
Extensions of Hierarchical Slow Feature

Analysis for Efficient Classification and

Regression on High-Dimensional Data

Dissertation

Submitted to the Faculty of Electrical
Engineering and Information Technology

at the
Ruhr University Bochum

for the
Degree of Doktor-Ingenieur

by
Alberto Nicolás Escalante Bañuelos

Bochum, Germany, July, 2017

ii

Alberto Nicolás Escalante Bañuelos

Place of birth: Durango, Dgo., Mexico

Email: alberto.escalante@ini.rub.de

alberto.nicolas.escalante@gmail.com

Thesis advisor Prof. Dr. Laurenz Wiskott

and first referee Ruhr University Bochum, Germany

Second referee PD Dr. Rolf Würtz

Ruhr University Bochum, Germany

Thesis submission: January 18, 2017

Thesis defense: May 3, 2017

alberto.escalante@ini.rub.de
alberto.nicolas.escalante@gmail.com

iii

Abstract

This thesis develops new extensions to slow feature analysis (SFA) that solve

supervised learning problems (e.g., classification and regression) on high-

dimensional data (e.g., images) in an efficient, accurate, and principled way.

This type of problems has been addressed by convolutional neural networks

(CNNs) in the last decade with excellent results. However, additional ap-

proaches would be valuable, specially those that are conceptually novel and

whose design can be justified theoretically.

SFA is an algorithm originally designed for unsupervised learning that ex-

tracts slow (i.e., temporally stable) features. Advantages of SFA include a strong

theoretical foundation and that it might be intimately connected to learning in

biological systems. One can apply SFA to high-dimensional data if it is imple-

mented hierarchically, a technique called hierarchical SFA (HSFA). The exten-

sions to SFA listed in the following allow the construction and training of deep

HSFA networks, yielding competitive accuracy and efficiency.

Graph-based SFA (GSFA) is a supervised extension to SFA that introduces

the concept of training graph, a structure in which the vertices are samples

(e.g., images) and edges represent transitions between pairs of samples. Edges

have weights that can be interpreted as desired output similarities of the corre-

sponding samples. Compared to SFA, GSFA solves a more general optimization

problem and considers many more transitions. Information about label (or class)

similarities is encoded in the graph by the strength of the edge weights. Many

training graphs are proposed to handle regression and classification problems.

The efficacy of GSFA is demonstrated on a subproblem of face detection.

The exact label learning (ELL) method allows to compute training graphs

where the slowest feature(s) one could extract would be equal to the label(s), if

the feature space were unrestricted. In contrast to previously proposed graphs,

the edge weights of the resulting ELL graphs are set precisely as needed, improv-

ing the label estimation accuracy. Moreover, ELL allows to learn multiple labels

simultaneously using a single network, which is more efficient than learning the

labels separately and often results in more robust features.

Hierarchical information-preserving GSFA (HiGSFA) improves the amount

of label information propagated from the input to the top node in hierarchical

GSFA (HGSFA). HiGSFA computes two types of features: slow features that

maximize slowness, as usual, and reconstructive features that minimize an in-

put reconstruction error, following an information-preservation goal. HiGSFA

is evaluated on the problem of age estimation (along with gender and race)

from facial photographs, where it yields a mean average error of 3.50 years,

outperforming current state-of-the-art systems.

Among the proposed extensions, HiGSFA is the most promising. HiGSFA in-

corporates the other extensions and yields the best results, making this approach

competitive, scalable, and robust. Moreover, HiGSFA is a versatile algorithm,

allowing new technical applications and further principled extensions.

iv
Kurzfassung der Dissertation

In dieser Doktorarbeit werden neue Erweiterungen des Slow Feature Analysis (SFA)
Algorithmus vorgestellt. Diese lösen effizient und genau überwachte Lernprobleme des
maschinellen Lernens (machine learning), wie Klassifikation und Regression, auf hoch-
dimensionalen Daten (z.B. Bilder). Probleme dieser Klasse wurden in jüngerer Zeit
hauptsächlich mit Convolutional Neural Networks behandelt, ein Ansatz der hervorra-
gende Ergebnisse erzielt. Dennoch sind neue Lösungsansätze wünschenswert, insbeson-
dere wenn sie auf neuen Konzepten basieren und Designentscheidungen auf fundierten
theoretischen Grundlagen beruhen.

SFA ist ein Algorithmus der ursprünglich für das unüberwachte Lernen von lang-
samen (d.h. zeitlich stabilen) Merkmalen entwickelt wurde. Vorteile von SFA beinhal-
ten ein im Detail ausgearbeitetes theoretisches Fundament sowie eine Verbindung zu
Lernprozessen in biologischen Systemen. Eine hierarchische Implementierung von SFA
(hierachical SFA, kurz: HSFA) erlaubt es, SFA auf hochdimensionale Daten anzuwen-
den. Die im folgenden genannten SFA-Varianten erlauben es, tiefe hierarchische SFA
Netzwerke zu erstellen und zu trainieren. Diese erreichen Ergebnisse vergleichbar zu
anderen Methoden bzgl. Genauigkeit und Effizienz.

Graph-based SFA (GSFA) ist eine SFA Variante für überwachtes Lernen, welche das
Konzept des training graph einführt: eine Struktur in der die Knoten des Graphen die
zu lernenden Datenpunkte und Kanten die Verbindungen zwischen diesen Datenpunk-
ten repräsentieren. Die Gewichte der Kanten können als die gewünschte Ähnlichkeit
zwischen zwei verbundenen Datenpunkten interpretiert werden. Im Vergleich zu SFA
löst GSFA ein allgemeineres Optimierungsproblem und berücksichtigt eine wesentlich
höhere Anzahl von Verbindungen zwischen einzelnen Datenpunkten. Die Information
der Klassenähnlichkeit ist durch die Stärke der Verbindungsgewichte repräsentiert. In
dieser Arbeit werden verschiedene Trainingsgraphen zum Lösen von Regressions- und
Klassifikationsproblemen vorgestellt. Die Leistungsfähigkeit von GSFA wird anhand ei-
nes Unterproblems der Gesichtsdetektion demonstriert.

Der exact label learning (ELL) Algorithmus erlaubt es Graphen zu trainieren, für
welche die ermittelten langsamen Merkmale den Klassenzugehörigkeiten entsprechen,
falls der Merkmalsraum als unbeschränkt vorausgesetzt wird. Im Gegensatz zu den
bisher vorgestellten Graphen werden die Verbindungsgewichte von ELL daher exakt
vordefiniert, wodurch die Klassifikationsleistung des Netzwerks verbessert wird. Darüber
hinaus erlaubt ELL das Lernen mehrerer Klassen mit nur einem einzigen Netzwerk. Dies
ist nicht nur effizienter als ein seperates Netzwerk für jede Klasse zu lernen, sondern
führt außerdem zu robusteren Merkmalen.

Hierachical information-preserving GSFA (HiGSFA) vergrößert den durch das Netz-
werk propagierenden Anteil der Information über die Klassenzugehörigkeit. HiGSFA ex-
trahiert dazu zwei verschiedene Arten von Merkmalen: Langsame Merkmale, welche wie
bisher die Langsamkeit maximieren, sowie Rekonstruktionsmerkmale, welche den Re-
konstruktionsfehler minimieren und somit der Informationserhaltung dienen. Zur Eva-
luation der HiGSFA werden die Probleme der Alters- und Geschlechtsbestimmung und
der ethnischen Zuordnung anhand von Porträtfotos herangezogen. Dabei erreicht HiGS-
FA im Falle des Ersteren einen durchschnittlichen Fehler von 3,5 Jahren und übertrifft
mit diesem Ergebnis den bisherigen Stand der Technik.

Von den vorgestellten Varianten ist HiGSFA am vielversprechendsten. HiGSFA inte-

griert die anderen aufgezählten Varianten und erzielt die besten Ergebnisse, was diesen

Ansatz konkurrenzfähig, skalierbar und robust macht. Darüber hinaus bietet HiGSFA

durch seine Vielseitigkeit die Möglichkeit neuer technischer Anwendungen sowie die

Option auf weitere Varianten.

v

To my mother
Maŕıa del Rosario Bañuelos Castañeda

and my father
Dr. Evodio Escalante Betancourt
with all my love and admiration.

vii

Acknowledgements

Doing a PhD at the Institut für Neuroinformatik was a very enriching and joyful

experience. It allowed me to learn from many great people in a professional,

stimulating, and interdisciplinary environment. I would like to express my grat-

itude to all people at the institute who helped me to accomplish this PhD.

First of all, my deepest thank to my advisor Prof. Dr. Laurenz Wiskott, who

trusted me with his most precious algorithm (SFA) and was an ideal mentor from

a scientific as well as a personal standpoint. I have learned so much from him,

directly and indirectly, and benefited from his analytical skills, mathematical

intuition, and thoughtful questions. He encouraged in me a stronger desire for

more fundamental approaches and formal scientific methods. I also thank him

for having given me the chance to join the amazing field of machine learning.

I am especially grateful to PD Dr. Rolf Würtz for his great advice on dif-

ferent matters and for helping me during the PhD in several ways, including

the acquisition of private databases, accessing publications, allowing me to use

the face rendering software, and even providing me with a work place when my

regular office needed renovation.

Several people helped me to improve this manuscript and previous publica-

tions that later gave rise to it. These people were fundamental for the quality of

the text and for helping me to improve my writing skills: Dr. Fabian Schönfeld,

Mathias Tuma, Jonas Lins, Björn Weghenkel, Jan Melchior, Jun.-Prof. Dr.

Tobias Glasmachers, Dr. Varun Kompella, Merlin Schüler, and Mathis Richter.

Thanks a lot guys for your valuable comments and suggestions.

Thanks to Arno Berg, who always provided me promptly with all hardware

and software resources needed for this research. I also appreciate the work of

the secretaries of the institute, especially Frau Wille and Frau Schmidt, who

kindly helped me with complex paperwork and formalities.

I would like to also thank several friends that I had the pleasure to meet in

Bochum, who kept me motivated to write this dissertation and helped me clear

up my mind after exhausting work: Kamal, Magdalena, Paulo, Diego, Emelyn,

Osvaldo, Elvira, Dulce, Janáı, Grisell, Caroline, Luis, Alicia, Nathalie, Winona,

Silke, Ricardo, Alexandra, Florian, Christian, Jens, Attila, Hafize, Denisa, and

Mirela. Also I would like to thank Mexican friends, who supported me from the

distance: Uriel, Javier, and Carina. Thanks also to several outstanding people

not named explicitly here.

This work was jointly supported by the German Academic Exchange

Service (DAAD) and the National Council of Science and Technology of Mexico

(CONACYT) through a scholarship. The Research School also supported this

work through a yearly financial allowance and useful workshops.

Thanks!

Contents

Abstract iii

Kurzfassung der Dissertation iv

Dedication v

Acknowledgements vii

1 Introduction 1

1.1 Principled Supervised Learning with SFA 2

1.2 General Objective . 3

1.3 Questions Addressed . 4

1.4 Hypotheses . 5

1.5 Scope and Limitations . 5

1.6 Methods . 6

1.7 Contributions . 6

1.7.1 Graph-Based SFA (GSFA) 7

1.7.2 Exact Label Learning (ELL) 7

1.7.3 Hierarchical Information-Preserving GSFA (HiGSFA) . . 8

1.8 Thesis Structure . 9

2 Standard SFA 11

2.1 The Slowness Principle and SFA 11

2.2 Standard SFA Optimization Problem 12

2.3 Standard Linear SFA Algorithm 13

2.4 Hierarchical SFA (HSFA) . 15

2.4.1 Previous Work on HSFA and Terminology 15

2.5 SFA for Supervised Learning . 17

2.6 Technical Applications of SFA . 18

2.6.1 General-Purpose Feature Extraction 18

2.6.2 Applications of SFA for Dimensionality Reduction 19

2.6.3 Applications of SFA for Classification 19

2.6.4 Applications of SFA for Regression 21

2.7 Discussion of SFA and its Applications 25

ix

x CONTENTS

3 Graph-Based SFA 27

3.1 Introduction . 28

3.1.1 Connection of GSFA with Other Algorithms 29

3.1.2 General Approach behind GSFA 31

3.2 Training Graphs and Graph-Based SFA 32

3.2.1 Organization of the Training Samples in a Graph 33

3.2.2 GSFA Optimization Problem 33

3.2.3 Linear Graph-Based SFA Algorithm (Linear GSFA) . . . 35

3.2.4 Correctness of the Graph-Based SFA Algorithm 36

3.2.5 Probabilistic Interpretation of Training Graphs 37

3.2.6 Construction of Training Graphs 39

3.3 Classification with GSFA . 39

3.3.1 Clustered Training Graph 39

3.3.2 Efficient Learning Using the Clustered Graph 40

3.3.3 Supervised Step for Classification Problems 42

3.4 Regression with SFA and GSFA 42

3.4.1 Sample Reordering . 43

3.4.2 Sliding Window Training Graph 43

3.4.3 Serial Training Graph . 45

3.4.4 Mixed Training Graph . 47

3.4.5 Supervised Step for Regression Problems 48

3.5 Experimental Evaluation of the Graphs 49

3.5.1 Classification . 49

3.5.2 Regression . 50

3.6 Discussion of GSFA . 56

3.6.1 Related Optimization Problems 57

3.6.2 Conversions Between GSFA and Similar Algorithms . . . 58

3.6.3 Remarks on Classification with GSFA 60

3.6.4 Remarks on Regression with GSFA 61

3.6.5 Other Considerations . 62

4 ELL and the Design of Training Graphs 65

4.1 Introduction . 66

4.2 GSFA Optimization Problem in Matrix Notation 68

4.3 Explicit Label Learning for Regression Problems 69

4.3.1 Optimal Free Responses of GSFA 70

4.3.2 Design of a Training Graph for Learning One or Multiple

Labels . 72

4.3.3 Elimination of Negative Edge Weights 75

4.3.4 Auxiliary Labels for Boosting Estimation Accuracy 76

4.3.5 Computational Complexity of the ELL Method 77

4.4 Applications of Explicit Label Learning 78

4.4.1 Explicit Estimation of Gender with GSFA 78

4.4.2 Analysis of Pre-Defined Training Graphs 82

4.4.3 Compact Discriminative Features for Classification 85

CONTENTS xi

4.5 Discussion of Exact Label Learning 89

4.5.1 Multiple and Auxiliary Labels 90

4.5.2 Application of the ELL Method 91

4.5.3 Classification with ELL 92

4.5.4 Efficiency of ELL . 93

4.5.5 Extensions of ELL . 93

5 HiGSFA= HGSFA + Information Preservation 95

5.1 Introduction . 96

5.2 Related work . 97

5.3 Advantages and Limitations of HSFA and HGSFA 98

5.3.1 Advantages of HSFA and HGSFA Networks 98

5.3.2 Complexity of a Quadratic HSFA Network 99

5.3.3 Limitations of HSFA and HGSFA Networks 102

5.4 Hierarchical Information-Preserving GSFA (HiGSFA) 105

5.4.1 Algorithm Overview (iSFA) 105

5.4.2 Algorithm Description (Training Phase of iSFA) 106

5.4.3 Feature Extraction by iSFA 108

5.4.4 Mixing and Scaling of Slow Features 108

5.4.5 Input Reconstruction for iSFA 110

5.4.6 Some Remarks on iSFA, iGSFA, and HiGSFA 111

5.5 Experimental Evaluation of HiGSFA 111

5.5.1 Age Estimation and Previous Work on this Problem . . . 112

5.5.2 Image Database and Image Pre-Processing 113

5.5.3 Efficient Training Graphs for Learning Multiple-Labels . . 114

5.5.4 Evaluated Algorithms . 116

5.5.5 Experimental Results . 117

5.6 Discussion of HiGSFA . 124

5.6.1 The Approach . 125

5.6.2 Network Parameters . 126

5.6.3 Age, Gender and Race Estimation 127

5.6.4 Reconstruction from Slow Features 128

5.6.5 Final Words . 129

6 Discussion 131

6.1 Proposed Extensions . 133

6.1.1 Graph-Based SFA (GSFA) 133

6.1.2 Exact Label Learning (ELL) 134

6.1.3 Hierarchical Information-Preserving GSFA 134

6.2 Supervised Learning via the Slowness Principle 135

6.3 Analysis of Information for Algorithm Design 136

6.4 Implications of this Work . 138

6.5 Negative Results . 140

6.6 Recommendations for Future Research 142

6.6.1 Face Detection . 144

xii CONTENTS

6.6.2 Face Recognition . 144

6.7 Conclusion . 146

Bibliography 147

A Cuicuilco Framework 155

A.1 A Single Run of Cuicuilco . 157

A.2 Environment Vars. and Command Line Options 158

A.3 Network Structure in Cuicuilco 161

A.4 Structure of a Layer in Cuicuilco 162

A.5 Examples of Network Definitions 164

A.5.1 A Network that Implements the Identity Function 164

A.5.2 A Simple 4-Layer HiGSFA Network 164

A.6 Definition of Experimental Datasets 166

A.7 Modules . 167

About the Author 171

Publications 172

Chapter 1

Introduction

Can deep networks be constructed and trained in a principled yet efficient and

effective way? The field of machine learning has recently gained a lot of attention

thanks to the exciting comeback of neural networks in the form of deep learn-

ing, i.e., neural networks that consist of several layers and are typically trained

using backpropagation or other gradient-based algorithms (Bengio, 2009). Con-

volutional networks (CNNs) (e.g., LeCun et al., 1998; Krizhevsky et al., 2012)

are currently the most successful type of deep architectures, providing super-

human performance in some applications, such as digit and traffic sign recogni-

tion (Schmidhuber, 2015). In spite of the popularity of CNNs, several questions

regarding their theoretical foundations are still open, since their development

has been frequently driven by performance or by technical ideas rather than by

a scientific understanding (Zeiler and Fergus, 2014). This dissertation pursues

a different approach to build and train deep networks, by exploring the idea of

designing learning algorithms based on a few simple but strong principles. The

fundamental principle employed in this work is the slowness principle (e.g., Hin-

ton, 1989), which mandates the extraction of temporally stable features and is

realized by means of the slow feature analysis (SFA) algorithm (Wiskott, 1998;

Wiskott and Sejnowski, 2002).

Machine learning is concerned with the development and analysis of learning

algorithms, that is, algorithms that adapt to their input data to accomplish a

particular objective (Murphy, 2012). Supervised learning is a sub-field of ma-

chine learning where the training samples are accompanied by a (ground-truth)

label. The objective is then to predict the label of new samples as accurately as

possible according to a given error measure referred to as loss function. Labels

are frequently categorical (classes) or numerical. In the first case the objective

is classification and in the second case regression. Depending on the problem at

hand, different loss functions are appropriate, for instance, a classification error

or a mean squared error.

An important application of supervised learning is supervised image anal-

ysis, where the data samples are images and the labels encode some aspect of

them. For example, labels may refer to the identity of the main object or sub-

1

2 CHAPTER 1. INTRODUCTION

ject in the image (object recognition, face recognition), or the numerical value

of a particular attribute (e.g., object position, pose, age). Computer vision

researchers have proposed many advanced algorithms for supervised learning

from images (e.g., Szeliski, 2010; Fu et al., 2010). However, computer vision al-

gorithms are frequently optimized for concrete problems and datasets, and tend

to be problem specific. Thus, more general approaches are desirable.

1.1 Principled Supervised Learning with SFA

In the context of animal perception, a key observation is that individual sen-

sory inputs change relatively quickly compared to information derived from the

sensory data that encodes useful higher-level aspects of the environment (e.g.,

the position of a moth changes slower than the quickly changing neural acti-

vations in the retina of a frog observing it). The slowness principle is based

on this observation and requires, consequently, the extraction of slow features.

It has probably first been formulated by Hinton (1989). The first closed-form

algorithm for computing slow features has been developed by Wiskott and is re-

ferred to as slow feature analysis (SFA) (Wiskott, 1998; Wiskott and Sejnowski,

2002) (see Chapter 2).

It has been shown that SFA learns responses similar to those of specific

types of neurons in the primate visual system (e.g. Berkes and Wiskott, 2005)

and hippocampus (e.g. Franzius et al., 2007) when trained in a purely unsuper-

vised manner. SFA has many possible applications, particularly for the extrac-

tion of hidden driving forces, learning of invariant features, and blind source

separation. Although SFA is originally unsupervised, it also has applications

for supervised learning (see Section 2.6), making it a versatile and remarkably

problem-independent algorithm.

 Input Image
 135x135 pixels

27x27 SFA nodes
 output dim: 16

9x9 SFA nodes
 output dim: 30

3x3 SFA nodes
 output dim: 30

SF
A

SF
A

SF
A

SF
A 1 SFA node

output dim: 30

Figure 1.1: A hierarchical SFA network with 4 layers and no receptive field
overlap used for gender and age estimation from artificial face images (2D data).
Nodes have a fan-in of 5x5 pixels in layer 1 and 3x3 nodes in the next layers.
The terms receptive field, overlap, and fan-in are defined in Section 2.4.1. The
input to one node in layers 1, 2 and 3 is highlighted.

[Figure reproduced from (Escalante-B. and Wiskott, 2016b).]

