

di↵erent patterns of ordering. One node receives excitatory input from the condition

of satisfaction of behavior A and inhibitory input from the intention node of behavior
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B. It becomes active, if behavior A was completed, but behavior B was not activated.

Through self-excitation keeps that activation in working memory. This node provides

excitatory input to a second node which becomes activated once behavior A is acti-

vated. That second node thus reflects a particular sequential history of activation, first

A, then B.

Autonomous learning faces two conceptual problems. First, activation patterns may

come and go. Unless they are actively maintained as working memory (Sandamirskaya

& Storck, 2015), these patterns may not necessarily be around when a learning event

occurs. This problem is solved, we propose, by keeping memory traces of activation

patterns (Erlhagen & Schöner, 2002). These act as low-pass filters, that keep activa-

tion patterns available to learning processes for a certain amount of time, that may

vary depending on what other, perhaps competing activation patterns arise. Second,

autonomously learning from behavior is mediated by neuromodulators. Only at certain

moments in time, that are linked to reward, does an “update” of the learning process

occur. There is a rich literature on the relevance of timing of reward (Gallistel & Gib-

bon, 2000) and this problem is central to the mathematical concept of reinforcement

learning. In most models of learning, that learning takes place at discrete moments

in time is taken for granted and is modeled by using discrete iterative time in the

learning rules. Because behavior and neural processes unfold continuously in time,

however, this is a problem. One solution lies in the concept of eligibility traces (Sutton

& Barto, 1990), in which a population of neurons is transiently activated by each de-

tected “event”, generating a window within which the learning step can take place

(Kazerounian, Luciw, Richter, & Sandamirskaya, 2013). Learning is then modulated

by the presence of reward and a matching activation pattern.
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We provide a brief review of the mathematics of three elements of autonomous

learning. (1) The memory trace, ⌫(t), reflects the recent history of activation,

u(t). The memory trace builds up (on a faster time scale, ⌧
build

) whenever the

activation, u(t), is above threshold, and decays (on the slower time ⌧
mem

) when

the activation variable falls below threshold:

⌫̇(t) =

1

⌧
build

{�⌫(t) + g(u(t))} g(u(t))

+

1

⌧
mem

{�⌫(t)(1 � g(u(t)))} . (11)

(2) An eligibility trace defines the time window in which learning takes place

by building a transient reward signal, r(t). In the model, an neural field, u
rew

,

receives input from both the visual perception of the hand and the target.

Whenever the two come su�ciently close, a peak is formed in a detection

instability. A neural dynamics analogous to the timing model (Equation 4)

⌧
ex

u̇elig

ex

(t) = �uelig

ex

(t) + h+ g(u
rew

) � c
ex,inh g(uelig

inh

(t)) (12)

⌧
inh

u̇elig

inh

(t) = �uelig

inh

(t) + h+ g(u
rew

) (13)

(where ⌧
ex

< ⌧
inh

) translates that discrete movement in time into a transient,

time-continuous reward signal r(t) = g(uelig

ex

(t)).
(3) The learning rule updates the resting levels of elementary behaviors, seb,
and of pre-condition nodes, spre

AtoB

, whenever their memory traces and the re-

ward signal are simultaneously activated:

ṡeb
A

(t) = r(t)�eb {⌫
A

� (1 � H(⌫
A

))} (14)

ṡpre
AtoB

(t) = r(t)�pre {⌫
AtoB

� (1 � H(⌫
AtoB

))} (15)

whereH(·) is the Heaviside step function, and �eb < �pre

are the learning rates.

Thus, in the presence of a reward signal, only resting levels with matching

memory traces are strengthened (⌫ � (1 � H(⌫)) = ⌫), all others decay (⌫ �
(1 � H(⌫)) = �1). In the absence of a reward signal, all resting levels are left

unchanged.

We performed simulations in which either of two possible targets were presented

at all times (Figure 10). Movements were autonomously generated by behavioral bab-

bling. If the reaching behavior was activated, but now peak in the target field was

present because the fixation behavior had not previously been activated, then a peak

was induced in the target field at a random location. The hand returned to the resting

position when the associated intention node was activated. Paths generated at three

phases of the learning process are illustrated. Figure 11 shows how the system first

learns to boost the pre-condition node that reflects that visual fixation precedes reach-

ing. This is because trials in which that order occurred where most likely to achieve

reward as the visual target impacted on the movement planning. Once this is learned,
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the system learns to boost the elementary behaviors fixation and reach. The boost to

reaching precedes the boost to visual fixation, because reaching is activated closer in

time to the reward and thus has a stronger memory trace when updating occurs.

The movement paths in Figure 10 reflect that pre-reaches first go down in frequency.