1.2. GENERAL OBJECTIVE 3

Due to their size, images are frequently considered high-dimensional. The

direct application of SFA on high-dimensional data, including images, is less

efficient. However, one can resort to a divide-and-conquer approach for the

computation of slow features called hierarchical SFA (HSFA) to efficiently deal

with such high-dimensional data (e.g., Franzius et al., 2011). HSFA results

in a multi-layer hierarchical network, where each layer is composed of various

possibly independent instances of SFA, called SFA nodes (see Figure 1.1). The

input image information is propagated from the bottom to the top layer in

a feed-forward manner. Careful network design allows training and execution

with linear complexity w.r.t. the input dimensionality and number of samples

(scalable learning).

This thesis investigates methods for using SFA and HSFA for the solution

of classification and regression problems. In an abstract sense, the approach

consists in transforming a supervised learning problem into an unsupervised

learning one, where SFA or a variant of it can be applied. Various extensions

to SFA and HSFA are proposed, which yield improved performance in terms of

feature slowness, label estimation accuracy, and generalization to unseen data.

These extensions (see Section 1.7) include graph-based SFA (GSFA), exact label

learning (ELL) and hierarchical information-preserving GSFA (HiGSFA), with

HiGSFA being the most promising extension.

HiGSFA encompasses the principles and heuristics used by the other ex-

tensions, see Table 1.1, inheriting most advantages of SFA and resulting in a

general and efficient learning algorithm with a strong mathematical foundation.

HiGSFA is capable of extracting useful features from the raw pixel data that

increase in complexity, selectivity, and abstraction level as the data is processed

through the network. The label-predictive information is concentrated in a few

output features that are mostly invariant to other aspects of the input data.

Note that these properties are similar to those of other neural networks. How-

ever, HiGSFA is in fact considerably different from existing methods based on

gradient descent, including the highly successful CNNs: The training method

of HiGSFA is bottom-up, it uses other types of nonlinearities, is not convolu-

tional, uses neither backpropagation nor max pooling, and the features of each

node fulfill a local optimality criteria. Therefore, HiGSFA is a promising new

approach.

The possible applications of this research to image analysis are extensive,

ranging from demographics analysis, quality control, image-based diagnosis, and

driver assistance to image tagging. A strong label estimation accuracy is crucial

for these applications. Therefore, more general and accurate algorithms are

valuable not only for machine learning and computer vision researchers but for

developers of image analysis systems across multiple disciplines.

1.2 General Objective

The general objective of this thesis is to analyze the viability of using or ex-

tending SFA to solve supervised learning tasks on images via supervised feature

4 CHAPTER 1. INTRODUCTION

Principle or heuristic Implemented through Described in

Slowness principle SFA Chapter 2

Exploitation of label similar-
ities through slowness

GSFA, training graphs for su-
pervised learning, ELL method

Chapters 3 and 4

Spatial localization of features,
Hierarchical processing

Section 2.4 and
Chapter 5divide and conquer approach

Nonlinearities that are robust Normalized or saturating Sections 3.5.1 and
to outliers nonlinear expansions 5.5.4

Information preservation
Minimization of a reconstruction

Chapter 5
error, PCA, HiGSFA

Multiple information Multi-label learning combining
Chapters 4 and 5

channels efficient training graphs, HiGSFA

Table 1.1: Principles, heuristics, and ideas considered in this thesis and the base
methods or algorithms used to exploit them.

extraction (and not simply unsupervised feature extraction), and in particular

such tasks that involve face images, such as the estimation of age, gender, race,

scale and pose.

In order to achieve this goal, new methods are developed to exploit the label

information, improve the label estimation accuracy, and minimize the computa-

tional requirements. To develop such methods, different problems of increasing

difficulty level are addressed, ranging from gender and age estimation on arti-

ficial face images generated using 3D models to problems on real photographs,

such as face detection, digit and traffic sign recognition, as well as age, gender,

and race estimation.

1.3 Questions Addressed

This work attempts to contribute to the solution to the following questions:

• Is it possible to build competitive supervised learning algorithms based on

a small set of simple but strong principles? What kinds of principles or

heuristics are most valuable in theory and practice? Can such a general

approach outperform problem-specific algorithms?

• Is it possible to obtain good label estimation accuracies with SFA on non-

artificial data other than the MNIST dataset for handwritten digit recog-

nition1? What attributes can be estimated from face photographs? Can

SFA be used for face recognition?

• How can one use SFA to solve classification and regression problems effec-

tively? Can one transform a supervised learning problem into an equiva-

1When this PhD project began, digit recognition was apparently the only supervised learn-
ing application on real data in which SFA had provided competitive results (Berkes, 2005a).

1.4. HYPOTHESES 5

lent slow feature extraction problem?

• Regarding hierarchical processing, what are the concrete gains, computa-

tional and otherwise, of using HSFA? What are the main limitations and

can they be overcome?

• From a practical point of view there is a trade-off between efficiency and

model complexity. Can one design layer and network structures that are

efficient and still yield useful features? What types of nonlinear expansions

provide rich feature spaces and good generalization?

1.4 Hypotheses

The main hypothesis of this work maintains that it is possible to use a small set

of principles and heuristics to develop general supervised learning algorithms

with good efficiency and label estimation accuracy. That is, a few principles

and heuristics can be useful to learn a mapping from samples to labels in a

problem-independent way and still obtain good performance.

The hypothesis above does not contradict “no-free-lunch” theorems, because

the goal is not to solve all possible problems, but only those arising from real-

world applications where labels have a natural interpretation. Therefore, dif-

ferent datasets and labels may be constrained by, for example, physical and

biological restrictions and might share similar intrinsic regularities at a high

level.

Based on several theoretical and experimental results (e.g., Franzius et al.,

2007; Schoenfeld and Wiskott, 2015), this thesis also assumes that the slowness

principle is a fundamental learning principle well suitable for the task above.

Even though HSFA is not globally optimal, in practice it has allowed to ex-

tract useful features with good results under much less computational require-

ments than the direct application of SFA, and is thus particularly attractive for

handling high-dimensional data. Therefore, it is also hypothesized that feature

extraction with HSFA (and extensions) can be robust enough to overcome (to

some degree) variations present in real-life face images, such as different poses,

subject identity, hair styles, and lighting conditions.

1.5 Scope and Limitations

The scope of this work has been restricted as follows. According to the hypothe-

ses above, all developed algorithms should extend or be related to SFA.

The experiments of this thesis are limited to images. However, the proposed

extensions may also be applied to other types of data if they can be vectorized,

such as audio fragments and voxels. For simplicity, and due to the availability

of large databases, the focus is on face images, except for the classification algo-

rithms, which are also tested on more classical databases (i.e., digit and traffic

6 CHAPTER 1. INTRODUCTION

sign recognition) because face recognition may strongly benefit from problem-

specific methods (e.g., explicit detection of fiducial points). However, the ex-

tensions are application independent and may be applied to different problems

and types of images besides the ones mentioned above.

One application area of SFA is reinforcement learning (Wilbert, 2012), where

SFA is used as a general feature extraction algorithm. Although this work does

not address reinforcement learning directly, the proposed extensions might also

be beneficial in this area.

Many implementations for deep learning have employed graphics cards or

special hardware (Schmidhuber, 2015). To avoid premature optimization, the

proposed extensions do not yet exploit this type of resources, but they bene-

fit from conventional multi-core architectures (multithreading) and have been

optimized at the mathematical and algorithmic level.

1.6 Methods

The approach uses methods frequently employed in machine learning: linear

algebra, spectral analysis, algorithm analysis and design, loss functions, asymp-

totic computational and memory complexity, and basic probability, calculus,

and information theory.

Although this work mainly belongs to the field of machine learning, it profits

from ideas originating from two other fields. From neuroscience this work adopts

various heuristics and principles inspired by properties of the mammal visual

system and hippocampus, namely hierarchical processing and feature locality.

From theoretical biology this work borrows SFA and the slowness principle.

The use of concepts from neuroscience and theoretical biology does not lessen

the rigor of the approach from a machine learning perspective, because this work

does not attempt to simulate or replicate any specifics of the brain or to provide

biologically-feasible algorithms (though they are not discarded). Moreover, the

slowness principle (implemented via HSFA) is not adopted blindly but rather

critically assessed and modified for the challenges of supervised learning.

1.7 Contributions

The most representative precursor of this research is the work of Franzius et al.

(2011) on object recognition and pose estimation with HSFA, in which HSFA

is trained in an unsupervised fashion on random sequences of objects (either

artificial fish or clusters of spheres) where the pose and identity of the objects

changes slowly. The extracted slow features are post-processed by a supervised

algorithm to compute the final label estimations. Their system is able to suc-

cessfully estimate identity, position, size, and one or more angles of the object.

Some shortcomings of the work above are the artificial nature of the input

images, the small number of objects used, the plain background, and that 512

slow features are used in the supervised step (indicating poor feature selectivity).

1.7. CONTRIBUTIONS 7

Moreover, for classification, the slow features have to be post-processed with

Fisher discriminant analysis.

This thesis advances the approach above by introducing new extensions to

SFA and HSFA that explicitly use the label information to provide a more

compact feature representation (less than 10 features frequently suffice for best

accuracy), yield higher label-estimation accuracy, and can be applied to real

photographs with (to some extent) cluttered backgrounds. The extensions are

especially beneficial when used hierarchically and applied to high-dimensional

data. A separate chapter is devoted to each one of the three major contributions

of this thesis, which are briefly outlined below.

1.7.1 Graph-Based SFA (GSFA)

GSFA is the first proposed extension to SFA. It has been developed to solve

classification and regression problems, a goal that is achieved through features

that are more label predictive. The training data of SFA is a temporal sequence

of samples, where transitions occur between consecutive samples. GSFA gener-

alizes and replaces such training data by a graph structure called training graph,

where each vertex is a sample, the edges connect arbitrary pairs of samples, and

the vertices and edges are weighted. The label information (or most of it) is

encoded in this structure by making connections between samples with similar

labels stronger than those between samples with dissimilar labels. The structure

of the training graphs is crucial. Given the same samples, different connections

allow GSFA to become sensitive to specific labels (e.g., object position, size,

class) and invariant to other aspects of the data.

Several training graphs for GSFA are proposed, such as the serial training

graph, which is useful for regression. The serial graph has O(N2) transitions

(where N is the number of samples), that is, many more than the N − 1 tran-

sitions considered by standard SFA. However, training GSFA (+ serial graph)

has the same asymptotic computational complexity as training SFA.

GSFA is evaluated on a subproblem of the face detection problem consisting

in the estimation of the horizontal position of a face (x-pos) contained in an

image patch. The images originate from several databases to increase image

variability and are normalized to grayscale and 128×128 pixels.

The x-pos problem is successfully tackled with an 11-layer hierarchical GSFA

(HGSFA) network. The features learned with HGSFA allow for more accurate

label estimations than those computed with HSFA. Moreover, the label informa-

tion is concentrated in considerably fewer features than in previous approaches

(e.g., only 5 features are necessary to achieve top label estimation accuracy,

indicating that HGSFA indeed finds the slowest hidden parameters of the data).

1.7.2 Exact Label Learning (ELL)

The ELL method is motivated by the following question: Can one construct

a training graph such that the slowest feature computed by GSFA is equal to

8 CHAPTER 1. INTRODUCTION

the label we want to learn? Pre-defined graphs, such as the serial one, provide

promising results for the solution of regression problems. However, such graphs

take only the rank of the labels into account (i.e., the position or index of

the samples when ordered by increasing label) and not their exact value. The

consideration of the exact numerical value of the labels makes it possible to

improve the estimation accuracy.

The ELL method removes the dependency on a final regression step that

maps the slow features to labels, providing an end-to-end method (from raw

pixels to label estimation). The ELL method allows us to construct a training

graph, such that the first optimal free response (i.e., the slowest possible feature

that can be extracted from a given training graph without being restricted by

the training samples or the feature space) is equal to a normalized version of the

label. More precisely, under unrestricted conditions, when GSFA or HGSFA are

trained with an ELL graph, the solution to the regression problem is given by the

slowest feature extracted. It is only necessary to correct its sign globally (since

slowness is invariant to feature polarity) and reverse the label normalization

(since labels do not necessarily have unit variance and zero mean in contrast to

slow features).

One standalone contribution (part of ELL) is a method for the analysis of

training graphs. With such a method we can compute the optimal free responses

of a given graph, resulting in an alternative representation of the graph that

shows an important aspect of its structure.

The strongest advantage of the ELL method is that it allows us to learn mul-

tiple labels simultaneously (e.g., face position, size, pose, age, gender). Further-

more, the theory of the ELL method also shows us how to combine pre-defined

graphs to obtain more accurate and efficient estimations.

1.7.3 Hierarchical Information-Preserving GSFA (HiGSFA)

Experiments and a theoretical analysis of hierarchical GSFA (HGSFA) show

the advantages of hierarchical processing with GSFA, including efficiency, good

label estimations, and a rich feature space. However, it is shown that HGSFA

suffers from a drawback that I term here unnecessary information loss, where

nodes of the network discard information that is not slow locally, but that would

have resulted in slow features when combined with information from other nodes

higher in the network. The goal of HiGSFA is to counteract this drawback by

adopting a secondary optimization objective called information preservation,

which complements the slowness-maximization objective. In practice, informa-

tion preservation is implemented as the minimization of a reconstruction er-

ror. Although this combination of objectives might appear counter-intuitive,

experiments show that HiGSFA outperforms HGSFA in feature slowness, la-

bel estimation accuracy, and input reconstruction with the same asymptotic

computational complexity.

HiGSFA is evaluated on the challenging problem of age estimation from

facial photographs of the MORPH-II database. The input images are nor-

1.8. THESIS STRUCTURE 9

malized to gray-scale and size 96×96. A 10-layer HiGSFA network is used.

Best performance is obtained when not only age, but also gender and race la-

bels are learned simultaneously, which is possible by combining three different

pre-defined graphs, one for each label. The approach yields a mean absolute

error (MAE) of 3.50 years, resulting in state-of-the-art performance for this

task and an improvement over an MAE of 3.63 years using a multi-scale con-

volutional neural network (Yi et al., 2015) and 3.92 years using bio-inspired

features+rKCCA+support vector machine (Guo and Mu, 2014).

Among the extensions proposed in this thesis, HiGSFA is the most promis-

ing one, because it encompasses all the principles and heuristics considered by

the other proposed extensions and provides the most accurate results. It con-

stitutes a powerful, scalable, principled, and end-to-end method for supervised

dimensionality reduction and feature extraction.

1.8 Thesis Structure

The remainder of the thesis is structured as follows. First, SFA and several

existing applications of it are introduced in Chapter 2. Then, the GSFA algo-

rithm and optimization problem are proposed in Chapter 3. Afterwards, the

ELL method is proposed in Chapter 4, including a method for the analysis of

training graphs and the computation of compact discriminative features. In

Chapter 5, the advantages and drawbacks of hierarchical processing with HSFA

and HGSFA are analyzed, and the HiGSFA algorithm is proposed. The the-

sis is closed in Chapter 6 with a general discussion. In addition, the software

framework used to implement and evaluate all the extensions, called Cuicuilco,

is briefly described in Appendix A.

Chapter 2

Standard SFA

In this chapter, the general learning principle behind slow feature analysis (SFA)

called the slowness principle is introduced. Furthermore, the SFA algorithm and

its optimization problem are reviewed, and the concepts of supervised learning

with SFA and hierarchical SFA networks (HSFA) are briefly described. Addi-

tionally, several concrete applications of SFA are described1.

2.1 The Slowness Principle and SFA

The nervous system of humans (and mammals in general) appears to process

sensory information (e.g., visual stimuli) in a simple and straightforward way.

However, this computation is a complex task of crucial importance for any inter-

action with the environment. Consider the visual perception of a driver observ-

ing pedestrians walking on the street: As the car moves forward, the activations

of the individual receptors in his retina typically change quickly, and are espe-

cially sensitive to eye movement and variations in the position of objects and

pedestrians in his field of view. However, all pertinent information, including

the position and posture of the pedestrians, can easily be distinguished by the

driver. In general, useful high-level information contained in the perception of

the environment frequently changes on a much slower scale than the inputs ar-

riving at individual receptors. This observation inspires the slowness principle,

which explicitly requires the extraction of slow features.

This principle has probably first been formulated by Hinton (1989), and on-

line learning rules have been developed by Földiák (1991) and Mitchison (1991).

The first closed-form algorithm has been developed by Wiskott and is referred

to as slow feature analysis (SFA) (Wiskott, 1998; Wiskott and Sejnowski, 2002).

The concise formulation of the SFA optimization problem (see Section 2.2)

permits an extended mathematical treatment that facilitates a deep analytical

understanding of its properties (Wiskott, 2003a; Franzius et al., 2007; Sprekeler

and Wiskott, 2011). The SFA algorithm (see Section 2.3) is guaranteed to

1This chapter is in part an edited version of (Escalante-B. and Wiskott, 2013); the infor-
mation here has been updated to include newer extensions to SFA.

11

12 CHAPTER 2. STANDARD SFA

find an optimal solution within the considered function space (e.g., all linear

or quadratic functions). It was initially developed for learning invariances in

a model of the primate visual system (Wiskott and Sejnowski, 2002; Franzius

et al., 2011). Subsequently, Berkes and Wiskott (2005) used it for learning

responses similar to those of complex cells in primary visual cortex, and Franzius

et al. (2007) for learning responses similar to place cells in the hippocampus. In

recent years, the number of technical applications of SFA has been continually

increasing (Escalante-B. and Wiskott, 2012); some of them are briefly described

in Section 2.6.

2.2 Standard SFA Optimization Problem

The SFA optimization problem can be stated as follows (Wiskott, 1998; Wiskott

and Sejnowski, 2002; Berkes and Wiskott, 2005): Given an I-dimensional input

signal x(t) = (x1(t), . . . , xI(t))
T , where t ∈ R, and an output dimensionality J ,

find an instantaneous vectorial function g : RI → RJ within a function space

F , that is, g(x(t)) = (g1(x(t)), . . . , gJ(x(t)))T , such that for each component

yj(t)
def
= gj(x(t)) of the output signal y(t)

def
= g(x(t)), for 1 ≤ j ≤ J , the objective

function

∆(yj)
def
= 〈ẏj(t)2〉t is minimal (delta value) (1)

under the constraints

〈yj(t)〉t = 0 (zero mean), (2)

〈yj(t)2〉t = 1 (unit variance), (3)

〈yj(t)yj′(t)〉t = 0, ∀j′ < j (decorrelation and order). (4)

The delta value ∆(yj) is defined as the time average (〈·〉t) of the squared

derivative of yj and is therefore a measure of the slowness (or rather fastness) of

the signal. The constraints (2–4) require that the output signals are normalized,

not constant, and represent different aspects of the input signal. The problem

can be solved iteratively beginning with y1 (the slowest extracted feature) and

finishing with yJ . An algorithm for extracting y1 to yJ is described in the next

section. Due to constraint (4), the delta values are ordered, that is, ∆(y1) ≤
∆(y2) ≤ · · · ≤ ∆(yJ). See Figure 2.1 for an illustrative example.

The term instantaneous is used to emphasize that the function is only sensi-

tive to the current input sample and is (conditionally) independent of previous

and future samples and the time variable (even though the original input sig-

nal x(t) is a function of time). This rules out averaging the data over time to

compute slow features.

In practice, the function g is usually restricted to a finite-dimensional space

F , for example, to all polynomial functions of degree 1, 2, or 3. Highly complex

function spaces F should be avoided because they result in overfitting. In ex-

treme cases one obtains features such as those in Figure 2.1 (right) even when

the hidden parameters implicit in the input data lack such an ideal structure.

2.3. STANDARD LINEAR SFA ALGORITHM 13

0 2 4 6 8 10 12 14

2

1

0

1

2

Figure 2.1: Illustrative example of feature extraction from a 10-dimensional
discrete-time input signal. Four arbitrary components of the input (left) and
the four slowest outputs (right) are shown. Notice that feature extraction is
an instantaneous operation, even though the outputs are slow over time. This
example was designed such that the features extracted are the slowest ones
theoretically possible independently of the data and feature space (optimal free
responses). In particular, in continuous time the slowest possible feature is a
normalized half-period of a cosine function. Such a feature is similar to the
discrete-time feature plotted in light blue. The next optimal free responses
are cosine functions of increasing frequency. The input has been generated by
linearly shuffling different optimal free responses, an operation that is easily
reversed by linear SFA.

[Figure reproduced from (Escalante-B. and Wiskott, 2012), with permission.]

This overfitting problem is then evident when one extracts features from test

data that lack such a structure, see Figure 2.2. An unrestricted function space

is, however, useful for theoretical analyses (e.g., Wiskott, 2003a) because it is

general and mathematically convenient.

2.3 Standard Linear SFA Algorithm

The SFA algorithm is typically nonlinear. Although kernelized versions have

been proposed (Bray and Martinez, 2003; Vollgraf and Obermayer, 2006;

Böhmer et al., 2012), it is usually implemented more directly with a nonlin-

ear expansion of the input data followed by linear SFA (linear in the expanded

space).

In this section, the standard linear SFA algorithm (Wiskott and Sejnowski,

2002) is recalled, in which F is the space of all linear functions. Discrete time,

t ∈ N, is used for the application of the algorithm to real data. The objective

function and the constraints are thus adapted to discrete time. The input is then

a single training signal (i.e., a sequence ofN samples) x(t), where 1 ≤ t ≤ N , and

the time derivative of x(t) is usually approximated by a sequence of differences

of consecutive samples: ẋ(t)
def
≈ x(t + 1) − x(t), for 1 ≤ t ≤ N − 1. Thus, it is

assumed without lost of generality that ∆t = 1.

The output components take the form gj(x) = wT
j (x − x̄), where x̄

def
=

14 CHAPTER 2. STANDARD SFA

1
N

∑N
t=1 x(t) is the average sample, which is subtracted to ensure that the output

has zero-mean to conform with (2). Thus, in the linear case, the SFA problem

is reduced to finding an optimal set of weight vectors {wj} under constraints

(2–4) and can be solved by linear algebra methods, as shown below.

The SFA algorithm computes the second-order statistics of the training data.

Such information is ideally described by the covariance matrix of the data, but

since the number of samples is finite, the covariance matrix is approximated by

the sample covariance matrix

C =
1

N − 1

N∑
t=1

(x(t)− x̄)(x(t)− x̄)T ,

and the derivative second-moment matrix is approximated as

Ċ =
1

N − 1

N−1∑
t=1

(x(t+ 1)− x(t))(x(t+ 1)− x(t))T .

Then, a sphered signal z
def
= STx is computed, such that STCS = I for a

sphering matrix S, i.e., the sample covariance matrix of z is the identity matrix.

Afterwards, the J directions of least variance in the derivative signal ż
def
= ST ẋ

of the sphered data are found and represented by an I × J rotation matrix

R. Such directions are found by solving RT ĊzR = Λ for R and Λ (i.e., the

eigenvalues and orthonormal eigenvectors of Ċz), where Ċz
def
= 〈żżT 〉t and Λ is

a diagonal matrix with diagonal elements λ1 ≤ λ2 ≤ · · · ≤ λJ . Finally the

algorithm returns the weight matrix W = (w1, . . . ,wJ), defined as W = SR,

the extracted features y = WT (x− x̄), and ∆(yj) = λj , for 1 ≤ j ≤ J .

The linear SFA algorithm is guaranteed to find an optimal solution to the

optimization problem (1–4) in the linear function space, e.g., the first component

extracted is the slowest possible linear feature. A more detailed description of

the linear SFA algorithm is provided by Wiskott and Sejnowski (2002).

The complexity of the linear SFA algorithm is O(NI2 + I3) where N is the

number of samples and I is the input dimensionality (possibly after a nonlinear

expansion), thus for high-dimensional data standard SFA is not feasible2. The

term NI2 is due to the computation of the covariance and second moment

matrices, whereas the term I3 is due to the eigenvalue decompositions. In

practice, the complexity of eigenvalue decomposition is generally accepted as

O(I3), however, this is not a tight bound. It has been suggested (e.g., Poloni,

2015) that the problem might be reduced in theory to matrix multiplication,

yielding a tighter complexity O(Iα), for some 2 < α < 2.376. In practice, the

total running time of SFA is comparable to that of PCA, even though SFA also

takes into account the temporal structure of the data.

2The problem is still feasible if N is small enough so that one might apply singular value
decomposition methods. However, a small number of samples N < I usually results in pro-
nounced overfitting.

2.4. HIERARCHICAL SFA (HSFA) 15

2.4 Hierarchical SFA (HSFA)

High-level information that occurs in real-life applications can usually be en-

coded as different types of high-dimensional data, including images, video, and

voxels. However, as explained above, the direct application of SFA on high-

dimensional data is inefficient.

Hierarchical processing (e.g., Franzius et al., 2011) is an efficient divide-and-

conquer strategy for the extraction of slow features when the original data is

high dimensional. For example, if the input dimension I is large, computing

SFA(x(t)) would be infeasible3. One effective solution is to divide the input

data spatially into k lower-dimensional signals x(1)(t), . . . ,x(k)(t) of dimension-

ality I ′
def
= I/k. Then, one can extract local slow features y(1), . . . ,y(k) from

each signal: y(1)(t)
def
= SFA(1)(x(1)(t)), y(2)(t)

def
= SFA(2)(x(2)(t)), . . . ,y(k)(t)

def
=

SFA(k)(x(k)(t)). A concrete instance of SFA trained with a particular training

data is denoted by SFA(·). Different SFA instances are also referred to as SFA

nodes, especially in the context of hierarchical SFA networks described as di-

rected graphs. The nodes above are called local because their input is only a

fraction of the original input. Each of them extracts J ′ < I ′ slow features (i.e.,

the output dimensionality of the nodes must be smaller than their input dimen-

sionality). Afterwards, a new SFA node SFA(top) in a new layer extracts global

slow features from the concatenation of the local slow features previously com-

puted: y(top)(t)
def
= SFA(top)

(
y(1)(t)| · · · |y(k)(t)

)
, where ·|· is the concatenation

operation in space (not in time). A proper choice of J ′ and k can ensure that

the computation of y(top)(t) is feasible.

If the input dimensionality I ′ of the local nodes SFA(1), . . . ,SFA(k) is still too

large, one can repeat the strategy above to each one of these nodes. Following

such an approach recursively results in a multi-layer hierarchical network (e.g.,

see Figure 5.3 on page 100). Due to information loss before the top node and

the change of the feature space, hierarchical SFA does not guarantee globally

optimal slow features anymore. However it has shown to be effective in many

practical experiments, in part because low-level features are spatially localized

in most real data.

Interestingly, hierarchical processing can also be seen as a regularization

method, as shown in Figure 2.2, leading to better generalization. An additional

advantage is that the nonlinearity accumulates across layers, so that even when

using simple expansions the network as a whole can realize a complex nonlin-

earity (Escalante-B. and Wiskott, 2011).

2.4.1 Previous Work on HSFA and Terminology

The first example of HSFA was given in the paper that first introduced the SFA

algorithm (Wiskott, 1998), where it was used as a model of the visual system

3Even linear SFA becomes infeasible if I is sufficiently large. Therefore, the usefulness of
hierarchical processing is not limited to nonlinear SFA.

16 CHAPTER 2. STANDARD SFA

Figure 2.2: Example of how hierarchical SFA (HSFA) is more robust against
overfitting than direct SFA. Useless data consisting of 25 random i.i.d. samples
is processed by linear SFA and linear HSFA. Both algorithms reduce the dimen-
sionality from 24 to 3 dimensions. Even though the training data is random,
the direct application of SFA extracts the slowest features theoretically possible
(optimal free responses), which is possible due to the number of dimensions and
samples, permitting extreme overfitting. However, it fails to provide consistent
features for test data (e.g., standard deviations σtraining = 1.0 vs. σtest = 6.5),
indicating lack of generalization. In contrast, HSFA extracts much more consis-
tent features (e.g., standard deviations σtraining = 1.0 vs. σtest = 1.18) resulting
in less overfitting. Counter-intuitively, this result holds even though the HSFA
network has 7× 6× 3 = 126 free parameters, many more than the 24× 3 = 72
free parameters of direct SFA.

[Figure reproduced from (Escalante-B. and Wiskott, 2013).]

for learning invariant representations.

Franzius et al. (2007) have used HSFA to learn invariant features from the

simulated view of a rat that moves inside a box. In conjunction with a sparseness

post-processing step, the extracted features are similar to the responses of place

cells in the hippocampus. Various contributions have continued this biologically-

2.5. SFA FOR SUPERVISED LEARNING 17

inspired approach (e.g. Schoenfeld and Wiskott, 2015).

Other systems have especially profited from its computational efficiency com-

pared to direct SFA. Franzius et al. (2011) have used HSFA for object recognition

from images and to estimate pose parameters of single objects moving and ro-

tating over a plain background. Escalante-B. and Wiskott (2013) have used a

hierarchical graph-based SFA (HGSFA) network with 11 layers to accurately find

the horizontal position of faces in photographs, which is a subproblem of face

detection. Further experiments include the estimation of the vertical position,

size, and in-plane angle of faces.

The structure of HSFA networks usually follows the structure of the data.

For instance, networks for data in one dimension (e.g., audio data represented

as fixed length vectors) typically have a one-dimensional structure (e.g., Fig-

ure 5.3), and networks for data in two dimensions (e.g., images) have a two-

dimensional structure (e.g., Figure 1.1). This idea extends to voxel data in

three dimensions, and beyond.

For simplicity, the input data is referred to as layer 0. Important parameters

that define the structure of a network include: (a) The output dimensionality

of a node. (b) The fan-in of a node, which is the number of nodes (or data

elements) in a previous layer that feed into it. (c) The receptive field of a node,

which refers to all the elements of the input data that directly or indirectly (i.e.,

via other nodes) provide input to the node. (d) The stride of a layer, which

tells how far apart the inputs to adjacent nodes in a layer are. If the stride is

smaller than the fan-in, then at least one node in the previous layer will feed

two or more nodes in the current layer. This is called receptive field overlap.

The analysis of hierarchical networks, their advantages, and their limitations is

detailed in Chapter 5.

2.5 SFA for Supervised Learning

SFA, as described so far, learns features that are implicit in the input signal.

It extracts the slowly varying aspects and becomes less sensitive or even fully

invariant to quickly changing aspects. However, in many learning problems the

input data does not take the form of a temporal sequence (i.e., a time series),

and the features to be learned are provided explicitly as labels along with the

input samples, resulting in a supervised learning problem.

Multiple approaches allow us to apply SFA in such cases. As an example,

consider a number of face images for which the age of the person is known and

the task is to automatically extract the age given the images only. A large

part of the problem can be solved by SFA if one simply orders the images by

increasing age and presents this to SFA. With this approach, age becomes the

most slowly varying feature and SFA will naturally extract it—although not

age directly but rather a feature that is monotonically related to it. In such an

approach, a final step mapping the first SFA output(s) to the real age label is

therefore required. This method for using SFA to solve regression problems is

18 CHAPTER 2. STANDARD SFA

called sample reordering and is further addressed in Section 3.4.1.

If the labels indicate classes, such as subject identity, one can order the im-

ages by class and proceed as above. However, it is more efficient to give up

the linear temporal sequence and instead use the graph structures employed by

graph-based SFA (GSFA). For classification, one would connect all samples of

the same identity with each other and make no connection between samples of

different identities. In this case the graph separates into fully connected sub-

graphs. The GSFA objective (see Chapter 3) takes into account all connections

and minimizes the output differences between connected samples. The few first

ideal GSFA outputs would therefore be constant for any given identity and dif-

ferent for different identities. Again, a final supervised step would be required to

map GSFA output values to identity labels. A formalization and in-depth study

of this idea is presented in Chapter 3. GSFA can be used to learn (categorical)

class labels as well as numerical labels, thus being useful for both classification

and regression.

2.6 Technical Applications of SFA

Although SFA was developed for computational neuroscience, it has turned

out to be a versatile algorithm for a range of technical applications. In this

section, several examples of current applications of SFA (and its extensions)

are described. The goal is to provide a broad overview of the current practical

problems addressed with SFA rather than to describe the concrete systems or

how SFA is used in them. Technical applications of SFA have been previously

summarized by Escalante-B. and Wiskott (2012), and this text improves on

this previously published review by adding new applications that have appeared

afterwards.

2.6.1 General-Purpose Feature Extraction

Given some temporal data, it is possible to apply SFA with the hope that the

extracted slow features contain useful information that might solve or simplify

a particular task.

An early application of SFA is the estimation of driving forces (Wiskott,

2003b). A driving force is a parameter that changes over time and has a direct in-

fluence on the underlying, possibly complex, dynamics of a system. The assump-

tion is that such driving forces might change much slower than the signals gen-

erated by the dynamic system. Therefore, such driving forces may be found by

SFA. To facilitate this, the input sequence x(t) can be pre-processed by concate-

nating k consecutive input samples: xemb(t)
def
=
(
x(t),x(t+ 1), . . . ,x(t+ k− 1)

)
,

a procedure that is called time embedding. The embedded input xemb(t) is then

provided to SFA. An example of this approach is the estimation of the parame-

ters of a tent map (Wiskott, 2003b). The approach might also be applied to real

data, for example, to allow the decoding of frequency and amplitude modulated

2.6. TECHNICAL APPLICATIONS OF SFA 19

signals (i.e., FM/AM radio signals).

Blind source separation is the problem of identifying and separating unknown

source signals from a set of unknown (possibly nonlinear) mixtures of them. A

common example is the cocktail party problem, in which several people speak

simultaneously and a listener is trying to follow one of the conversations. If the

mixture is instantaneous, Sprekeler et al. (2014) have realized that a good heuris-

tic indicates that the slowest source is frequently slower than transformations

of sources and their mixtures. Therefore, the slowest feature extracted from

the mixture would be strongly related to the slowest source (or a monotonous

transformation of it). Such a feature and its transformations can be removed

from the mixture, and the procedure can be repeated to extract the next source.

The applications that have been mentioned in this section are specific exam-

ples of unsupervised feature extraction, where the features of interest are well

defined. However, SFA can also be applied to less well defined situations.

In Dähne et al. (2011) linear SFA has been applied to EEG data recorded

with 63 electrodes during an auditory discrimination task. Fisher discriminant

analysis is then applied to the extracted features to discriminate between two

auditory stimuli. The system is therefore able to extract the human auditory

percept from the EEG recording. Such an approach is of interest for the area

of brain-computer interfaces. Unspecific feature extraction with SFA has been

also used by Höfer et al. (2010) for the classification of humanoid robot postures.

2.6.2 Applications of SFA for Dimensionality Reduction

Feature extraction using SFA on high-dimensional input has been employed in

a system by Legenstein et al. (2010), where the input is a sequence of 155×155

pixel images showing two objects and one out of two animated fish. For one of

the fish one object is a target and the other a distractor, and for the other fish

the role of the objects is interchanged. The direction in which the fish swim is

controlled by a reinforcement learning system that has to learn to recognize the

type of fish present and lead it to its target while avoiding the distractor. How-

ever, reinforcement learning is generally notoriously slow on high-dimensional

input, and it is therefore mandatory to first reduce the original dimensional-

ity. In this particular example SFA was able to reduce the dimensionality from

24,025 features to 32 while still preserving all information necessary to solve the

task.

2.6.3 Applications of SFA for Classification

In the applications above, SFA has been used in a purely unsupervised manner.

We now consider extensions for supervised learning, first for classification and

later (Section 2.6.4) for regression.

The first example of classification with SFA is the classification of handwrit-

ten digits from the MNIST database (Berkes, 2005a). Random pairs of training

samples from the same class are connected to build mini-sequences of length

two. SFA with polynomials of degree 3 is then trained on the collection of these

20 CHAPTER 2. STANDARD SFA

mini-sequences. A Gaussian classifier is applied to the nine slowest extracted

features to do the final classification. An error rate of 1.5% is obtained, which

is close to the 0.95% achieved by LeNet-5 (LeCun et al., 1998), a hierarchical

special-purpose architecture for digit recognition. The same approach has also

been applied to human gesture recognition (Koch et al., 2010) and a similar

approach to monocular road segmentation (Kuhnl et al., 2011).

In the experimental research of this dissertation, the more general formula-

tion of SFA with graph structures, GSFA, has been applied to the German traf-

fic sign recognition benchmark (GTSRB) proposed by Stallkamp et al. (2011),

where the goal is to classify photographs of traffic signs taken from a car driving

along German roads, which is of major interest for the development of driver

assistance systems.

The database consists of 26,640 training and 12,569 test images of 43 different

types of traffic signs. The position of the signs in the images is available, as

well as precomputed HOG-features (histograms of oriented gradients). The

input data is described more extensively in Section 3.5.1, and Figure 4.5 on

page 86 illustrates the actual traffic signs considered. The GSFA system above

ranked 8th place out of 24 groups in the GTSRB online competition with a

performance of 96.4% , whereas human performance was 98.8% and the best

algorithm achieved 99.0% recognition rate.

A more complex system has been proposed by Zhang and Tao (2012) for

human action recognition. In this case, SFA is applied to cuboids (voxels),

that is, subsequences within localized regions extracted from video sequences of

subjects performing various actions, such as walking, jogging, hand clapping,

etc. Three supervised learning strategies are proposed, all of which exploit the

fact that SFA learns features that vary slowly for sequences of the particular

type of action used for training. Extracting features during testing from a

different type of action typically produces outputs that change much faster than

sequences of the same action used for training. The results show that SFA

achieves comparable or even better performance than previous methods.

The approach above has been extended for automatic detection of violence

in videos by Wang et al. (2012). Optical flow fields are used to compute dense

trajectories of interest points. Then, cuboids are extracted at locations defined

by these dense trajectories instead of at fixed spatial locations. Slow features

are extracted from these cuboids using a variant of SFA called discriminative

SFA. Afterwards, accumulated squared derivative (ASD) feature vectors are con-

structed using the ∆ values of all cuboids, and a linear SVM is applied to these

vectors. Human action recognition might also be used to recognize prisoner’s

activities, which has been described by Rubia and Manimala (2013).

The problem of human action recognition has also been addressed by Sun

et al. (2014) using an architecture that combines aspects of hierarchical SFA

and convolutional neural networks (CNNs). In a first layer, linear SFA with

weight sharing is trained on cuboids. This step is analogous to the convolution

operation of CNNs. Afterwards, two types of max-pooling are applied: 1) The

2.6. TECHNICAL APPLICATIONS OF SFA 21

maximum output over all J slow features is computed for each possible space-

time location. 2) Standard max-pooling is applied spatially to 2 × 2 elements.

A second layer consists of linear SFA with weight sharing. Finally, the features

are processed by a quantization and classification method.

2.6.4 Applications of SFA for Regression

SFA, and particularly GSFA, have also been applied to regression problems

with excellent results. This section covers two of the applications in the field of

facial image processing that I have developed for this research; age and gender

estimation from artificial images and face detection.

Age and Gender Estimation

Successful human-computer interaction benefits from knowing basic information

about the interacting subjects, such as their approximate age, gender, and gen-

eral mood. Gender is a parameter that can be estimated relatively well (e.g.,

Jia and Cristianini, 2015). However, age estimation is a challenging problem,

since aging only results in subtle changes in the face appearance compared to

other variables, and because aging is influenced by several factors (see Fu et al.,

2010).

A four-layer hierarchical GSFA network has been proposed by Escalante-B.

and Wiskott (2010). This network (Fig. 1.1) estimates age and gender from

frontal, static, 135×135-pixel face images of artificial subjects that have been

created with special software for 3D face modeling and rendering (FaceGen

SDK, Singular Inversions Inc., 2008). To estimate age, the training and test

images vary from 16 to 65 years, while gender, racial background, and identity

are chosen randomly. To estimate gender, a similar database is created and the

same algorithm is applied. This is possible because gender is represented as a

continuous variable within the software from −3 (very feminine) to +3 (very

masculine) rather than a binary one (male vs. female). See Figure 2.3 for an

illustration of the images and learned filters. Two training graphs are used,

where two images are connected if they have either similar age or gender label

(serial graph, see Section 3.4.3). After the GSFA network is trained, the first

three outputs are used for training a Gaussian classifier to estimate either the

age or gender group. This yields a posteriori group probabilities from which an

expectation value can be computed as the final estimate.

In both cases, good performance has been achieved (on test data), with a

root mean square error (RMSE) of 3.8 years for age and 0.33 units for gen-

der, compared to a chance level of 13.8 years and 1.73 units, respectively. As

expected, age estimation is less accurate than gender estimation (relative to

chance level). Interestingly, best performance is achieved with a linear SFA net-

work, outperforming various (more complex) nonlinear networks. One reason

might be that the number of training images is insufficient (only 4140/10,800

images for age/gender) to train a nonlinear network, but it might also be that

22 CHAPTER 2. STANDARD SFA

the rendering software uses a too simple model for age and gender.

The recent release of large publicly available databases with age/gender la-

bels allows the estimation on real photographs; such an application is addressed

in Chapter 5.

Figure 2.3: (a) Sample images used for age estimation, (b) average image,
(c) image variation that specifically activates the slowest feature computed by
the network for age estimation (right, its negative), (d) image variation that
specifically activates the slowest feature computed by the network for gender
estimation (right, its negative). The images used for age and gender estimation
have a slightly different head angle. Notice how the image variation for gender
resembles a masculine face, whereas its negative resembles a feminine one and is
lighter. Several studies on sexual dimorphism in humans have found that adult
females are lighter than adult males (see Madrigal and Kelly, 2007), which has
probably been taken into account by the face model and “rediscovered” by SFA.

[Figure reproduced from (Escalante-B. and Wiskott, 2012), with permission.]

Face Detection

Systems for face detection from images have become very popular due to the

increase in computing power and specialized algorithms capable of running on

cameras, smartphones, and other portable devices. Face detection is typically

used to initialize face tracking and is a necessary step to normalize the images,

for example, before age and gender can be estimated. In spite of its progress,

face detection is still a challenge under extreme conditions, in particular in the

presence of facial hair, strong or unusual lighting conditions, face occlusions,

poor image quality and image artifacts.

2.6. TECHNICAL APPLICATIONS OF SFA 23

Figure 2.4: (a) A test image showing a single image patch containing a face. (b)
Refinement of the location and size of the face patch: initial patch and patch
after horizontal centering, vertical centering, and rescaling. Image used with
kind permission of the subject.

[Figure reproduced from (Escalante-B. and Wiskott, 2012), with permission.]

It has been described above how a hierarchical SFA network can be used

to estimate a continuous parameter such as age or gender from a facial image

(either using sample reordering or GSFA with an appropriate training graph).