This is because the newly learned ordering now makes activation of reaches less likely

if they are not preceded by visual fixation. Once visual fixation picks up, so does

reaching. That pattern matches the observations of von Hofsten.

The opening and closing of the hand is not rewarded in these simulations and

therefore, their activation is not promoted during the learning process (Figure 11).

This was meant to illustrate that the learning process can autonomously “pick out”

the relevant behaviors. In reality, grasping the object may also be a rewarding event,

of course.
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Figure 10: Movement paths generated by the model in three phases of the learning

process. Early in learning (left), the reach behavior becomes activated with or without

a prior fixation behavior. As a result, movements may go to either the visual targets or

other random targets. Once the sequential organization “fixate-then-reach” has been

learned (middle), reaching movements occur less frequently, because they are inhibited

unless a fixation preceded reaching. Reaches tend to be successful, however. After the

two behaviors fixate and reach have been boosted (right), reaches are more frequent

and are directed at the visual targets.

5 Discussion

In this chapter, we have reviewed the five basic processes that are minimally required

to direct movements at objects. To illustrate the style in which these processes may be

neurally implemented, we have formulated and then simulated a simple neural dynamic

model of movement generation. This model served as a platform for discussing the

many developmental challenges that infants face as they learn to reach for objects.

Clearly, this model is as yet very rudimentary. Many components are mere place

holders for neurally more realistic accounts. In many cases, more behavioral data

may be needed to test or revise the assumptions we have made. We step through the
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elementary behaviors “fixate” and “reach” increase over time. Right: Only the boost

to the pre-condition neural node for “fixate-then-reach” increases over learning time,

all other pre-condition nodes remaining near zero.

components to discuss these various limitations and point to open questions and future

directions of research.

5.1 Scene perception

We have only sketched the whole problem of scene perception and not modelled the

underlying processes here (but see Zibner, Faubel, Iossifidis, and Schöner (2011)).

Looking behavior is extensively used to assess visual attention and perception in

infants, both experimentally (Colombo & Mitchell, 2009) and theoretically (Perone &

Spencer, 2013b; Schöner & Thelen, 2006). Typically, these studies make use of dwell

time, that is, the duration of infants’ looks at particular parts of the visual array. In

both habituation and preferential looking paradigms, the visual array is changed all

the time. So if infants are building scene representations, those are constantly being

challenged as the scene is changing. Scene perception in early infancy itself is not well

studied and understood.

Scene representations must naturally be invariant against gaze shifts. A represen-

tation in retinal coordinates does not enable redirecting gaze or attention to an object

from di↵erent viewing angles. Representing the visual array in a coordinate frame that

is centered in the body enables such gaze shifts. The transformation from visual in-

put in retinal coordinates to such a body-centered reference frame is neuronally costly

(Pouget & Snyder, 2000; Schneegans, 2015). It requires projections from every retinal

location to every possible location in a body reference frame. The current gaze angle

selects the subset of these projections that reflects the current mapping at a given gaze

direction. The demands on the neural machinery required to make coordinate trans-

forms may be reflected in developmental processes that support the learning of such

coordinate transforms (Sandamirskaya & Storck, 2015). At this time, little is known
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about how infants learn coordinate transforms.

On the other hand, infants clearly need to know about the objects they reach to.

The intriguing results of Corbetta et al. (2014) suggest, that while infants my be paying

attention to an object they reach to on a global scale, the exact location on the object

toward which they reach is not predicted by where they look. Is it possible, that

learning to reach may impact on learning to look? Because the hand is attached to the

body and the visual scene may be represented in a gaze-invariant, but body-related

reference frame, it is thinkable that sensory and e↵erence copy processes engaged in

reaching contribute to the learning of spatial scene representations and of the associated

coordinate transforms.

5.2 Movement preparation

We have assumed that reaching movements are prepared before they are initiated

and that this preparation is based on information about both the movement target

and the initial position of the hand. This is consistent with a broad range of empir-

ical evidence, from neurophysiology to kinesiology and cognitive psychology: neural

populations encoding the hand’s movement direction in space, approximately straight

movement paths of the hand in space with smooth and invariant velocity profiles, and

the dependence of reaction times on movement parameters.

On the other hand, some data point toward a special role of the end-point of a

movement compared to the initial posture. Stimulating small neural populations in

motor cortex, Graziano and colleagues (Graziano, 2006) have often seen movements

of the hand to particular locations on the body from wherever the hand happens

to be initially, for instance. Infants learning to reach do not look at their hands

prior to movement initiation and do not seem to pay attention to where their hands

are (Corbetta et al., 2014). In fact, their hands seem to be all over the place as

they attempt to reach repeatedly (Thelen et al., 1996). So is it possible that there

would be an alternative approach to movement, one in which movement consists of

moving directly to a new postural state irrespective of initial state and the spatial

path required? We do not think that this is plausible. Timing and control problems

are really quite di↵erent when the movement originates at other locations. A di↵erent
angle may be this: Perhaps the current position of the hand is at all times neurally

represented (as it is in our model). In Graziano’s experiment, the activated neural

populations first drive an update of a neural representation of the initial position of

the hand based on this ongoing estimate. The same population of neurons may thus

drive di↵erent movements depending on the initial position of the hand. This would

be consistent with neural data from Scott and Kalaska (1997) who found that neural

tuning curves in motor cortex depend on the arm’s kinematic configuration.