Such approaches can also be used to learn other parameters such as x-position,

y-position, or scale. Using three separate networks, image patches potentially

containing a face can be centered at the face (see Figure 2.4) as follows: 1) Es-

timate x-position of the face and center the patch horizontally. 2) Estimate

y-position of the face and center the patch vertically. 3) Estimate scale of the

face and resize the patch. A fourth network can be trained to estimate the

quality of the normalization and to indicate whether a face is present at all.

To improve detection, this process is repeated three times successively, leading

each time to more accurate and reliable localization. Finally, eye positions can

be determined around their average position within normalized faces using an

eye specific SFA network. To detect multiple faces, an image is first tiled with

overlap into many candidate regions of different sizes, and the algorithm above

is applied to each region separately. Thus, most candidate regions typically do

not contain a face at all, which is the reason why the fourth network is necessary

to decide on the presence of a face.

In this example application, 40,000 frontal face photographs from different

sources are used for training. The networks are improved versions of the ones

24 CHAPTER 2. STANDARD SFA

used for age and gender estimation, and have been redesigned with a 9- or

11-layer structure characterized by a very small fan-in in all layers, which is

particularly useful to reduce overfitting.

Figure 2.5: Example of face detection using the developed system. The original
image is the current group photograph of the Theory of Neural Systems Chair.
Detected faces are delimited by a white bounding box. The detected left and
right eyes are marked with a yellow and a blue circle, respectively. This im-
age produces no false detections and all faces are detected even though one of
them is rotated and another slightly occluded. For display purposes the original
color image is shown. However, detection only uses grayscale information. The
plot was created with with the FaceDetectUpdated.py program (source code
available upon request). This program is a newer and improved version of the
software that had been evaluated by Mohamed and Mahdi (2010).

The face detection system has a competitive performance on different image

databases, as reported by Mohamed and Mahdi (2010). According to evalua-

tions I performed on the system using different databases, it yields a detection

rate on grayscale photographs from 71.5% to 99.5% depending on the difficulty

of the test database. Figure 2.5 shows a sample run of the system.

2.7. DISCUSSION OF SFA AND ITS APPLICATIONS 25

2.7 Discussion of SFA and its Applications

The applications reviewed in this chapter demonstrate the versatility of SFA

and that it can be applied to a broad range of problems in machine learning

and computer vision. The robustness and flexibility of SFA are two factors that

make it a useful general purpose preprocessing tool for feature extraction and

dimensionality reduction. The algorithm is computationally efficient (though

not enough for high-dimensional data), easy to implement and straightforward

to use, since it is basically parameter free. In standard SFA, the only choice

is that of the function space used, i.e., the type of nonlinearity. In hierarchical

SFA, one also has to define a network structure and decide on the number of

SFA outputs passed to the next layer.

The theory of slow feature extraction does not end with standard SFA. Three

extensions of SFA have already been mentioned and are proposed in this work,

namely: graph-based SFA (GSFA), exact label learning (ELL), and hierarchical

information-preserving GSFA (HiGSFA). These extensions have been designed

for supervised learning and are consequently more powerful than standard SFA

for this class of problems, yielding higher label estimation accuracies and classi-

fication rates. The next three chapters address each of these extensions, present

additional applications, and describe the results. The focus of the next chapter

is thus on GSFA.

Chapter 3

Graph-Based SFA

This chapter introduces an extension to SFA, called graph-based SFA (GSFA),

that has been explicitly designed for supervised learning. GSFA is able to ex-

tract a compact set of features that can be post-processed by typical supervised

algorithms to generate the final label or class estimation with good accuracy1.

As explained in the preceding chapter, the training data used by SFA is a

multi-dimensional time series (i.e., a sequence of samples) with transitions only

between temporally adjacent samples. In GSFA, the training data is specified

by a graph structure called training graph, where the vertices are the samples

and the edges represent transitions. It is possible to include transitions between

arbitrary pairs of samples. Moreover, both vertices and edges are weighted, and

the edge weights are typically related to the similarities of the corresponding

labels.

It is shown that GSFA computes an optimal solution to the GSFA problem

(in the considered function space), a weighted version of the SFA optimiza-

tion problem that generalizes the notion of slowness from sequences of samples

to training graphs. GSFA can be used to solve classification and regression

problems by choosing appropriate training graphs. For classification, the most

straightforward graph yields features equivalent to those of (nonlinear) Fisher

discriminant analysis. Emphasis is on regression, where four different graphs

are proposed. GSFA is a promising algorithm in combination with the proposed

graphs, particularly for tackling image analysis problems where linear models

are insufficient as well as when feature selection is difficult.

The remainder of the chapter is organized as follows. The next section

presents the general motivation behind GSFA. Then, the GSFA optimization

problem is introduced and the GSFA algorithm is proposed. Afterwards, a clas-

sification method based on SFA is recalled, and a training graph for solving this

task with GSFA is proposed. Moreover, various training graphs useful to solve

regression problems are proposed, offering great computational efficiency and

good accuracy. Thereafter, the performance of four training graphs is evalu-

1This chapter is mostly an edited version of (Escalante-B. and Wiskott, 2013), which has
been published in the Journal of Machine Learning Research (JMLR).

27

28 CHAPTER 3. GRAPH-BASED SFA

ated experimentally and compared to other common supervised methods (e.g.,

PCA+SVM) w.r.t. a regression problem closely related to face detection from

real photographs. A discussion section concludes the chapter.

3.1 Introduction

Supervised learning from high-dimensional data has applications in many areas,

such as image analysis, human-computer interfaces, product quality control,

and robotics. However, supervised learning of high-dimensional data is in gen-

eral still a challenge due to insufficient training data and several phenomena

referred to as the curse of dimensionality. These limitations reduce the practical

applicability of supervised learning for high-dimensional data even when using

state-of-the-art algorithms and lots of computational power.

Unsupervised dimensionality reduction, including algorithms such as princi-

pal component analysis (PCA) or locality preserving projections (LPP, He and

Niyogi, 2003), can be used to attenuate these problems. After dimensional-

ity reduction, typical supervised learning algorithms can be applied. Frequent

benefits include a lower computational cost and better robustness against over-

fitting. However, since the final goal is to solve a supervised learning problem,

such an approach is inherently suboptimal.

Supervised dimensionality reduction is a more appropriate technique in this

case. Its goal is to compute a low-dimensional set of features from the high-

dimensional input samples that contain predictive information about the labels

(Rish et al., 2008). One advantage is that dimensions irrelevant for the label

estimation can be discarded, resulting in a more compact representation and

more accurate label estimations. Different supervised algorithms can then be

applied to the low-dimensional data. A widely known algorithm for supervised

dimensionality reduction is Fisher discriminant analysis (FDA) (Fisher, 1936).

Sugiyama (2006) proposed local FDA (LFDA), an adaptation of FDA with a

discriminative objective function that also preserves the local structure of the

input data. Later, Sugiyama et al. (2010) proposed semi-supervised LFDA

(SELF) bridging LFDA and PCA and allowing the combination of labeled and

unlabeled data. Tang and Zhong (2007) introduced pairwise constraints-guided

feature projection (PCGFP), where two types of constraints are allowed. Must-

link constraints denote that a pair of samples should be mapped closely in the

low-dimensional space, while cannot-link constraints require that the samples

are mapped far apart. Later, Zhang et al. (2007) proposed semi-supervised

dimensionality reduction (SSDR), which is similar to PCGFP and also supports

semi-supervised learning.

The previous chapter mentions different applications of direct SFA where

the goal is the solution of classification problems. We now focus on the methods

employed to address such applications. Franzius et al. (2011) have extracted

the identity of animated fish invariant to pose (including a rotation angle and

the fish position) with SFA. A long sequence of fish images is rendered from

3.1. INTRODUCTION 29

3D models in which the pose of the fish changed following a Brownian motion,

and in which the probability of randomly changing the fish identity is relatively

small, making identity a feature that changes slowly. The experimental results

confirm that SFA is capable of extracting categorical information. Klampfl and

Maass (2010) have introduced a particular Markov chain to generate a sequence

used to train SFA for classification. The transition probability between samples

from different object identities is proportional to a small parameter a. The

authors show that in the limit a → 0 (i.e., only intra-class transitions), the

features learned by SFA are equivalent to those learned by Fisher discriminant

analysis (FDA). The equivalence of the discrimination capability of SFA and

FDA in some setups had already been known (compare Berkes, 2005a, and

Berkes, 2005b) but had not been rigorously shown before. In these two papers

by Berkes, hand-written digits from the MNIST database are recognized. The

method consists in constructing several mini-sequences of two samples from the

same digit and using them to train SFA. The same approach has been also

applied more recently to human gesture recognition by Koch et al. (2010) and

a similar approach to monocular road segmentation by Kuhnl et al. (2011).

Zhang and Tao (2012) has addressed human action recognition, in which the

difference between delta values of different training signals is amplified and used

for discrimination.

Standard SFA has been used to solve regression problems as well. Franzius

et al. (2011) have used SFA to learn the position of animated fish from images

with plain background. They use the same training sequence for learning fish

identities, thus the fish position changed continuously over time. However, a dif-

ferent supervised post-processing step is employed consisting of linear regression

coupled with a nonlinear transformation.

3.1.1 Connection of GSFA with Other Algorithms

The objective function of the GSFA optimization problem is a weighted sum of

squared output differences and is therefore similar to the underlying objective

functions of, for example, FDA, LFDA, SELF, PCGFP, and SSDR. However,

in general the optimization problem solved by GSFA differs from these in at

least one of the following elements: a) the concrete coefficients of the objective

function, b) the constraints, or c) the feature space considered. Although non-

linear or kernelized versions of the algorithms above can be defined, one has

to overcome the difficulty of finding a good nonlinearity or kernel. In contrast,

SFA and GSFA have been conceived from the beginning as nonlinear algorithms

without resorting to kernels (although there exist versions of SFA with a kernel:

Bray and Martinez, 2003; Vollgraf and Obermayer, 2006; Böhmer et al., 2012),

with linear SFA being just a less used special case. Another difference to various

algorithms above is that SFA (and GSFA) does not explicitly attempt to pre-

serve the spatial structure of the input data. Instead, it preserves the similarity

structure provided, which is responsible for a better optimization towards the

labels.

30 CHAPTER 3. GRAPH-BASED SFA

Figure 3.1: Transformation of a supervised learning problem on high-
dimensional data into a supervised learning problem on low-dimensional data by
means of unsupervised hierarchical processing on structured data in the form of
a training graph, that is, without labels. This construction allows the solution
of supervised learning problems on high-dimensional data when the dimension-
ality and number of samples make the direct application of many conventional
supervised algorithms infeasible.

[Figure reproduced from (Escalante-B. and Wiskott, 2013).]

Besides the similarities and differences outlined above, GSFA is strongly

connected to some algorithms in specific cases. For instance, features equivalent

to those of FDA can be obtained if a particular training graph is given to linear

GSFA. There is also a close relation between SFA and Laplacian eigenmaps

(LE), which has been studied by Sprekeler (2011). GSFA and LE basically have

the same objective function, but in general GSFA uses different edge-weight

(adjacency) matrices, has different normalization constraints, supports vertex

weights, and uses function spaces.

There is also a strong connection between GSFA and LPP. In Section 3.6.2,

it is described how to use GSFA to extract LPP features and vice versa. This

is a remarkable connection because GSFA and LPP originate from different

backgrounds and are typically used for related but different goals. Generalized

SFA (genSFA) (Sprekeler, 2011; Rehn, 2013), being basically LPP on nonlinearly

expanded data, is also closely connected to GSFA.

One advantage of GSFA compared to many other algorithms for supervised

dimensionality reduction is that it is designed for both classification and re-

gression (using appropriate training graphs), whereas other algorithms typically

focus on classification only.

3.1. INTRODUCTION 31

3.1.2 General Approach behind GSFA

Given a large number of high-dimensional labeled samples, supervised learn-

ing algorithms can often not be applied due to prohibitive computational re-

quirements. In such cases, the following general scheme based on hierarchical

GSFA/SFA, illustrated in Figure 3.1, is proposed:

1. Transform the labeled data to structured data, where the label information

is implicitly encoded in the connections between the data points (samples).

This permits using unsupervised learning algorithms, such as SFA, or its

extension GSFA.

2. Use hierarchical processing to reduce the dimensionality, resulting in low-

dimensional data with component similarities strongly dependent on the

graph connectivity. Since the label information is encoded in the graph

connectivity, the low-dimensional data is highly predictive of the labels.

3. Convert the (low-dimensional) data back to labeled data by combining the

low-dimensional data points with the original labels or classes. This now

constitutes a dataset suitable for standard supervised learning methods,

because the dimensionality has become manageable.

4. Use standard supervised learning methods on the low-dimensional labeled

data to estimate the labels. The unsupervised hierarchical network plus

the supervised direct method together constitute the classifier or regression

architecture.

In the case of GSFA, the structured training data is called training graph,

a weighted graph that has vertices representing the samples, vertex weights

specifying a priori sample probabilities, and edge weights indicating desired

output similarities, as derived from the labels. Details are given in Section 3.2.

This structure permits us to extend SFA to extract features from the data points

that tend to reflect similarity relationships between their labels without the need

to reproduce the labels themselves. A concrete example of the application of the

method to a regression problem is illustrated in Figure 3.2. Various important

advantages of GSFA are inherited from SFA:

• It allows hierarchical processing, which has various remarkable properties,

as described in Section 2.4. One of them, illustrated in Figure 2.2, is

that the local application of SFA/GSFA to lower-dimensional data chunks

typically results in less overfitting than non-hierarchical SFA/GSFA.

• SFA has a complexity of O(N) in the number of samples N and O(I3)

in the number of dimensions I (possibly after a nonlinear expansion),

see Section 2.3. Hierarchical processing greatly reduces the latter com-

plexity down to O(I). In practice, processing 100,000 samples of 10,000-

dimensional input data can be done in less than three hours by using

hierarchical SFA/GSFA without resorting to parallelization or GPU com-

puting.

32 CHAPTER 3. GRAPH-BASED SFA

• Typically no expensive parameter search is required. The SFA and GSFA

algorithms themselves are almost parameter free. Only the nonlinear ex-

pansion has to be defined. In hierarchical SFA, the structure of the network

has several parameters, but the choice is usually not critical.

Figure 3.2: Illustration of the use of GSFA to solve a regression problem. (a) The
input samples are 128×128-pixel images with labels that indicate the horizontal
position of the center of the face. (b) A training graph is constructed using the
label information. In this example, only images with most similar labels are
connected resulting in a linear graph. (c) The data dimensionality is reduced
with GSFA, yielding in this case 3-dimensional feature vectors plotted in the
first two dimensions. (d) The application of standard regression methods to the
slow features (e.g., linear regression) generates the label estimates. In theory,
the labels can be estimated from y1 alone. In practice, performance is usually
improved by using not one, but a few slow features.

[Based on a figure from (Escalante-B. and Wiskott, 2013).]

The next section outlines various high-level properties of GSFA and then

presents the specifics of the algorithm.

3.2 Training Graphs and Graph-Based SFA

This section formalizes the concept of training graph and proposes: (1) the

GSFA optimization problem, (2) the GSFA algorithm, and (3) a probabilistic

model for the generation of training data, connecting SFA and GSFA.

3.2. TRAINING GRAPHS AND GRAPH-BASED SFA 33

3.2.1 Organization of the Training Samples in a Graph

Learning from a single time series (i.e., a sequence of samples), as in standard

SFA, is motivated from biology, because the input data is assumed to originate

from sensory perception. In a more technical and supervised learning setting,

the training data needs not be a time series but may be a set of independent

samples. However, one can use the labels to induce structure. For instance, face

images may come from different persons and different sources but can still be

ordered by, say, age. If one arranges such images by increasing age in a sequence,

they would form a linear structure that could be used for training much like a

regular time series.

One central contribution of this chapter is the consideration of a more com-

plex structure for training SFA called training graph. In the example above, one

can then introduce a weighted edge between any pair of face images according

to some similarity measure based on age (or other criteria such as gender, race,

or mimic expression), with high similarity resulting in large edge weights. The

original SFA objective then needs to be adapted such that samples connected

by large edge weights yield similar output values.

In mathematical terms, the training data is represented as a training graph

G = (V,E) (illustrated in Figure 3.3) with a set V of vertices x(n) (each vertex2

being a sample), and a set E of edges (x(n),x(n′)), which are pairs of samples,

with 1 ≤ n,n′ ≤ N . The index n (or n′) substitutes the time variable t. The

edges are undirected and have symmetric weights

γn,n′ = γn′,n (5)

that indicate the similarity between the connected vertices; also each vertex

x(n) has an associated weight vn > 0, which can be used to reflect its im-

portance, frequency, or reliability. For instance, a sample occurring frequently

in an observed phenomenon should have a larger weight than a rare sample.

This representation includes the standard time series as a special case in which

the graph has a linear structure and all vertex and edge weights are identical

(Figure 3.3.b). How exactly edge weights are derived from label values will be

elaborated later.

3.2.2 GSFA Optimization Problem

The concept of slowness, originally conceived for sequences of samples, is ex-

tended here to data that has been structured in a training graph. It is assumed

that the edge weights have already been fixed (see Sections 3.3 and 3.4 for how

to choose them). The generalized optimization problem can then be formalized

as follows: For 1 ≤ j ≤ J , find features yj(n)
def
= gj(x(n)), where 1 ≤ n ≤ N ,

2The terms vertex and node can be used interchangeably in graph theory. However, for
clarity, in this work the term vertex is reserved for the elements of a training graph and the
term node is reserved for the elements of a hierarchical network.

34 CHAPTER 3. GRAPH-BASED SFA

Figure 3.3: (a) Example of a training graph with N = 7 vertices. (b) A regular
sample sequence (time series), which can be used to train SFA. This sequence
is represented here as a linear graph that can be used with GSFA. If labels are
available and the samples have been reordered by increasing/decreasing label
(e.g., instead of having been ordered by time), it is called sample reordering
graph.

[Figure reproduced from (Escalante-B. and Wiskott, 2013).]

J is the number of output features, and gj is a function belonging to a feature

space F , such that the objective function

∆j
def
=

1

R

∑
n,n′

γn,n′(yj(n
′)− yj(n))2 is minimal (weighted delta value) (6)

under the constraints

1

Q

∑
n

vnyj(n) = 0 (weighted zero mean), (7)

1

Q

∑
n

vn(yj(n))2 = 1 (weighted unit variance), and (8)

1

Q

∑
n

vnyj(n)yj′(n) = 0, for j′ < j (weighted decorrelation), (9)

with

R
def
=
∑
n,n′

γn,n′ , (10)

Q
def
=
∑
n

vn . (11)

Compared to the original SFA problem (1–4), the vertex weights generalize

the normalization constraints, whereas the edge weights extend the objective

function to penalize the difference between the outputs of arbitrary pairs of

samples. As in SFA, frequent choices for F are all linear or quadratic transfor-

3.2. TRAINING GRAPHS AND GRAPH-BASED SFA 35

mations of the inputs. Of course, the factor 1/R in the objective function is not

essential for the minimization problem. Likewise, the factor 1/Q can be dropped

from (7–9). These factors, however, provide invariance to the scale of the edge

weights as well as to the scale of the vertex weights, and serve a normalization

purpose. More concretely, ∆j ≥ 0 for training graphs with non-negative edge

weights, and ∆j ≤ 4 if restriction (32) is also fulfilled (this is explained in Sec-

tion 3.2.5), for 1 ≤ j ≤ J . These are basically the same bounds as in standard

SFA (0 < ∆ ≤ 4).

By definition (Section 3.2.1), training graphs are undirected and have sym-

metric edge weights. This does not cause any loss of generality and is justified

by the GSFA optimization problem above. Its objective function (6) is insensi-

tive to the direction of an edge because the sign of the output difference cancels

out during the computation of ∆j . It therefore makes no difference whether we

choose γn,n′ = 2 and γn′,n = 0 or γn,n′ = γn′,n = 1, for instance. Note also that

γn,n multiplies with zero in (6) and only enters into the calculation of R. The

variables γn,n are kept only for mathematical convenience, but are generally set

to zero.

3.2.3 Linear Graph-Based SFA Algorithm (Linear GSFA)

Similarly to the standard linear SFA algorithm, which solves the standard SFA

problem in the linear function space, here an extension that computes an optimal

solution to the GSFA problem within the same space is proposed. Let the

vertices V = {x(1), . . . ,x(N)} be the input samples with weights {v1, . . . , vN}
and the edges E be a set of edges (x(n),x(n′)) with edge weights γn,n′ . To

simplify notation, zero edge weights γn,n′ = 0 are defined for non-existing edges

(x(n),x(n′)) /∈ E. The linear GSFA algorithm differs from standard SFA only

in the computation of the matrices C and Ċ, which now take into account the

neighborhood structure (samples, edges, and weights) specified by the training

graph.

The sample covariance matrix CG is defined as:

CG
def
=

1

Q

∑
n

vn(x(n)− x̂)(x(n)− x̂)T =
1

Q

∑
n

(
vnx(n)(x(n))T

)
− x̂x̂T , (12)

where

x̂
def
=

1

Q

∑
n

vnx(n) (13)

is the weighted average of all samples. The derivative second-moment matrix

ĊG is defined as:

ĊG
def
=

1

R

∑
n,n′

γn,n′
(
x(n′)− x(n)

)(
x(n′)− x(n)

)T
. (14)

Given these matrices, the computation of W and the rest of the algorithm

proceeds as in the standard algorithm (Section 2.3). Thus, a sphering matrix S

36 CHAPTER 3. GRAPH-BASED SFA

and a rotation matrix R are computed with

STCGS = I , and (15)

RTST ĊGSR = Λ , (16)

where Λ is a diagonal matrix with diagonal elements λ1 ≤ λ2 ≤ · · · ≤ λJ .

Finally the algorithm returns ∆(y1), . . . ,∆(yJ), W and y(n), where

W = SR , and (17)

y(n) = WT (x(n)− x̂) . (18)

3.2.4 Correctness of the Graph-Based SFA Algorithm

It can be proven that the GSFA algorithm indeed solves the optimization prob-

lem (6–9) with a proof similar to that of the optimality of the standard SFA

algorithm (Wiskott and Sejnowski, 2002), as follows.

For simplicity, assume that CG and ĊG have full rank. The weighted zero

mean constraint (7) holds trivially for any W, because∑
n

vny(n)
(18)
=

∑
n

vnW
T (x(n)− x̂) (19)

= WT

(∑
n

vnx(n)−
∑
n′

vn′ x̂

)
(20)

(11,13)
= WT (Q x̂−Q x̂) = 0 . (21)

One can also find

I = RT IR (since R is a rotation matrix), (22)

(15)
= RT (STCGS)R , (23)

(17)
= WTCGW , (24)

(12)
= WT 1

Q

∑
n

vn(x(n)− x̂)(x(n)− x̂)TW , (25)

(18)
=

1

Q

∑
n

vny(n)(y(n))T , (26)

which is equivalent to the normalization constraints (8) and (9).

Now, let us consider the objective function

∆j
(6)
=

1

R

∑
n,n′

γn,n′
(
yj(n

′)− yj(n)
)2

(27)

(14)
= wT

j ĊGwj (28)

(17)
= rTj ST ĊGSrj (29)

3.2. TRAINING GRAPHS AND GRAPH-BASED SFA 37

(16)
= λj , (30)

where R = (r1, . . . , rJ). The algorithm finds a rotation matrix R solving (16)

and yielding increasing λs. It can be seen (cf. Adali and Haykin, 2010, Section

4.2.3) that this R also achieves the minimization of ∆j , for j = 1, . . . , J , hence,

fulfilling (6).

3.2.5 Probabilistic Interpretation of Training Graphs

There is an intuitive explanation of the relationship between GSFA and standard

SFA. Readers less interested in this theoretical excursion can safely skip it. This

section is inspired in part by the Markov chain introduced by Klampfl and Maass

(2010).

Given a training graph, it is shown below how to construct a Markov chainM
for the generation of input data such that training standard SFA with such data

yields the same features as GSFA does with the graph. Contrary to the graph

introduced by Klampfl and Maass (2010), the formulation here is not restricted

to classification, accounting for any training graph irrespective of its purpose,

and there is one state per sample rather than one state per class. In order for the

equivalence of GSFA and SFA to hold, the vertex weights ṽn and edge weights

γ̃n,n′ of the graph must fulfill the following normalization restrictions:∑
n

ṽn = 1 , (31)∑
n′

γ̃n,n′/ṽn = 1 ∀n , (32)

(5)⇐⇒
∑
n′

γ̃n′,n/ṽn = 1 ∀n , (33)

∑
n,n′

γ̃n,n′
(31,32)

= 1 , (34)

where it is assumed that not only ṽn > 0 but also γ̃n,n′ ≥ 0, for all n and n′.

Restrictions (31) and (34) can always be assumed without loss of generality, be-

cause they can be achieved by a constant scaling of the weights (i.e., ṽn
def
= vn/Q,

γ̃n,n′
def
= γn,n′/R) without affecting the outputs generated by GSFA. Restriction

(32) is fundamental because it limits the graph connectivity, and indicates (after

multiplying with ṽn) that each vertex weight should be equal to the sum of the

weights of all edges originating from such a vertex.

The Markov chain is then a sequence Z1,Z2,Z3, . . . of random variables that

can assume states that correspond to different input samples. Z1 is drawn from

the initial distribution p1, which is equal to the stationary distribution π, where

πn = p1(n)
def
= Pr(Z1 = x(n))

def
= ṽn , (35)

38 CHAPTER 3. GRAPH-BASED SFA

and the transition probabilities are given by

Pnn′
def
= Pr(Zt+1 = x(n′)|Zt = x(n))

def
= (1− ε)γ̃n,n′/ṽn + εṽn′ =

limε→0

γ̃n,n′/ṽn ,

(36)

(35)
=⇒ Pr(Zt+1 = x(n′),Zt = x(n)) = (1− ε)γ̃n,n′ + εṽnṽn′ =

limε→0

γ̃n,n′ , (37)

(for Zt stationary) with 0 < ε� 1. Due to the ε-term all states of the Markov

chain can transition to all other states including themselves, which makes the

Markov chain irreducible and aperiodic, and therefore ergodic. Thus, the sta-

tionary distribution is unique and the Markov chain converges to it. The nor-

malization restrictions (31), (32), and (34) ensure the normalization of (35),

(36), and (37), respectively.

It is easy to see that π = {ṽn}Nn=1 is indeed a stationary distribution, since

for pt(n) = ṽn

pt+1(n) = Pr(Zt+1 = x(n)) =
∑
n′

Pr(Zt+1 = x(n)|Zt = x(n′)) Pr(Zt = x(n′))

(38)

(35,36)
=

∑
n′

(
(1− ε)

(
γ̃n′,n/ṽn′

)
+ εṽn

)
ṽn′ (39)

(31,33)
= (1− ε)ṽn + εṽn = ṽn = pt(n) . (40)

The time average of the input sequence is

µZ
def
= 〈Zt〉t (41)

= 〈Z〉π (since M is ergodic) (42)

(40)
=

∑
n

ṽnx(n) (43)

(13)
= x̂ , (44)

and the covariance matrix is

C
def
= 〈(Zt − µZ)(Zt − µZ)T 〉t (45)

(44)
= 〈(Z− x̂)(Z− x̂)T 〉π (since M is ergodic) (46)

(40)
=

∑
n

ṽn(x(n)− x̂)(x(n)− x̂)T (47)

(12)
= CG , (48)

3.3. CLASSIFICATION WITH GSFA 39

whereas the derivative second-moment matrix is

Ċ
def
= 〈ŻtŻTt 〉t (49)

= 〈ŻŻT 〉π (since M is ergodic) (50)

(37)
=

∑
n,n′

(
(1− ε)γ̃n,n′ + εṽnṽn′

)
(x(n′)− x(n))(x(n′)− x(n))T , (51)

where Żt
def
= Zt+1 − Zt. Notice that limε→0 Ċ

(51)
= γ̃n,n′(x(n′) − x(n))(x(n′) −

x(n))T
(14)
= ĊG. Therefore, if a graph fulfills the normalization restrictions (31–

34), GSFA yields the same features as standard SFA on the sequence generated

by the Markov chain, in the limit ε→ 0.

Probabilistic interpretation of a connected graph. The vanishing pa-

rameter ε guarantees transitions between arbitrary samples. If the graph is

connected, one can assume that ε = 0 and simplify the equations above. For

connected graphs, GSFA yields the same features as standard SFA trained on a

sequence generated by using the graph as a Markov chain with transition prob-

abilities γn,n′/R. Thus, one can use SFA trained on a single sequence (in the

limit of infinite length) to emulate GSFA. However, such an emulation may be

more computationally expensive than directly using GSFA.

3.2.6 Construction of Training Graphs

It is possible, in principle, to construct training graphs with arbitrary connec-

tions and weights. However, when the goal is to solve a supervised learning

task, the graph edges should implicitly integrate the label information taking

into account whether the goal is classification or regression. Each case is ad-

dressed separately in the next two sections. The proposed training graphs have

been implemented in Python (source code available upon request) and their use-

fulness on real-world data has been verified (Escalante-B. and Wiskott, 2010;

Mohamed and Mahdi, 2010; Escalante-B. and Wiskott, 2012).

3.3 Classification with GSFA

This section shows how to use GSFA to profit from the label information and

solve classification tasks more efficiently and accurately than with standard SFA.

3.3.1 Clustered Training Graph

To generate features useful for classification, the use of a clustered training graph

is proposed. This graph is presented below and illustrated in Figure 3.4. As-

sume there are C identities/classes, and for each particular identity c = 1, . . . , C

there are Nc samples xc(n), where n = 1, . . . , Nc, making a total of N =
∑

cNc

samples. The clustered training graph is defined as a graph G = (V,E) with

40 CHAPTER 3. GRAPH-BASED SFA

vertices V = {xc(n)}, and edges E = {(xc(n),xc(n′))} for c = 1, . . . , C, and

n, n′ = 1, . . . , Nc. Thus all pairs of samples of the same identity are connected,

while samples of different identity are not connected. Vertex weights are iden-

tical and equal to one, that is, ∀c, n : vcn = 1. In contrast, edge weights,

γcn,n′ = 1/Nc ∀n, n′, depend on the cluster size3. Otherwise identities with a

large Nc would be over-represented because the number of edges in the complete

subgraph for identity c grows quadratically with Nc. These weights directly ful-

fill the normalization restriction (32). As usual, a trivial scaling of the vertex

and edge weights suffices to fulfill restrictions (31) and (34), allowing the prob-

abilistic interpretation of the graph. The optimization problem associated with

this graph explicitly demands that samples from the same object identity should

be typically mapped to similar outputs.

Figure 3.4: Illustration of a clustered training graph used for a classification
problem with C classes. Each vertex represents a sample, and edges represent
transitions. The Nc samples belonging to a class c ∈ {1, . . . , C} are connected,
constituting a fully connected subgraph. Samples of different classes are not
connected. Vertex weights are identical and equal to one, whereas edge weights
depend on the cluster size as γn,n′ = 1/Nc, where x(n) and x(n′) belong to
class c and n 6= n′. Self-loops (connecting each sample with itself) can be safely
discarded without altering the computed features and are not displayed here.

[Based on a figure from (Escalante-B. and Wiskott, 2013).]

3.3.2 Efficient Learning Using the Clustered Graph

At first sight, the large number of edges,
∑

cNc(Nc+1)/2, seems to introduce a

computational burden. It is shown here that this is not the case if one exploits

the symmetry of the graph. From (12), the sample covariance matrix of this

3These vertex and edge weights assume that the classification of all samples is equally
important. In the alternative case that classification over every cluster is equally important,
one can set vcn = 1/Nc and ∀n, n′ : γcn,n′ = (1/Nc)

2 instead.

3.3. CLASSIFICATION WITH GSFA 41

graph using the vertex weights vcn = 1 is (notice the definition of Πc and x̂c):

Cclus
(12)
=

1

Q

[∑
c

Nc∑
n=1

xc(n)(xc(n))T︸ ︷︷ ︸
def
= Πc

− Q
(1

Q

∑
c

def
=Ncx̂c︷ ︸︸ ︷
Nc∑
n=1

xc(n)︸ ︷︷ ︸
(13)
= x̂

)
·

(1

Q

∑
c

Nc∑
n=1

xc(n)
)T]

, (52)

=
1

Q

(∑
c

Πc −Qx̂x̂T
)
, (53)

where Q
(11)
=
∑

c

∑Nc
n=1 1 =

∑
cNc = N .

From (14), the derivative second-moment matrix of the clustered training

graph using edge weights γcn,n′ = 1/Nc is:

Ċclus
(14)
=

1

R

∑
c

1

Nc

Nc∑
n,n′=1

(xc(n′)− xc(n))(xc(n′)− xc(n))T , (54)

=
1

R

∑
c

1

Nc

Nc∑
n,n′=1

(
xc(n′)(xc(n′))T + xc(n)(xc(n))T −

xc(n′)(xc(n))T − xc(n)(xc(n′))T
)
, (55)

(52)
=

1

R

∑
c

1

Nc

(
Nc

Nc∑
n=1

xc(n)(xc(n))T+Nc

Nc∑
n′=1

xc(n′)(xc(n′))T−

2Ncx̂
c(Ncx̂

c)T
)
, (56)

(52)
=

2

R

∑
c

(
Πc −Ncx̂

c(x̂c)T
)
, (57)

where R
(10)
=
∑

c

∑
n,n′ γ

c
n,n′ =

∑
c

∑
n,n′ 1/Nc =

∑
c(Nc)

2/Nc =
∑

cNc = N .

The complexity of computing Cclus using (52) or (53) is the same, namely

O(
∑

cNc) operations. However, the complexity of computing Ċclus can be re-

duced from O(
∑

cN
2
c) operations directly using (54) to O(

∑
cNc) operations

using (57). This algebraic simplification allows us to compute Ċclus with a com-

plexity linear in N (and Nc), resulting in an important speedup since, depending

on the application, Nc might be larger than 100 and sometimes even Nc > 1000.

Interestingly, one can show that the features learned by GSFA on this graph

are equivalent to those learned by FDA (see Section 3.6).

42 CHAPTER 3. GRAPH-BASED SFA

3.3.3 Supervised Step for Classification Problems

Consistent with FDA, the theory of SFA using an unrestricted function space

(optimal free responses) predicts that, for this type of problem, the first C − 1

slow features extracted are orthogonal step functions, and are piece-wise con-

stant for samples from the same identity (Berkes, 2005a). This closely approxi-

mates what has been observed empirically, which can be informally described as

features that are approximately constant for samples of the same identity, with

moderate noise.

When the features extracted are close to the theoretical predictions (e.g.,

their ∆-values are small), their structure is simple enough that one can use even

a modest supervised step after SFA, such as a nearest centroid or a Gaussian

classifier (in which a Gaussian distribution is fitted to each class) on C − 1 slow

features or fewer.

Previous (undocumented) experimental results of my research project have

shown that Gaussian classifiers provide better robustness than the nearest cen-

troid classifier when enough training data is available. While a more powerful

classification method, such as an SVM, might also be used, experiments carried

out have only found a small increase in estimation accuracy at the cost of longer

training times.

3.4 Regression with SFA and GSFA

The objective in regression problems is to learn a mapping from samples to labels

providing the best estimation as measured by a loss function, for example, the

root mean squared error (RMSE) between the estimated labels, ˆ̀
1, . . . , ˆ̀

N , and

their ground-truth values, `1, . . . , `N . It is assumed here that the loss function

is an increasing function of the absolute estimation error |ˆ̀− `| (e.g., contrary

to periodic functions, useful to compare angular values, or arbitrary functions

of ˆ̀ and `).

Regression problems can be addressed with SFA through multiple methods.

The fundamental idea is to treat labels as the value of a hidden slow param-

eter that we want to learn. In general, SFA will not extract the label values

exactly. However, optimization for slowness implies that samples with similar

label values are typically mapped to similar output values. After SFA reduces

the dimensionality of the data, a complementary explicit regression step on a

few features solves the original regression problem.

In this section, four SFA-based methods that explicitly use available labels

are proposed. The first method is called sample reordering and employs standard

SFA, whereas the remaining ones employ GSFA with three different training

graphs called sliding window, serial, and mixed training graphs (Sections 3.4.1–

3.4.4). The selection of the explicit regression step for post-processing is dis-

cussed in Section 3.4.5.

3.4. REGRESSION WITH SFA AND GSFA 43

3.4.1 Sample Reordering

Let X′ = (x′(1), . . . ,x′(N)) be a sequence of N data samples with labels `′ =

(`′1, . . . , `
′
N). The samples are reordered by means of a permutation π(·) in

such a way that the labels become monotonically increasing. The reordered

samples are X = (x(1), . . . ,x(N)), where x(n) = x′(π(n)), and their labels are

` = (`1, . . . , `N) with `l ≤ `l+1. Afterwards the sequence X is used to train

standard SFA using the regular single-sequence method (Figure 3.5).

Figure 3.5: Sample reordering approach. Standard SFA is trained with a re-
ordered sample sequence, in which the hidden labels are increasing.

[Figure reproduced from (Escalante-B. and Wiskott, 2013).]

Since the ordered label values only increase, they change very slowly and

should be found by SFA (or actually some increasing/decreasing function of

the labels that fulfills the normalization conditions). Clearly, SFA can extract

this information only if the samples indeed contain information about the labels

such that it is possible to extract the labels from them. Due to limitations of

the feature space considered, insufficient data, noise, etc., one typically obtains

noisy and distorted versions of the predicted signals.

In this basic approach, the computation of the covariance matrices takes

O(N) operations. Since this method only requires standard SFA and is the most

straightforward to implement, its use is recommended for first experiments. If

more robust outputs are desired, the methods below based on GSFA are more

appropriate.

3.4.2 Sliding Window Training Graph

This graph is an improvement over the reordering graph above in which GSFA

facilitates the consideration of more connections. Starting from the reordered se-

quence X as defined above, a training graph is constructed, in which each sample

x(n) is connected to its d closest samples to the left and to the right in the or-

der given by X. Thus, x(n) is connected to the samples x(n− d), . . . ,x(n− 1),

x(n+ 1), . . . ,x(n+ d) (Figure 3.6.a). In this graph, the vertex weights are con-

stant, that is, vn = 1, and the edge weights typically depend on the distance of

44 CHAPTER 3. GRAPH-BASED SFA

the samples involved, that is, ∀n,n′ : γn,n′ = f(|n′ − n|), for some function f(·)
that specifies the shape of a “weight window”. The simplest case is a square

weight window defined by γn,n′ = 1 if |n′ − n| ≤ d and γn,n′ = 0 otherwise. The

experiments described later in this chapter employ a mirrored sliding window

graph with edge weights

γn,n′ =


2, if n+ n′ ≤ d+ 1 or n+ n′ ≥ 2N − 1 ,

1, if |n′ − n| ≤ d, n+ n′ > d+ 1 and n+ n′ < 2N − 1 ,

0, otherwise .

(58)

These weights compensate the limited connectivity of the few first and last

samples (which are connected to at least d and at most 2d−1 samples) in contrast

to intermediate samples (connected to 2d samples). Preliminary experiments

suggest that such compensation slightly improves the quality of the extracted

features, as explained below.

Figure 3.6: (a) A mirrored square sliding window training graph with a half-
width of d = 2. Each vertex is thus adjacent to at most 4 other vertices. (b)
Illustration of the edge weights of an intermediate vertex x(n) for an arbitrary
window half-width d. (c) Edge weights for a vertex x(n) close to the left extreme
(n < d). Notice that the sum of the edge weights is also approximately 2d for
extreme vertices.

[Based on a figure from (Escalante-B. and Wiskott, 2013).]

GSFA is guaranteed to find functions that minimize (6) within the function

space considered. However, how good such a solution is for the regression prob-

lem largely depends on how one has defined the weights of the training graph.

For instance, if there is a sample with a large vertex weight that has only weak

connections to the other samples, an optimal but undesired solution might as-

sign a high positive value to that single sample and negative small values to all

other samples. Such output values can satisfy the zero mean and unit variance

constraint while yielding a small ∆-value, because the large differences in output

value only occur at the weak connections. Thus, such a solution is good in terms

of the GSFA optimization problem but not good w.r.t. the regression problem at

hand, because the samples with small values are hard to discriminate. In what

follows, this type of solutions is referred to as pathological. Pathological solu-

tions have certain similarities to the features obtained for classification, which

are approximately constant for each cluster (class) but discontinuous among

them.

3.4. REGRESSION WITH SFA AND GSFA 45

The occurrence of pathological solutions depends on the concrete data sam-

ples, feature space, and training graph. To avoid pathological solutions, a neces-

sary condition is that the graph is connected because, as discussed in Section 3.3,

for disconnected graphs GSFA has a strong tendency to produce a representation

suitable for classification rather than regression. Various experiments conducted

for this PhD project have shown that it is useful to enforce the normalization

restriction (32) at least approximately (after vertex and edge weights have been

normalized). Such a restriction ensures that the samples are connected strongly

enough to other samples, relative to their own vertex weight. Of course, one

should not resort to self-loops (i.e., γn,n 6= 0) to trivially fulfill the restriction.

In the sliding window training graph with arbitrary window, the computation

of CG and ĊG requires O(dN) operations. If the window is square (mirrored

or not), the computation can be improved to O(N) operations by using accu-

mulators for sums and products and reusing intermediate results. While larger

d implies more connections, which is generally good, connecting too distant

samples is undesired. The selection of d is not crucial and done empirically.

3.4.3 Serial Training Graph

The serial training graph is similar to the clustered training graph (used for

classification) in terms of its structure and efficiency. It results from discretizing

the original labels ` into a relatively small set of discrete labels {`1, . . . , `L} of

size L, where `1 < `2 < · · · < `L. As described below, faster training is achieved

if L is small, for example, 3 ≤ L� N .

In the serial graph, the vertices are grouped according to their discrete labels.

Every sample in the group with label `l is connected to every sample in the

groups with label `l+1 and `l−1 (except the samples in the first and last groups,

which can only be connected to one neighboring group). The only existing

connections are inter-group connections, no intra-group connections are present

(a graph with intra-group connections is discussed later).

The samples used for training are denoted by xl(n), where the index l (1 ≤
l ≤ L) denotes the group (discrete label) and n (1 ≤ n ≤ Nl) denotes the

sample within such a group. For simplicity, it is assumed here that all groups

have the same number Ng of samples: ∀l : Nl = Ng. Thus, the total number

of samples is N = LNg. The vertex weight of xl(n) is denoted by vln, where

vln = 1 for l ∈ {1,L} and vln = 2 for 1 < l < L. The edge weight of the edge

(xl(n),xl+1(n′)) is denoted by γl,l+1
n,n′ , and all connections have the same edge

weight: ∀n,n′,l : γl,l+1
n,n′ = 1. Thus, all edges have a weight of 1, and all samples

are assigned a weight of 2 except for the samples in the first and last groups,

which have a weight of 1 (Figure 3.7). The reason for the different weights in the

first and last groups is to improve feature quality by enforcing the normalization

restriction (32) (after vertex and edge weight normalization). Notice that since

any two vertices of the same group are adjacent to exactly the same neighbors,

they are likely to be mapped to similar outputs by GSFA.