Infants may have a di�culty organizing this sequence of processing steps. That

di�culty may account for some part of the variance of their early reaches. Learning to

reach may thus entail learning to temporally organize this sequence of processing steps

(see Section 5.5).
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5.3 Movement timing

Looking at infants’ hand movements, it is obvious that one of their major di�culties is

to get the timing of their reaches right. Some infants reach the target at high speeds,

others make meek movements. Over development, these patterns of timing converge

(Thelen et al., 1993, 1996).

We have talked about and modelled timing in an abstract way: A field of neural

oscillators generates a virtual velocity profile that was assumed to be isomorphic in

some way to the velocity of the hand’s trajectory in space. Clearly, there is more

to timing in movement generation. The time course of motor commands needs to be

adapted and fine-tuned not only to assure coordination with other actions and perceived

events, but also to support control, overcoming variations of inertia, interaction torques,

or external forces acting on the moving limb. This is linked to the problem of optimal

control: determining the right control signals that move an actuator to a desired state

while satisfying constraints.

There is a huge literature on how adults learn to adapt motor commands so as

to compensate for external force fields of a di↵erent kinds, including force fields that

vary with velocity (Shadmehr & Mussa-Ivaldi, 2012). Interestingly, that experimental

work has typically imposed force-fields on the end-e↵ector, often the hand, rather

than on individual joints (in part, for technical reasons, perhaps). An idea could be

that an adaptation of the field of neural oscillators and of its projections onto the

motor control level may be capable of modulating timing signals to accommodate the

demands of these tasks. This is an open research question that may have impact for

development because the changes in strength, mass, and geometry that occur as infants

grow requires adaptation.

5.4 Motor control

Learning to time motor commands to reach targets is closely related to the issue of

motor control, of course. In fact, researchers embracing the language of the theory of

optimal control and of control theory do not typically break up the system into “timing”

and “control” (although one could think of the optimal control signal as reflecting the

timing level and the feedback controller as reflecting the control level).

One reason we propose to break up the system into “timing” and “control” is

because of the particular way in which control of movement and control of posture

are unified in human movement. The most general and consequential insight from the

equilibrium point account of muscle neurophysiology is that due to the peripheral spinal

circuitry (in particular, the stretch reflex) the descending control signal is essentially

spatial in nature (Feldman, 2011). Muscles are activated as a function of how long

they are (as sensed by muscle spindles, for instance) relative to a threshold. It is this

threshold that is set by the descending motor command (and its rate of change), which

can therefore be thought of as a length (and a velocity).

This solves a fundamental problem of muscle neurophysiology: After bursts of

activity during a movement, muscles return to silence (or to an equilibrium level of
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activity that may reflect sti↵ness demands and gravitational forces) even though the

lengths of di↵erent muscles are not di↵erent than they were before the movement was

started. So, the threshold of the stretch reflex must be reset during the movement.

That requirement is sometimes left out of accounts that focus on the computation

of the right torque profile that may overcome the various biomechanical interaction

torques that plague movement. Computed torques as signals to the muscle are not

only physiologically unrealistic, but also fail to address the problem of resetting the

equilibrium length of muscles (which does not mean that motor commands may not

be adjusted to deal with forces, e.g. (Tee, Burdet, Chew, & Milner, 2004)).

One hypothesis that we embrace, but have not elaborated here, is that the periph-

eral neural circuitry also simplifies the motor control problem (Gribble et al., 1998;

Raphael, Tsianos, & Loeb, 2010). This may alleviate some of the problems of dealing

with interaction torques or the torques experienced at individual joints due to external

forces acting on the hand. A critical issue is how to resolve co-contraction and the

redundancies among muscles systems.

The wager of equilibrium point thinking is that much of the remaining problem of

control can be achieved through kinematic transformations that shape virtual joint tra-

jectories (or muscle length trajectories). Kinematic transformations from an abstract

“hand-in-space” virtual trajectory, r(t), to joint- or muscle level virtual trajectories,

�(t), may go a long way toward addressing control problems if we go beyond the sim-

plistic ideas of inverse Jacobians that we employed here (Eq. 7). This is particularly

attractive in a dynamical system (or neural dynamics) approach, in which the virtual

joint trajectory is represented as the state of a dynamical system which may be used

to express the configuration and velocity dependent modulation of motor commands,

e.g.