46 CHAPTER 3. GRAPH-BASED SFA

Figure 3.7: Illustration of a serial training graph with L discrete label values
{`1, . . . , `L}. Even though the original labels of two samples might differ, they
will be grouped together if they have the same discrete label. Each dot represents
a sample, edges represent connections, and ovals represent groups of samples.
The samples of groups with discrete labels `2 to `L−1 have a weight of 2, whereas
the samples of extreme groups with labels `1 or `L have a weight of 1 (sample
weights are represented by bigger/smaller dots). The weight of all edges is 1.

[Figure reproduced from (Escalante-B. and Wiskott, 2013).]

The sum of vertex weights is Q
(11)
= Ng + 2Ng(L − 2) + Ng = 2Ng(L − 1)

and the sum of edge weights is R
(10)
= (L − 1)(Ng)

2, which is also the number

of connections considered. Not surprisingly, the structure of the graph can be

exploited to train GSFA efficiently. Similarly to the clustered training graph,

one can define the average of the samples from the group l as x̂l
def
=
∑

n xl(n)/Ng,

the sum of the products of samples from group l as Πl =
∑

n x
l(n)(xl(n))T , and

the weighted sample average as:

x̂
def
=

1

Q

∑
n

(
x1(n) + xL(n) + 2

L−1∑
l=2

xl(n)

)
(59)

=
1

2(L− 1)

(
x̂1 + x̂L + 2

L−1∑
l=2

x̂l

)
. (60)

From (12), the sample covariance matrix accounting for the weights vln of

the serial training graph is:

Cser
(12,59)

=
1

Q

(∑
n

x1(n)(x1(n))T+ 2
L−1∑
l=2

∑
n

xl(n)(xl(n))T+

∑
n

xL(n)(xL(n))T −Qx̂(x̂)T

)
(61)

=
1

Q

(
Π1 + ΠL + 2

L−1∑
l=2

Πl−Qx̂′(x̂′)T

)
. (62)

3.4. REGRESSION WITH SFA AND GSFA 47

From (14), the matrix ĊG computed using the edges γl,l+1
n,n′ defined above is:

Ċser
(14)
=

1

R

L−1∑
l=1

∑
n,n′

(
xl+1(n′)− xl(n))(xl+1(n′)− xl(n)

)T
(63)

=
1

R

L−1∑
l=1

∑
n,n′

(
xl+1(n′)(xl+1(n′))T + xl(n)(xl(n))T−

xl(n)(xl+1(n′))T − xl+1(n′)(xl(n))T
)

(64)

=
1

R

L−1∑
l=1

(∑
n′

(
Πl+1 + Πl

)
−
(∑

n

xl(n)
)(∑

n′

xl+1(n′)
)T−

(∑
n′

xl+1(n′)
)(∑

n

xl(n)
)T)

(65)

=
Ng

R

L−1∑
l=1

(
Πl + Πl+1 −Ngx̂

l(x̂l+1)T −Ngx̂
l+1(x̂l)T

)
. (66)

By using (66) instead of (63), the slowest step in the computation of the

covariance matrices, which is the computation of Ċser, can be reduced in com-

plexity from O(L(Ng)
2) to only O(N) operations (N = LNg), which is of the

same order as the computation of Cser. Thus, for the same number of samples

N , one obtains a larger speed-up for larger group sizes.

Discretization introduces some type of quantization error. While a large

number of discrete labels L results in a smaller quantization error, having too

many of them is undesired because fewer edges would be considered, which

would increase the number of samples needed to reduce the overall error. For

example, in the extreme case of Ng = 1 and L = N , this method does not bring

any benefit because it is almost equivalent to the sample reordering approach

(differing only due to the smaller weights of the first and last sample).

3.4.4 Mixed Training Graph

The serial training graph does not have intra-group connections, and therefore

the output differences of samples with the same label are not explicitly being

minimized. In some cases, particularly for small numbers of training samples,

additional intra-group connections might indeed improve robustness. However,

one argument against intra-group connections is that if two vertices are adjacent

to the same set of vertices, their corresponding samples are already likely to

be mapped to similar outputs. Clearly, these are reasonable arguments both in

favor and against intra-group connections. To resolve whether these connections

are indeed useful, it will be resorted in this chapter to concrete experiments.

However, this question is addressed more theoretically in Section 4.4.2, where

an analytic method is used to compute a different representation of the graphs.

The mixed training graph (Figure 3.8) has been conceived to test the effect

48 CHAPTER 3. GRAPH-BASED SFA

of having both inter- and intra-group connections. This graph is a combination

of the serial and clustered training graph that fulfills the consistency restric-

tion (32). All vertices and edges of this graph have a weight of 1, except for the

intra-group edges in the first and last groups, which have a weight of 2. As ex-

pected, the computation of the covariance matrices can also be done efficiently

for this training graph (details omitted).

Figure 3.8: Illustration of the mixed training graph. Each group of samples
having the same discrete label is fully connected (intra-group connections, rep-
resented with vertical edges) and also all samples of adjacent groups are con-
nected (inter-group connections). All vertex and edge weights are equal to 1
except for the intra-group edge weights of the first and last groups, which are
equal to 2 and represented by thick lines.

[Figure reproduced from (Escalante-B. and Wiskott, 2013).]

3.4.5 Supervised Step for Regression Problems

There are at least three approaches to implement the supervised step on top of

(G)SFA to learn a mapping from slow features to the labels. The first one is

to use a method such as linear or nonlinear regression. The second one is to

discretize the original labels to a small discrete set {˜̀1, . . . , ˜̀
L̃} (which might be

different from the discrete set used by the training graphs). The discrete labels

are then treated as classes, and a classifier is trained to predict them from the

slow features. One can then output the predicted class as the estimated label. Of

course, an error due to the discretization of the labels is unavoidable. The third

approach improves on the second one by using a classifier that also estimates

class membership probabilities. Let P(C˜̀
l
|y) be the estimated class probability

that the input sample x with slow features y = g(x) belongs to the group with

(discretized) label ˜̀
l. Class probabilities can be used to provide a more robust

estimation of a soft (continuous) label `, better suited to the particular loss

function. For instance, one can use

`
def
=

L̃∑
l=1

˜̀
l ·P(C˜̀

l
|y) (67)

3.5. EXPERIMENTAL EVALUATION OF THE GRAPHS 49

if the loss function is the RMSE, where the slow features y might be extracted

using any of the four SFA-based methods for regression above. Other loss func-

tions can be addressed in a similar way. For instance, the optimal label estima-

tion when using the mean average error (MAE) is not the mean value but the

median, computed according to the estimated distribution.

During this research, these three approaches have been tested and different

classifiers have been used, such as nearest neighbor, nearest centroid, Gaussian

classifier, and SVMs. The results of such experiments suggest that the most

convenient approach is to use the soft labels computed from the class proba-

bilities estimated by a Gaussian classifier because in most of the experiments

this method has provided best performance and robustness. Of course, other

classifiers providing class probabilities could also be used.

3.5 Experimental Evaluation of the Graphs

In this section, the performance of the supervised learning methods based on

SFA (sample reordering) and GSFA presented above (using various graphs) is

evaluated. Two concrete machine learning problems on image analysis are con-

sidered, both of them on real photograph databases, the first one for classifica-

tion and the second one for regression.

3.5.1 Classification

The clustered training graph has been proposed in this work to solve classifi-

cation problems. As mentioned in Section 3.3.2, when this graph is used, the

outputs of GSFA are equivalent to those of FDA. Since FDA has been used and

evaluated exhaustively, here it is only verified that the implementation of GSFA

(as part of the Cuicuilco framework, explained in Appendix A) generates the

expected results when trained with such a graph.

The German Traffic Sign Recognition Benchmark (Stallkamp et al., 2011)

is used for the experimental test. This is a competition that had the goal of

classifying photographs of 43 different traffic signs taken on German roads under

uncontrolled conditions with variations in lighting, sign size, and distance. No

detection step is necessary because the true position of the signs is included as

annotations, making this a pure classification task and ideal for our test. More

specifically, I participated in the online version of the competition, where 26,640

labeled images have been provided for training and 12,569 images without label

for evaluation (classification rates were computed by the organizers, who had

ground-truth data).

Two-layer nonlinear cascaded (non-hierarchical) SFA was employed. To

achieve good performance, the choice of the nonlinear expansion function is

crucial. If it is too simple (e.g., low-dimensional), it does not solve the problem;

if it is too complex (e.g., high-dimensional), it might overfit to the training data

and not generalize well to test data. In all experiments done in this chapter, a

50 CHAPTER 3. GRAPH-BASED SFA

compact expansion that only doubles the data dimension has been employed,

which has been called 0.8Exp,

0.8Exp : xT 7→ xT , (|x|0.8)T , (68)

where the absolute value and exponent 0.8 are computed component-wise. This

expansion has been proposed by Escalante-B. and Wiskott (2011), who have

reported that it offers good generalization and competitive performance in SFA

networks, presumably due to its robustness to outliers and certain properties

regarding the approximation of higher frequency harmonics.

The network above, complemented by a Gaussian classifier on 42 slow fea-

tures, has achieved a recognition rate of 96.4% on test data4. This, as expected,

was similar to the reported performance of various methods based on FDA

participating in the same competition. For comparison, human performance is

98.81%, and a convolutional neural network has given top performance with a

98.98% recognition rate.

3.5.2 Regression

The remaining training graphs have all been designed for regression problems

and were evaluated with the problem of estimating the horizontal position of

a face in frontal face photographs, an important regression problem because it

can be used as a component of a face detection system, as shown in Figure 2.4.

For a slightly more detailed description of such a system see the evaluation

of Mohamed and Mahdi (2010). As previously mentioned, it is proposed to

decompose face detection into the problems of the estimation of the horizontal

position of a face, its vertical position, and its size. Afterwards, face detection

is refined by locating each eye more accurately with the same approach applied

now to the eyes instead of to the face centers. Below, this regression problem is

explained, the algorithms are evaluated, and the results are presented in more

detail.

Problem and Dataset Description

To increase image variability and improve generalization, face images from sev-

eral databases are used, namely 1,521 images from BioID (Jesorsky et al., 2001),

9,030 from CAS-PEAL (Gao et al., 2008), 5,479 from Caltech (Fink et al., 2003),

9,113 from FaceTracer (Kumar et al., 2008), and 39,328 from FRGC (Phillips

et al., 2005) making a total of 64,471 images, which have been automatically pre-

processed through a pose-normalization and a pose-reintroduction step. In the

4Interestingly, GSFA did not provide best performance directly on the pixel data, but on
precomputed HOG features. Ideally, pre-processing is not needed if GSFA has an unrestricted
feature space. In practice, knowing a good low-dimensional set of features for the particular
data is beneficial. Applying GSFA to such features, as commonly done with other machine
learning algorithms, can reduce overfitting.

3.5. EXPERIMENTAL EVALUATION OF THE GRAPHS 51

first step, each image is converted to grayscale and pose-normalized using anno-

tated facial points so that the face is centered5, has a fixed eyes-mouth-triangle

area, and the resulting pose-normalized image has a resolution of 256×192 pix-

els. In the second step, horizontal and vertical displacements are re-introduced,

as well as scalings, so that the center of the face deviates horizontally at most

±45 pixels from the center of the image. The vertical position and the size of

the face are randomized, so that vertically the face center deviates at most ±20

pixels, and the smallest faces are half the size of the largest faces (a ratio of at

most 1 to 4 in area). Interpolation (e.g., needed for scaling and sub-pixel dis-

placements) is done using bicubic interpolation. At last, the images are cropped

to 128×128 pixels (see Figure 3.9).

Figure 3.9: Example of a pose-normalized image (left) and various images after
pose was reintroduced, illustrating the final range of vertical and horizontal
displacements, as well as the face sizes (right).

[Figure reproduced from (Escalante-B. and Wiskott, 2013).]

Given a pre-processed input image, as described above, with a face at posi-

tion (x, y) w.r.t. the image center and size z, the regression problem is then to

estimate the x-coordinate of the center of the face. The range of the variables

x, y and z is bounded to a box, so that one does not have to consider extremely

small faces, for example. To assure a robust estimation for new images, invari-

ance to a large number of factors is needed, including the vertical position of the

face, its size, the expression and identity of the subject, his or her accessories,

clothing, hair style, the lighting conditions, and the background.

The pose-normalized images are randomly split in three datasets of 30,000,

20,000 and 9,000 images. The first dataset was used to train the dimension-

ality reduction method, the second one to train the supervised post-processing

step, and the last one for testing. To further exploit the images available, the

pose-normalized images of each dataset are duplicated, resulting in two pose-

reintroduced images per input image. A single input image exclusively belongs

to one of the three datasets, appearing twice in it with two different poses.

Hence, the final size of the datasets is 60,000, 40,000 and 18,000 pre-processed

images, respectively.

5The center of a face was defined here as 1
4
LE + 1

4
RE + 1

2
M, where LE, RE and M are

the coordinates of the centers of the left eye, right eye and mouth, respectively. Thus, the face
center is the midpoint between the mouth and the midpoint of the eyes.

52 CHAPTER 3. GRAPH-BASED SFA

Dimensionality-Reduction Methods

The resolution of the images and their number make it less practical to directly

apply SFA and the majority of supervised methods, such as an SVM, and un-

supervised methods, such as PCA/ICA/LLE, to the raw images. This problem

is circumvented by using three efficient dimensionality reduction methods, and

by applying supervised processing on the lower-dimensional features extracted.

The first two methods are efficient hierarchical implementations of SFA and

GSFA (referred to as HSFA in this chapter without distinction). The nodes in

the HSFA networks first expand the data using the 0.8Exp expansion function

(see Section 3.5.1) and then apply SFA/GSFA to it, except for the nodes in the

first layer in which additionally PCA is applied before the expansion to preserve

13 out of 16 principal components. For comparison, we use a third method, a

hierarchical implementation of PCA (HPCA), in which all nodes do pure PCA.

The structure of the hierarchies for the HSFA and PCA networks is described

in Table 3.1. In contrast to other HSFA networks (e.g., Franzius et al., 2007),

weight-sharing was not used at all, improving feature specificity at the lowest

layers. The input to the nodes (fan-in) comes mostly from two nodes in the pre-

vious layer. This small fan-in reduces the computational cost because the input

dimensionality is minimized. This also results in networks with a large num-

ber of layers potentiating the accumulation of non-linearity across the network.

Non-overlapping receptive fields are used because such a small fan-in showed

good performance and a smaller computational cost in previous experiments of

this research using similar data.

The following dimensionality-reduction methods are evaluated (one based

on SFA, four based on GSFA, and one based on PCA).

• SFA using sample reordering (reordering).

• GSFA with a mirrored sliding window graph with d = 32 (MSW32).

• GSFA with a mirrored sliding window graph with d = 64 (MSW64).

• GSFA with a serial training graph with L = 50 groups of Ng = 600 images

(serial).

• GSFA with a mixed graph and the same number of groups and images

(mixed).

• A hierarchical implementation of PCA (HPCA).

It is impossible to compare GSFA against all the dimensionality reduction

and supervised learning algorithms available, and therefore a small subset of

them has been selected. HPCA has been chosen for efficiency reasons and be-

cause it is likely to be a good dimensionality reduction algorithm for the problem

at hand since principal components code well the coarse structure of the image

including the silhouette of the subjects, allowing for a good estimation of the po-

sition of the face. Thus, HPCA (combined with various supervised algorithms)

appears to be a fair point of comparison, and a good representative among

3.5. EXPERIMENTAL EVALUATION OF THE GRAPHS 53

Layer size
output dimensionality

node of the nodes
fan-in HSFA HPCA

0 (input image) 128×128 pixels — — —
1 32×32 nodes 4×4 13 13
2 16×32 nodes 2×1 20 20
3 16×16 nodes 1×2 35 35
4 8×16 nodes 2×1 60 60
5 8×8 nodes 1×2 60 100
6 4×8 nodes 2×1 60 120
7 4×4 nodes 1×2 60 120
8 2×4 nodes 2×1 60 120
9 2×2 nodes 1×2 60 120
10 1×2 nodes 2×1 60 120

11 (top node) 1×1 nodes 1×2 60 120

Table 3.1: Structure of the SFA and PCA deep hierarchical networks. The
networks only differ in the type of processing done by each node and in the
number of features preserved. For HSFA an upper bound of 60 features was set,
whereas for HPCA at most 120 features were preserved. A node with a fan-in
of a × b is driven by a rectangular array of nodes (or pixels for the first layer)
that has such a shape and is located in the preceding layer.

generic machine learning algorithms for this problem. For the data employed,

120 HPCA features at the top node explain 88% of the data variance, suggesting

that HPCA is indeed a good approximation to PCA in this case.

The evolution across the hierarchical network of the two slowest features

extracted by HSFA is illustrated in Figure 3.10.

Supervised Post-Processing Algorithms

On top of the dimensionality reduction methods, the following supervised post-

processing algorithms are employed.

• A nearest centroid classifier (NCC).

• Labels estimated using (67) and the class membership probabilities given

by a Gaussian classifier (Soft GC).

• A multi-class (one-versus-one) SVM (Chang and Lin, 2011) with a Gaus-

sian radial basis kernel, and grid search for model selection.

• Linear regression (LR).

To train the classifiers, the images of the second dataset are grouped in 50 equally

large classes depending on their horizontal displacement x, where −45 ≤ x ≤ 45.

The classifiers are then trained with these 50 virtual classes.

54 CHAPTER 3. GRAPH-BASED SFA

Figure 3.10: Evolution of the slow features extracted from test data after layers
1, 4, 7 and 11 of a GSFA network trained with the serial training graph. A cen-
tral node has been selected from each layer and the first two features are shown
in three plots, that is, y2 vs y1, n vs y1, and y2 vs n. Hierarchical processing
results in progressively slower features as the data is processed from the first to
the last layer (i.e., the top node). The solid line in the plots of the top node
represents the optimal free responses, which are the slowest possible features one
can obtain using an unrestricted mapping, as predicted theoretically (Wiskott,
2003a). Notice how the features evolve from being mostly unstructured in the
first layer to being similar to the optimal free responses at the top node, indicat-
ing success at finding the hidden parameter changing most slowly for this data
(i.e., the horizontal position of the faces).

[Figure reproduced from (Escalante-B. and Wiskott, 2013).]

Results

The evaluation comprises all combinations of a dimensionality reduction method

(reordering, MSW32, MSW64, serial, mixed and HPCA) and a supervised post-

processing algorithm (NCC, Soft GC, SVM, LR). Their performance is measured

on test data and reported in terms of the RMSE. The estimated labels depend

on a few parameters: the number of features passed to the supervised post-

3.5. EXPERIMENTAL EVALUATION OF THE GRAPHS 55

processing algorithm, and the parameters C and γ in the case of the SVM. These

parameters are optimized for each combination of algorithms using a single trial

per tested parameter value, but the RMSEs reported here are averaged over 5

trials.

The results are presented in Table 3.2 and are analyzed focusing on four

aspects: the dimensionality-reduction method, the number of features used,

the supervised methods, and the training graphs. For any choice of the post-

processing algorithm and training graph, GSFA resulted in an RMSE 5% to 13%

smaller than when using the basic reordering of samples employing standard

SFA. In turn, reordering resulted in an RMSE at least 10% better for this

dataset than when using HPCA.

Dim. red. NCC # of Soft GC # of SVM # of LR # of Wall
method (RMSE) feat. (RMSE) feat. (RMSE) feat. (RMSE) feat. time

Reord. 6.16 6 5.63 4 6.00 14 10.23 60 51
MSW32 5.78 5 5.25 4 5.52 18 9.74 60 49
MSW64 5.69 5 5.15 4 5.38 18 9.69 60 62
Serial 5.58 4 5.03 5 5.23 15 9.68 60 62
Mixed 5.63 4 5.12 4 5.40 19 9.54 60 55

HPCA 29.68 118 6.17 54 8.09 50 19.24 120 18

Table 3.2: Performance (RMSE, measured in pixels) of the dimensionality re-
duction algorithms in combination with various supervised algorithms for the
post-processing step. The RMSE at chance level is 25.98 pixels. Each entry
reports the best performance achievable using a different number of features
and parameters in the post-processing step. Largest standard error of the mean
is 0.21 pixels. Clearly, linear regression benefits from all SFA and PCA features
available. Running times (in minutes) are reported using a newer version of the
software and a computer with 24 Xeon X7542 cores @ 2.67GHz.

Taking a look at the number of features used by each supervised post-

processing algorithm, one can observe that considerably fewer HSFA features

are used than HPCA features (e.g., 5 vs. 54 for Soft GC). This can be explained

because PCA is sensitive to many factors that are irrelevant to solve the regres-

sion problem, such as the vertical position of the face, its scale, the background,

lighting, etc. Thus, the information that encodes the horizontal position of a

face is mixed with other information and distributed over many principal compo-

nents, whereas it is more concentrated in the slowest components of SFA/GSFA.

If one focuses on the post-processing methods, one can observe that linear

regression performed poorly, confirming that a linear supervised step is too weak,

particularly when the dimensionality reduction is also linear (e.g., HPCA). The

nearest centroid classifier did modestly for HSFA, but even worse than chance

level for HPCA. The SVMs are consistently better, but the error can be further

reduced by 4% to 23% by using Soft GC, the soft labels derived from a Gaussian

classifier.

56 CHAPTER 3. GRAPH-BASED SFA

Regarding the training graphs, I expected that the sliding window graphs,

MSW32 and MSW64, would be more accurate than the serial and mixed graphs,

even when using a square window, because the labels are not discretized. Sur-

prisingly, the mixed and serial graphs were the most accurate ones. This might

be explained in part by the larger number of connections in these graphs. Still,

MSW32 and MSW64 were better than the reordering approach, the wider win-

dow being superior. The RMSE of the serial graph was smaller than the one of

the mixed graph by less than 2% (for Soft GC), making it uncertain for statis-

tical reasons which of these graphs is better for this problem. A larger number

of trials, or even better, a more detailed mathematical analysis of the graphs

might be necessary to determine which one is better (see Section 4.4.2).

3.6 Discussion of GSFA

In this chapter, the graph-based SFA (GSFA) optimization problem has been

proposed, an extension to the standard SFA optimization problem that takes

into account label and sample information specified in a structure called training

graph, in which the vertices are the training samples and the edges represent

connections between samples. Edge weights allow the specification of desired

output similarities and can be derived from label or class information. The

GSFA optimization problem generalizes the notion of slowness defined originally

for a plain sequence of samples.

The GSFA algorithm has also been proposed, which is an implicitly su-

pervised extension of the (unsupervised) SFA algorithm, and it is shown that

GSFA solves the new optimization problem in the considered function space.

The main goal of GSFA is to solve supervised learning problems by reducing

the dimensionality of the data to a few very label-predictive features.

The term “implicitly supervised” has been used to qualify GSFA to empha-

size that the labels themselves are never provided to GSFA, but only the training

graphs, which encode the labels through their structure. While the construction

of the graph is a supervised operation, GSFA works in an unsupervised fashion

on structured data. Hence, GSFA does not search for a fit to the labels explicitly

but instead fully concentrates on the generation of slow features according to

the topology defined by the graph.

Several training graphs for classification and regression have been introduced

in this chapter. They have been designed aiming at a balance between computa-

tional requirements and accuracy. These graphs offer a significant advantage in

terms of speed, for example, over other similarity matrices typically used with

LPP. Conceptually, such a speed-up can be traced back to two factors that orig-

inate from the highly regular structure of the graphs (Sections 3.3 and 3.4). (1)

The determination of the edges and edge weights is a trivial operation because

they are derived from the labels in a simple manner. In contrast, this operation

can be quite expensive if the connections are computed using nearest neigh-

bor algorithms. (2) Linear algebra can be used to optimize the computation

3.6. DISCUSSION OF GSFA 57

of Ċ (as already shown), which is needed during the training phase. The re-

sulting complexity for training is linear in the number of samples, even though

the number of connections considered is quadratic. The experimental results

demonstrate that the larger number of connections considered by GSFA indeed

provides a more robust learning than standard SFA, making it superior to SFA

in supervised learning settings.

When solving a concrete supervised learning problem, the features extracted

by unsupervised dimensionality reduction algorithms are often suboptimal. For

instance, PCA does not yield good features for age estimation from adult face

photographs because features revealing age (e.g., skin textures) have higher spa-

tial frequencies and do not belong to the main principal components. Supervised

dimensionality reduction algorithms, including GSFA, are especially promising

when one does not know a good set of features for the particular data and

problem at hand and one wants to improve performance by generating features

adapted to the specific data and labels.

One central idea of this chapter, shown in Figure 3.1, is the following. If

one has a large number of high-dimensional labeled data, supervised learning

algorithms can often not be applied due to high computational requirements.

In such cases, it is suggested to transform the labeled data to structured data,

where the label information is implicitly encoded in the connections between

data points. Then, unsupervised learning algorithms, such as SFA, or its im-

plicitly supervised extension GSFA, can be used. This permits hierarchical

processing for dimensionality reduction, an operation that is frequently more

difficult with supervised learning algorithms. The resulting low-dimensional

data has an intrinsic structure that reflects the graph topology. This data can

then be transformed back to labeled data by adding the labels, and standard

supervised learning algorithms can be applied to solve the original supervised

learning problem.

3.6.1 Related Optimization Problems

Recently, Böhmer et al. (2012) introduced regularized sparse kernel SFA. The

algorithm is used to solve a classification problem by reducing the data dimen-

sionality. In the discussion section, various extensions similar to the GSFA

optimization problem are briefly presented without empirical evaluation. For

classification, the authors propose an objective function equivalent to (6), with

edge weights γn,n′ = δcncn′ , where cn and cn′ are the classes of the respective

samples, and δcncn′ is the Kronecker delta. If all classes C1, . . . , CS are equally

represented by Nc samples, such edge weights are equivalent to those specified

by the clustered graph. However, if Ns is not the same for all classes, the binary

edge weights (either 1 or 0, as given by the Kronecker delta) seem to be less ap-

propriate because larger classes are overrepresented by the quadratic number of

edges Nc(Nc + 1)/2 for class s. The authors also consider transitions with vari-

able weights. For this purpose, they use an importance measure p(xt+1,xt) ≥ 0

with high values for transitions within the desired subspace and propose the

58 CHAPTER 3. GRAPH-BASED SFA

objective function

min s′(yi)
def
=

1

n− 1

n−1∑
t=1

(yi(t+ 1)− yi(t))2

p(xt+1,xt)
, (69)

with yi(t)
def
= φi(x(t)). This accounts for arbitrary edge weights γn,n+1 in a linear

graph, which could be easily generalized to arbitrary graphs. It is not clear to

me why the importance measure p has been introduced as a quotient instead

of as a factor. The authors also propose an importance measure q(x) for the

samples, which plays exactly the same role as the vertex weights {vn}n. The

unit variance and decorrelation constraints are adapted to account for q(x) and

become fully equivalent to constraints (8–9) of GSFA. The remaining zero-mean

constraint was not explicitly adapted.

3.6.2 Conversions Between GSFA and Similar Algorithms

Zhang et al. (2009) propose a framework for the systematic analysis of several

dimensionality reduction algorithms, such as LLE, LE, LPP, PCA and LDA,

to name just a few. From a mathematical point of view, SFA, LPP, genSFA

and GSFA belong to the same family of optimization problems (regardless of

their typical usage and application areas) and can be solved via generalized

eigenvalues. Conversions between these four algorithms are possible.

LPP and SFA. The authors show that LPP is a linearization of LE. In turn,

linear SFA can be seen as a special case of LPP, where the weight matrix has

a special form (see Sprekeler, 2011). Consider the following LPP optimization

problem (He and Niyogi, 2003):

arg min
y

yTDy=1

1

2

∑
i,j

(yi − yj)2Wij = yTLy , (70)

where W is a symmetric weight matrix, D is a diagonal matrix with diagonal

Dii
def
=
∑

jWij , L
def
= D −W is the Laplacian matrix, and the output features

y
def
= aTx are linear in the input. The equivalence to linear SFA is achieved

if one sets W as Wij = 1
2(δi,1δj,1 + δi,Nδj,N + δj,i+1 + δi,j+1). The objective

function then becomes the same as in SFA, and D becomes the identity matrix,

yielding the same restrictions as in SFA. The zero-mean constraint is implicit

and achieved by discarding a constant solution with eigenvalue zero. Notice that

leaving out the terms δi,1δj,1 + δi,Nδj,N results in D = diag(1/2, 1, 1, . . . , 1, 1/2)

being slightly different from the identity matrix and the equivalence above would

only be approximate.

LPP and Generalized SFA. Sprekeler (2011) studied the relation between

SFA and LE and proposed the combination of the neighborhood relation used by

3.6. DISCUSSION OF GSFA 59

LE and the functional nature of SFA. The resulting algorithm, called generalized

SFA (genSFA), computes a functional approximation to LE with a feature space

spanned by a set of basis functions. Linear genSFA is equivalent to linear LPP

(Rehn, 2013), and in general it can be regarded as LPP on the data expanded

by such basis functions.

LPP and GSFA. Also the strong connection between LPP and linear GSFA

is evident from (70). In this case, the elements Dii play the role of the vertex

weights vi, and the elements Wij play the role of the edge weights γi,j . One

difference between LPP and GSFA is that the additional normalization factors

Q and R of GSFA provide invariance to the scale of the edge and vertex weights

specifying a particular feature and objective function normalization. A second

difference is that for GSFA the vertex weights, fundamental for feature normal-

ization, can be chosen independently from the edge weights (unless one explicitly

enforces (32)), whereas for LPP the diagonal elements Dii
def
=
∑

jWij are derived

from the edge weights.

Now it is shown how one can easily compute LPP features using GSFA.

Given a similarity matrix Wij and diagonal matrix D with diagonal elements

Dii
def
=
∑

jWij , one solves a GSFA problem defined over a training graph with

the same samples, edge weights γi,j = Wij , and vertex weights vi = Dii. The

optimization problem solved by GSFA is then equivalent to the LPP problem,

except for the scale of the objective function and the features. If the features

extracted from a particular sample are denoted by yGSFA, one can match the

feature scales of LPP simply by applying a scaling y = Q−1/2yGSFA, where

Q
(11)
=
∑

i vi.

It is also possible to use LPP to compute GSFA features. Given a training

graph with edge weights γi,j and vertex weights vi, we can define the following

similarity matrix:

Wij =

{
2γi,j/R, for i 6= j, with R as defined in (10) ,

vi/Q−
∑

j′ 6=iWij′ , for i = j, with Q as defined in (11) .
(71)

The similarity matrix W above ensures the same objective function as in GSFA,

and also that Dii
def
=
∑

jWij = vi/Q, resulting in the same constraints. In

practice, using self-loops Wii 6= 0 is unusual for LPP, but they are useful in this

case.

In spite of being closely related mathematically, SFA, LPP, genSFA and

GSFA originate from different backgrounds and were first motivated with dif-

ferent goals in mind. Therefore, they usually have different applications and

are trained with different similarity matrices, resulting in features with differ-

ent properties. For instance, LPP originates from the field of manifold learning

and transitions are typically defined from input similarities (nearest neighbors).

SFA originates from unsupervised learning and transitions are typically defined

by the temporal ordering of the samples. genSFA typically combines input sim-

60 CHAPTER 3. GRAPH-BASED SFA

ilarities with class information, although more recently an approach uses only

the label information (Rehn and Sprekeler, 2014). In GSFA, transitions typi-

cally reflect label similarities. For SFA and GSFA the use of input similarities

might be disadvantageous, because it might compromise the invariance of the

extracted features, which is one of the central goals.

3.6.3 Remarks on Classification with GSFA

Both, classification and regression can be solved with GSFA. The results show

that a few slow features allow for an accurate solution to the supervised learning

problem, requiring only a small post-processing step that maps the features to

labels or classes.

For classification problems, the clustered training graph is proposed, which

yields features having the discriminative capability of FDA. The results of the

implementation of this graph confirm the expectations from theory. Training

with the clustered graph is equivalent to considering all transitions between sam-

ples of the same identity and no transition between different identities. The com-

putation, however, is more efficient than the direct method of Berkes (2005a),

where a large number of transitions have to be considered explicitly.

The Markov chain generated through the probabilistic interpretation of this

graph is equal to the Markov chain defined by Klampfl and Maass (2010). These

two Markov chains are parameterized by vanishing parameters ε and a, respec-

tively. The parameter a influences the probability Pij = aNj/N of transitioning

from a class ci to a different class cj , where Nj is the number of samples of class

cj and N is the total number of samples. Thus, in the limit a→ 0 all transitions

lie within the same class. However, the Markov chain and ε (see Equation 36)

are introduced here for analytical purposes only. In practice, GSFA directly uses

the graph structure, which is deterministic and free of ε. This avoids the less

efficient training of SFA with a very long sequence of samples generated with

the Markov chain, as done by Klampfl and Maass (2010). (Even though the

set of samples is finite, as the parameter a approaches 0, an infinite sequence is

required to properly capture the data statistics of all identities).

Klampfl and Maass (2010) have proven that if a → 0 the features learned

by SFA from the data generated are equivalent to the features learned by FDA.

From the equality of the two Markov chains above, the features extracted by

GSFA turn out to be also equivalent to those of FDA. Thus, the features ex-

tracted with GSFA from the clustered graph are not better or worse than those

extracted with FDA. However, this equivalence is an interesting result because

it allows a different interpretation of FDA from the point of view of the extrac-

tion of slow signals. Moreover, advances in generic methods for SFA, such as

hierarchical network architectures or robust nonlinearities, result in improved

classification rates over standard FDA.

It is possible to design other training graphs for classification without the

equivalence to FDA, for example, by using non-constant sample weights, or by

incorporating input similarity information or other criteria in the edge-weight

3.6. DISCUSSION OF GSFA 61

matrix. This idea has been explored by Rehn (2013) using genSFA, where vari-

ous adjacency graphs (i.e., edge weights) were proposed for classification inspired

by the theory of manifold learning. Instead of using full-class connectivity, only

samples within the same class among the first nearest neighbors are connected.

Less susceptibility to outliers and better performance have been reported.

3.6.4 Remarks on Regression with GSFA

To solve regression problems, I have proposed three training graphs for GSFA

that resulted in a reduction of the RMSE of up to 11% over the basic reorder-

ing approach using standard SFA. Such an improvement is caused by the higher

number of similarity relations considered even though the same number of train-

ing samples is used.

Extensions of SFA for regression (i.e., GSFA) have first been used by

Escalante-B. and Wiskott (2010) to estimate age and gender from frontal static

face images of artificial subjects, created with special software for 3D face mod-

eling and rendering, see Figure 2.3. Gender estimation is treated as a regression

problem, because the software represents gender as a continuous variable (e.g.,

−1.0=typical masculine face, 0.0=neutral, 1.0=typical feminine face). Early

versions of the mixed and serial training graphs were employed. Only three ex-

tracted features were passed to an explicit regression step based on a Gaussian

classifier (Section 3.4.5). In both cases, good performance has been achieved,

with an RMSE of 3.8 years for age and 0.33 units for gender on test data,

compared to a chance level of 13.8 years and 1.73 units, respectively.

With a system similar to the one presented here, I participated in a face

detection competition successfully (Mohamed and Mahdi, 2010). As described

in Section 2.6.4, the x-position, y-position and scale of a face within an image

are estimated using three separate SFA networks, one for each parameter, to

pose-normalize the faces within image patches. A fourth network is trained

to estimate the quality of the normalization, again as a continuous parameter,

and to indicate whether a face is present at all. These four networks together

were used to detect faces. Performance of the resulting face detection system

on various image databases was competitive and yielded a detection rate on

grayscale photographs within the range from 71.5% to 99.5% depending on the

difficulty of the test images. An increase in the image variability in the training

data is expected to result in further improvements.

The serial and mixed training graphs have resulted in the best accuracy

for the experiments in this chapter, with the serial one being slightly more

accurate but not to a significant level. These graphs have the advantage over

the sliding window graph that they are also suitable for cases in which the labels

are discrete from the beginning, which occurs frequently due to finite resolution

in measurements or due to discrete phenomena (e.g., when learning the number

of red blood cells in a sample, or a distance in pixels).

Since the edge weights supported by GSFA can be chosen arbitrarily, it is

tempting to use a complete weight matrix continuous in the labels (e.g., γn,n′ =

62 CHAPTER 3. GRAPH-BASED SFA

1
|`n′−`n|+k

, for k > 0, or γn,n′ = exp(− (`n′−`n)2

σ2)). However, this might affect

the training time markedly. Moreover, one should be aware that imbalances in

the connectivity of the samples might result in pathological solutions or features

less useful than expected.

The emphasis of this chapter has been put on supervised dimensionality

reduction towards the estimation of a single label. However, one can estimate

two or more labels simultaneously using appropriate training graphs. In general,

using such graphs might reduce the performance of the method compared to the

separate estimation of the labels. However, if the labels are intrinsically related,

performance might actually improve.

The features extracted by GSFA strongly depend on the labels, even though

label information is only provided implicitly by the graph connectivity. Ideally,

the slowest feature extracted is a monotonic function of the hidden label, and

the remaining features are harmonics of increasing frequency of the first one.

In practice, noisy and distorted versions of these features are found, but still

providing an approximate, redundant, and concentrated coding of the labels.

Their simple structure permits the use of simple supervised algorithms for the

post-processing step saving time and computer resources. For the estimation of

the x-position of faces, all the nonlinear post-processing algorithms, including

the nearest centroid classifier, provided good accuracy. Although a Gaussian

classifier is a less powerful classifier than an SVM, the estimation based on

the class membership probabilities of the Gaussian classifier (Soft GC) is more

accurate because it reduces the effect of miss-classifications.

3.6.5 Other Considerations

Locality preserving projections and GSFA come from very different backgrounds.

On the one hand, LPP is motivated from unsupervised learning and was con-

ceived as a linear algorithm. The similarity matrices used are typically derived

from the training samples, for example, using a heat kernel function. Later,

weight matrices accounting for label information have been proposed, particu-

larly for classification. On the other hand GSFA is motivated from supervised

learning, and was conceived as an extension of SFA designed for supervised

non-linear dimensionality reduction specifically targeting regression and classi-

fication problems. Although the motivation behind LPP and GSFA, as well as

their typical applications, are different, these algorithms are strongly connected.

Therefore, in future work it might be worth not only to unify their formalism,

but also the conceptual roots that have inspired them.

Although supervised learning is less biologically plausible, GSFA being im-

plicitly supervised is still closely connected to feasible unsupervised biological

models through the probabilistic interpretation of the graph. (If one ensures that

the graph fulfills the normalization restrictions, the Markov chain described in

Section 3.2.5 can be constructed, and learning with GSFA and such graph be-

comes equivalent to learning with standard (unsupervised) SFA if it is trained

with a sequence generated by the Markov chain.) From this perspective, GSFA

3.6. DISCUSSION OF GSFA 63

uses the graph information to simplify a learning procedure that could also be

done in an unsupervised fashion.

This research shows that GSFA is better for supervised learning than SFA,

and suggests that it is a very interesting and promising algorithm. Of course,

specialized algorithms might outperform GSFA for particular tasks. For in-

stance, algorithms for face detection can outperform the system presented here,

but a fundamental advantage of GSFA is that it is general purpose. Moreover,

various improvements to GSFA are possible. Some of them are discussed in

Chapters 4 and 5, which will increase its performance and provide accuracies

similar or even better than special-purpose algorithms.

One limitation of hierarchical processing with GSFA or SFA (i.e., HSFA) is

that the features should be spatially localized in the input data. For instance, if

one randomly shuffles the pixels in the input image, performance would decrease

considerably. This limits the applicability of HSFA for scenarios with hetero-

geneous independent sources of data, but makes it well suited, for example, for

images.

Although GSFA makes a more efficient use of the available samples than SFA,

it can still overfit in part because these algorithms lack an explicit regularization

parameter. Hence, for a small number of samples data randomization techniques

are useful. Interestingly, certain expansions and hierarchical processing can be

seen as implicit regularization measures. In fact, less overfitting compared to

standard SFA is one of the central advantages of using HSFA. A second central

advantage of HSFA is that HSFA networks can be trained in a feed-forward

manner layer by layer, resulting in a very efficient training. Moreover, the

nonlinearities of different layers accumulate, and the features at the top node

of the network can be highly nonlinear w.r.t. the input, potentially spanning a

rich feature space.

Most of this work was originally motivated by the need to improve gener-

alization of current SFA networks. Of course, if the amount of training data

and computation time were unrestricted, overfitting would be negligible, and

all SFA training methods would approximately converge to the same features

and provide similar performance. For finite data and resources, the results

demonstrate that GSFA does provide better performance than SFA (reordering

method) using the same amount of training data. Another interpretation is that

GSFA demands less training data to achieve the same performance, thus, indeed

contributing to the original goal of improving generalization.

Chapter 4

Exact Label Learning:
Theoretical Analysis of the
Optimal Free Responses of
Graph-Based SFA for the
Design of Training Graphs

The previous chapter introduced graph-based SFA (GSFA), a supervised ex-

tension of SFA that can be used to solve regression problems if followed by a

simple post-processing step (e.g., a classification or regression algorithm, such

as a Gaussian classifier or ordinary least squares). Training graphs are a key

concept of GSFA. They define the value of the vertex and edge weights. Edge

weights allow the specification of arbitrary connections between the training

samples and define an output similarity objective. Various training graphs for

regression have been proposed, namely, the reordering, serial, mixed, and slid-

ing window graphs. Results show that the serial graph is particularly promising

due to its efficiency and the label estimation accuracy. One disadvantage of the

graphs mentioned above, however, is that the samples are connected by edges

that depend only on the rank of the corresponding labels. Exploiting the exact

label values allows further improvements in estimation accuracy.

In this chapter, I propose the exact label learning (ELL) method1. The ELL

method constructs a graph that encodes the desired label accurately and allows

GSFA to extract a normalized version of it directly. The ELL method is used

for three tasks: (1) Gender estimation from artificial images of human faces (re-

gression), which shows the advantage of encoding additional labels, particularly

skin color. (2) The analysis of two existing graphs for regression. (3) The ELL

method is used in a non-conventional way to extract compact discriminative

1This chapter is an edited version of (Escalante-B. and Wiskott, 2016b), which has been
published in the Journal of Machine Learning Research (JMLR).