˙

�(t) = ˆ

J(�(t), ˙�(t)) · ṙ(t) (16)

where the function,

ˆ

J , may serve as an internal model that must be learned. (Note

that this implicit dynamical system needs to be resolved first.) Such a generalized

kinematic transform could the thought of as a steerable neural mapping, analogous

to the coordinate transforms we discussed earlier (Eq. 2). This mapping is from the

spatial representation of the hand’s virtual velocity profile, ṙ(t) to the virtual joint level
trajectory, �(t) and

˙

�(t), steered by these same variables. Understanding how such

kinematic transforms may be learned autonomously is one of the outstanding problems

of developmental motor control (see Guenther, Bullock, Greve, and Grossberg (1994)

for early attempts to achieve such).

This is linked to the “uncontrolled manifold” (UCM) e↵ect, a signature of how

the neural processes of movement generation deal with the inherent redundancy of the

kinematics and dynamics of reaching (Scholz & Schöner, 1999; Tseng, Scholz, Schöner,

& Hotchkiss, 2003). The UCM e↵ect is the observation that there is more variance

in those directions of joint space along which the hand position remains invariant

than in directions along which the hand position varies. The UCM e↵ect has been

interpreted as revealing of a control strategy that focuses on the control of the hand

in space (Todorov & Jordan, 2002; Latash et al., 2007; Martin et al., 2009). Such

UCM structure of variance may thus serve to probe the structure of the kinematic
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transformation. In particular, self-motion within the UCM is an index to incomplete

compensation for interaction torques (Martin et al., 2009). Such analyses are di�cult

to perform for children, very di�cult for infant reaching movement because many of

the technical prerequisites of estimating the structure of variance are not met in these

cases (e.g., temporal alignment of trajectories across di↵erent movement). Is would be

very attractive if these di�culties could be overcome.

5.5 Movement initiation and termination and learning to or-

ganize movements

The autonomous behavioral organization of reaching movement is a key problem, that

is, perhaps, least well understood of all component processes. Behavioral organiza-

tion is critical to integration, in which the component processes are initiated at the

right time and hand on their output to downstream components when required. We

have argued that sequentially organizing components of object-oriented action is a de-

velopmental achievement, referring to the data of von Hofsten (1984) for exemplary

demonstration.

The critical issue is how the discrete moments in time, at which transitions among

di↵erent components or di↵erent elementary movements occur, emerge from the under-

lying continuous time in which neural processes unfold. This is where the concepts of

dynamical field theory provide a key element, the detection instability. At that insta-

bility, graded changes of input induced a categorical change that occurs at a discrete

moment in time.

The emergence of such discrete events is also a key element of autonomous learn-

ing. We have argued that in autonomous learning, updates of neural connectivity only

happens at particular points in time, at which a rewarding achievement is detected.

Patterns of activation that lead up to such achievements must be kept around to prop-

erly assign credit at these learning events. We suggested that memory and eligibility

traces were the simplest mechanism that may serve such function. Clearly, much more

needs to be understood about autonomous learning.

We have also illustrated some of the processing structure that enables reaching

movements, introducing the notions of intentional nodes, conditions of satisfaction,

and of dissatisfaction. Learning requires even more prior structure, essentially the

substrate to extract cues about the sequence of events, to link motor commands to their

consequences, and to explore the behavioral options. Autonomous learning behavior

from experience is, in our view, a major frontier of theoretical thinking in development

(Perone & Spencer, 2013a; Sandamirskaya & Storck, 2015). We are only at the very

beginning.
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Sandamirskaya, Y., & Schöner, G. (2010). An embodied account of serial order: how

instabilities drive sequence generation. Neural networks , 23 (10), 1164–79.
Sandamirskaya, Y., & Storck, T. (2015). Learning to Look and Looking to Remember:

A Neural-Dynamic Embodied Model for Generation of Saccadic Gaze Shifts and

Memory Formation. In P. Koprinkova-Hristova, V. Mladenov, & N. K. Kasabov

(Eds.), Artificial neural networks se - 9 (Vol. 4, pp. 175–200). Springer Interna-

tional Publishing.

Savastano, P., & Nolfi, S. (2013). A robotic model of reaching and grasping develop-

ment. IEEE Transactions on Autonomous Mental Development , 5 (4), 326–336.
Schlesinger, M., Parisi, D., & Langer, J. (2000). Learning to Reach by Constraining

the Movement Search Space. Developmental Science, 3 , 67–80.
Schneegans, S. (2015). Sensori-Motor and Cognitive Transformation. In G. Schöner,
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