65

66 CHAPTER 4. ELL AND THE DESIGN OF TRAINING GRAPHS

features and classify traffic sign images. When the number of output features

is fewer than C − 1, compact discriminative features yield a higher classifica-

tion rate than a training graph that generates features equivalent to those of

nonlinear Fisher discriminant analysis, where C is the number of classes. The

method is versatile, directly supports multiple labels, and provides higher accu-

racy compared to previously proposed graphs for the problems considered.

The next section provides a high-level introduction to the ELL method.

Then, the GSFA optimization problem is expressed in matrix notation to sim-

plify its analysis. Afterwards, the ELL method is proposed. Thereafter, the

method is validated and applied to three different tasks. Finally, the chapter is

closed with a discussion.

4.1 Introduction

Supervised learning problems on simple data (e.g., low-dimensional and/or ar-

tificial data) can usually be solved by the direct application of conventional

supervised learning algorithms, e.g., an SVM applied directly to the pixel data.

However, such methods are mostly inefficient or ineffective for real-world high-

dimensional data. A classical approach to deal with high-dimensional data is

to apply feature extraction followed by (unsupervised) dimensionality reduction

(DR) and an explicit supervised learning step (Figure 4.1.a). In Chapter 3, a

new approach has been proposed that uses GSFA for supervised DR and then

post-processes a small number of slow features with a conventional classification

or regression algorithm (Figure 4.1.b). An advantage of this approach is that

the supervised learning problem is mostly solved by GSFA implicitly, because

it usually identifies and compresses the label-predictive information in a small

number of features. Therefore, an advanced post-processing step is not crucial,

and a simple mapping from slow features to labels may suffice.

From now on, we will refer to graphs with a fixed shape that only takes

into account the rank of the labels and not their exact value as pre-defined

graphs. These include all the graphs proposed in Chapter 3. The number of

edges represented by pre-defined graphs is O(N2), where N is the number of

samples. However, their structure allows quite efficient training methods that

have linear complexity w.r.t. N .

GSFA trained with pre-defined graphs provides much better label estima-

tions than standard SFA. However, the edge weights of pre-defined graphs are

defined in a somewhat primitive manner. The exact value of the labels can be

exploited to carefully define the weights of the training graph, allowing further

improvements in estimation accuracy. For instance, the serial graph is subopti-

mal, since edge weights are either 0 or 1 and the graph incurs in a form of label

quantization error. This chapter focuses on the analysis and design of training

graphs. A new approach for solving regression problems with GSFA is proposed.

Such an approach is based on the construction of a special training graph, in

4.1. INTRODUCTION 67

Figure 4.1: Three approaches for solving supervised learning problems. ` de-
notes ground-truth labels, ˆ̀ are label estimations, v are the vertex weights, and
Γ is a training graph. (a) A classical approach. (b) Previous approach using
GSFA with a pre-defined training graph. The samples are assumed to be ordered
by increasing label. (c) The approach proposed here, which consists of a single
GSFA architecture that is trained with a specially constructed graph Γ(`,v),
i.e., an explicit function of ` and v. The first slow feature (with a global sign
adjustment) directly provides the label estimation. If the label ` does not have
weighted zero mean and weighted unit variance, a final affine transformation
(scaling and offset) should be included.

[Based on a figure from (Escalante-B. and Wiskott, 2016b)].

which the slowest feature extracted is already a label estimation, up to an affine

transformation (Figure 4.1.c).

A graph designed with the proposed ELL method can be used to train

GSFA, cascaded GSFA, and hierarchical GSFA (HGSFA). In fact, the main

application area of the ELL method is the solution of regression problems on

high-dimensional data with HGSFA. The resulting system efficiently learns a

nonlinear mapping from the input data (e.g., the pixels or features) to label

estimations.

The first step to develop this exact label learning (ELL) method, is to analyze

the slowest possible features that can be extracted by GSFA from a given graph

when the feature space is unrestricted. These features have also been called

optimal free responses and have been computed for SFA in continuous time by

Wiskott (2003a) using variational calculus. For GSFA, a different method must

be used, because the data has a discrete graph structure and is no longer a

continuous function of time.

After the optimal free responses of GSFA have been expressed in a closed

form, a theoretical method for the converse operation is developed: From a set

of free responses, the corresponding training graph is computed. The method

allows the creation of a graph in which the slowest possible feature is the label

to be learned. Moreover, one can learn multiple labels simultaneously (e.g.,

68 CHAPTER 4. ELL AND THE DESIGN OF TRAINING GRAPHS

object position, average color, shape, and size), and balance their importance

by setting the value of certain parameters. This property can be exploited to

learn auxiliary labels, which provide a redundant encoding of the original labels

that can potentially increase the estimation accuracy.

A theoretical graph-analysis method is used to analyze the serial graph and

ELL graphs. It is shown that these graphs are similar in terms of the first optimal

free responses, and that when only one label is learned the serial graph may

substitute the ELL graph reasonably well with faster training time. However,

the chapter’s discussion outlines a few extensions to the ELL method towards

improving its efficiency.

The ELL method is useful for practical applications, since it provides higher

accuracy than pre-defined graphs, particularly when multiple labels are learned.

Moreover, the theoretical analysis behind the ELL method provides insights to

a deeper understanding of GSFA. While in general the ELL method results in

a higher complexity compared to GSFA trained with an efficient pre-defined

graph, it is still computationally viable for some datasets without resorting to

specialized hardware, multi-threading, or parallelization.

To simplify the analysis of training graphs and the presentation of the ELL

method, the next section expresses the GSFA optimization problem in a more

compact form.

4.2 GSFA Optimization Problem in Matrix Notation

In order to apply linear algebra methods to analyze GSFA, matrix notation

is used. In what follows it is assumed that the edge weights are symmetric2

(Γ = ΓT) and that the consistency restriction (32) is fulfilled. This restriction

can also be written as

v
(32)
=

Q

R
Γ1 , (72)

where 1 is a vector of ones of length N .

If y is a feasible solution (i.e., satisfying (7) and (8)) and the graph fulfills

the consistency restriction (72), the weighted delta value (6) can be simplified

2An asymmetric edge-weight matrix Γ can be converted into a symmetric one Γ′
def
= Γ+ΓT

2

without altering the solution to the optimization problem.

4.3. EXPLICIT LABEL LEARNING FOR REGRESSION PROBLEMS 69

as follows,

∆y
(6)
=

1

R

∑
n,n′

γn,n′(y(n′)− y(n))2 (73)

=
1

R

(∑
n′

(y(n′))2
∑
n

γn,n′ +
∑
n

(y(n))2
∑
n′

γn,n′ − 2
∑
n,n′

γn,n′y(n′)y(n)
)

(74)

(72)
=

1

R

(∑
n′

(y(n′))2R

Q
v(n′) +

∑
n

(y(n))2R

Q
v(n)− 2yTΓy

)
(75)

(8)
= 2− 2

R
yTΓy . (76)

The optimization problem can then be stated as follows: For 1 ≤ j ≤ J , find

vectors yj of length N , with yj(n)
def
= gj(x(n)) and gj ∈ F , minimizing

∆j
(6,8,72)

= 2− 2

R
yTj Γyj (77)

subject to:

vTyj
(7)
= 0 (78)

yTj Diag(v)yj
(8)
= Q (79)

yTj Diag(v)yj′
(9)
= 0, for j′ < j , (80)

where

Q
(11)
= 1Tv , (81)

R
(10)
= 1TΓ1 , (82)

and Diag(v) denotes a diagonal matrix with diagonal v.

The use of matrix notation facilitates the study of GSFA and the develop-

ment of the ELL method in the next section.

4.3 Explicit Label Learning for Regression Problems

This section formally proposes the ELL method and is structured as follows.

First, the optimal free responses of GSFA are computed for any given training

graph. Then, it is shown how to construct a graph useful to learn any particular

label or multiple labels. Afterwards, a method is given to convert graphs with

negative edge weights into graphs with non-negative weights only (such a method

is useful to allow the probabilistic interpretation of the graph and to guarantee

that the ∆ values of all features lie between 0 and 4). Thereafter, the use of

auxiliary labels to improve learning is motivated. Finally, the computational

complexity of the ELL method is analyzed.

70 CHAPTER 4. ELL AND THE DESIGN OF TRAINING GRAPHS

4.3.1 Optimal Free Responses of GSFA

This section presents a method to calculate the slowest possible solutions (op-

timal free responses) to the GSFA problem (77)–(80) that one could find if the

feature space were unlimited. As we will see, the optimal free responses together

with their corresponding ∆ values, provide an alternative representation of the

training graph and are a useful tool to understand its structure.

The Lagrange multiplier method is used to find critical points y that are

candidates for the optimal free responses. For the moment, the weighted decor-

relation constraint (80) is ignored to solve for the first optimal free response,

but the remaining responses are considered later. Due to the close relationship

between GSFA and LPP, the approach below is strongly related to Laplacian

Eigenmaps (Belkin and Niyogi, 2003). Let

L
def
=
(
2− 2

R
yTΓy

)
+ αvTy + β

(
yTDiag(v)y −Q

)
(83)

be a Lagrangian corresponding to the objective function (77), under the con-

straints (78) and (79). A signal y is a critical point if the partial derivatives of

L with respect to α, β, and y(n), for 1 ≤ n ≤ N , are simultaneously zero:

∂L/∂α
(83)
= vTy

!
= 0 , (84)

∂L/∂β
(83)
= yTDiag(v)y −Q !

= 0 , and (85)

∂L/∂y
(83)
= − 4

R
Γy + αv + 2βDiag(v)y

!
= 0 , (86)

where 0 is a vector of zeros.

Equations (84) and (85) merely require that the output y has weighted zero

mean and weighted unit variance, respectively. Multiplying (86) with 1T from

the left and taking into account that 1TDiag(v) = vT , 1Tv
(81)
= Q, 1TΓ

(72)
= R

QvT ,

and Q > 0 results in:

− 4

R

(R
Q

vT
)
y + αQ+ 2βvTy = 0 , (87)

implying α = 0 due to (84). Therefore, (86) can be simplified to:(
− 4

R
Γ + 2βDiag(v)

)
y = 0 , (88)

⇔ Diag(v−1/2)
(4

R
Γ− 2βDiag(v)

)
Diag(v−1/2)Diag(v1/2)y = 0 , (89)

⇔
(4

R
Diag(v−1/2) Γ Diag(v−1/2)− 2βI

)(
Diag(v1/2)y

)
= 0 , (90)

⇔
(

Diag(v−1/2) Γ Diag(v−1/2)− Rβ

2
I
)(

Diag(v1/2)y
)

= 0 , (91)

4.3. EXPLICIT LABEL LEARNING FOR REGRESSION PROBLEMS 71

where v1/2 is defined as the element-wise square root of the elements of v,

and v−1/2 is defined similarly (as usual, weights vj are required to be strictly

positive).

In a few words, y is a critical point if it fulfills the weighted normalization

constraints and the vector Diag(v1/2)y is an eigenvector of the matrix M defined

as

M
def
= Diag(v−1/2) Γ Diag(v−1/2) . (92)

The corresponding eigenvalue is denoted

λ =
Rβ

2
. (93)

The (orthogonal) eigenvectors of matrix M are denoted by uj with uTj uj = 1.

Each eigenvector uj gives rise to a critical point yj
def
= Q1/2Diag(v−1/2)uj

as long as also the weighted normalization constraints (78) and (79) are

satisfied by yj . Constraint (79) is fulfilled by any yj : yTj Diag(v)yj =

QuTj Diag(v−1/2)Diag(v)Diag(v−1/2)uj = QuTj Diag(1)uj = Q. Most yj ful-

fill (78) except for one denoted by y0
def
= 1 (a vector of ones). This constant and

infeasible feature plays the same role as in SFA. The slowest possible solution is

the critical point yj>0 with the smallest ∆-value. As shown below, the ∆-value

of a critical point yj is directly related to the eigenvalue λj of the eigenvector

uj = Q−1/2Diag(v1/2)yj of M and can be computed as follows.

∆yj

(77)
= 2− 2

R
(yj)

TΓyj (94)

(92)
= 2− 2

R
(yj)

TDiag(v1/2) M
(
Diag(v1/2)yj

)
(95)

(93)
= 2− 2

R
(yj)

TDiag(v1/2)λjDiag(v1/2)yj (96)

(79)
= 2− 2Q

R
λj . (97)

Thus, the slowest solution is the critical point yj with the largest eigenvalue

λj . The remaining optimal free responses can now be addressed. They are given

by the remaining critical points, where their corresponding eigenvalue defines

their order, from largest to smallest. The weighted decorrelation condition (80)

is fulfilled automatically due to the orthogonality of the eigenvectors: uTj uj′ =

0⇔ 1
QyTj Diag(v)yj′ = 0 (follows from the definition of yj above).

One special case is when an eigenvalue has multiplicities. This means that

two or more optimal free responses have the same ∆ value, which is in fact the

same ∆ value of any rotation of such free responses. Therefore, optimal free

responses with the same ∆ value are not uniquely defined and any rotation of

them is equivalent.

72 CHAPTER 4. ELL AND THE DESIGN OF TRAINING GRAPHS

4.3.2 Design of a Training Graph for Learning One or Multiple
Labels

Given a set of samples {x(1), . . . ,x(N)} with label ` = (`1, . . . , `N), it is now

shown how to generate a training graph such that the slowest feature that could

be extracted by GSFA is equal to a normalized version of the label. Notice that

this problem (determining the structure of a training graph, or more concretely,

its edge-weight matrix Γ, having a particular optimal solution) differs consid-

erably from the original GSFA problem of finding an optimal solution given a

training graph and a feature space. The approach can be extended to multiple

labels per sample. To distinguish them, the index 1 ≤ j ≤ L is introduced,

making `j denote the j-th label. The L labels can then be expressed as an affine

transformation of the first L free responses, as described below.

Vertex-weights vn indicate a priori likelihood information about the samples,

and are thus assumed to be given and strictly positive. If this information is

absent, one may set the vertex weights constant, e.g. v = 1
N 1.

Due to the normalization constraints, the outputs generated by GSFA must

have weighted zero mean (78) and weighted unit variance (79). Therefore, to

learn a single label ` one can normalize it as follows: Let µ` = 1
QvT ` be the

weighted label average and σ2
` = 1

Q(`− µ`1)TDiag(v)(`− µ`1) be the weighted

label variance. Then, the normalized label is computed as

˜̀=
1

σ`
(`− µ`1) . (98)

Hence, it is trivial to convert a normalized label into a non-normalized label and

vice versa.

In order for the construction to work when samples have multiple labels, one

must first weight decorrelate them. To decorrelate two labels `j′ and `j , with

j′ > j, one can project `j out of `j′ ; `
dec
j′ (n) = `j′(n) − 1

Q

(
`Tj′Diag(v)`j

)
`j(n),

which is an invertible affine operation.

From now on, we assume that the labels `1, . . . , `L have been decorrelated

and normalized. The goal is then to compute edge weights γn,n′ such that the

j-th optimal free response is equal to `j (with arbitrary polarity).

Define

ΓELL def
= Diag(v1/2) MELL Diag(v1/2) , (99)

where

MELL def
=

N−1∑
j=0

λju
ELL
j (uELL

j)T . (100)

If L < N − 1 one can set λj>L = 0. The matrix ΓELL is symmetric by

construction. The eigenvectors and eigenvalues of MELL, which are explicit in its

eigenvector decomposition (100), directly define the matrix ΓELL and determine

the optimal free responses of the resulting graph. Concretely, for each j ≥ 1

one sets uELL
j according to the desired label `j (ignore uELL

0 and λ0 for the time

4.3. EXPLICIT LABEL LEARNING FOR REGRESSION PROBLEMS 73

being).

uELL
j = Q−1/2Diag(v1/2)`j , for j ≥ 1 (101)

Notice that the weighted decorrelation of the labels translates directly into

the orthogonality of the corresponding eigenvectors, that is

1

Q
(`j)

TDiag(v)`j′
(80)
= 0

(101)⇔ (uELL
j)TuELL

j′ = 0 (102)

Once the eigenvectors are computed one must decide which eigenvalues they

should have. Alternatively, one can decide which ∆ values are given to the

labels, because ∆`j and λj are directly related: λj
(97)
= R

2Q(2−∆`j).

Larger eigenvalues (equivalent to smaller ∆ values) might result in higher

accuracy for the corresponding label. In order to ease the choice of the eigen-

values, some hints and intuitions are provided. (a) In general, important labels

should have larger eigenvalues than less important ones. (b) The global scale of

the eigenvalues λj>0 is irrelevant, only their relative scales matter. For conve-

nience one can scale them such that
∑
λj>0 = 1. (c) If two labels are similarly

important, their eigenvalues should also be similar.

For example, if one only wants to learn a single label `1 with a delta value

∆`1 = 0, one can set uELL
1 = Q−1/2Diag(v1/2)`1, λ1 = 1, and the eigenvalues

λj>1 to zero. These particular eigenvalues and ∆`1 = 0 imply that Q
(97)
= R,

but the eigenvalues could be scaled by a positive factor, e.g., λ1 = 2, λj>0 = 0

implies Q
(97)
= R/2. If `1 takes only two possible values (e.g., −1 and 1), the

resulting graph will be disconnected and contain two clusters. Otherwise, the

resulting graph will be connected, and the condition ∆`1 = 0 necessarily implies

that some of the resulting edge weights will be negative, a condition that is

circumvented in Section 4.3.3.

The analysis of Section 4.3.1, which is used by the ELL method requires that

the graph fulfills the consistency restriction (72). The remaining eigenvector is

set as

uELL
0 = Q−1/2v1/2 , (103)

with eigenvalue λ0 = R/Q. This ensures that (uELL
0)TuELL

0 = 1 and (72) is

fulfilled, as follows.

ΓELL1
(99,100)

= Diag(v1/2)
(∑

λju
ELL
j (uELL

j)T
)
Diag(v1/2)1 (104)

(103)
= Diag(v1/2)

(∑
λju

ELL
j (uELL

j)T
)
uELL

0 Q1/2 (105)

(103)
= Diag(v1/2)λ0u

ELL
0 Q1/2 (106)

= (R/Q)v . (107)

74 CHAPTER 4. ELL AND THE DESIGN OF TRAINING GRAPHS

The assignment of uELL
0 and λ0 above also ensures that 1TΓELL1

(81,107)
=

R. The free pseudo-response `0
(101)
= 1 corresponding to uELL

0 fulfills equations

(79) and (80) but not (78). Therefore, `0 is not a feasible solution, but it has

similar properties to the optimal free responses. The introduction of uELL
0 does

not reduce the generality of the labels `j>0 that can be learned; orthogonality

between uELL
0 and uELL

j>0 is equivalent to (78), i.e., the weighted zero mean of `j>0,

a condition that is required anyway for any feasible solution: (uELL
0)TuELL

j>0 =

0
(102)⇔ (Q−1/2v1/2)TQ−1/2Diag(v1/2)`j>0 = Q−1vT `j>0 = 0.

Although only L free responses are explicitly defined, N − L− 1 additional

optimal free responses are defined implicitly with an eigenvalue of 0, correspond-

ing to ∆ = 2.0. This ∆ value has a particular meaning, because as proved in

the next paragraph, it is the ∆ value of unit-variance zero-mean i.i.d. noise for

certain graphs.

Expected Weighted ∆ Value of a Noise Feature

Let y be a noise feature randomly sampled from a zero-mean unit-variance distri-

bution D, i.e., y(n)← D(0,1). On average, y fulfills the weighted normalization

constraints (78) and (79), as can be seen as follows.

(78): 〈vTy〉D = vT 〈y〉D = 0 , (108)

(79): 〈yTDiag(v)y〉D = 〈
∑
n

vny(n)2〉D =
∑
n

vn〈y(n)2〉D = Q , (109)

where 〈·〉D denotes expected value when sampling over D. The expected delta

value can be computed as

〈∆y〉D
(6)
=

1

R

∑
n,n′

γn,n′〈(y(n′)− y(n))2〉D (110)

=
1

R

(∑
n,n′,
n6=n′

γn,n′〈(y(n′)− y(n))2〉D +
∑
n

γn,n〈(y(n)− y(n))2〉D
)
(111)

=
1

R

(∑
n,n′,
n 6=n′

γn,n′
(
〈y(n′)2〉D + 〈y(n)2〉D − 2〈y(n′)〉D〈y(n)〉D

)
+ 0
)
(112)

=
1

R

∑
n,n′,
n 6=n′

γn,n′(1 + 1− 0) (113)

=
2

R

(∑
n,n′

γn,n′ −
∑
n

γn,n
) (10)

=
2(R−

∑
n γn,n)

R
. (114)

Therefore, if the graph has no self-loops (i.e., ∀n : γn,n = 0), the expected

∆ value 〈∆y〉D of a noise feature y is 2.0. The self-loops of a graph (e.g., one

4.3. EXPLICIT LABEL LEARNING FOR REGRESSION PROBLEMS 75

constructed using the ELL method) can be removed (i.e., their weight be set to

zero). This does not change the free responses, only the scale of the ∆ values is

modified due to the change in R. The consistency restriction might be broken,

though.

4.3.3 Elimination of Negative Edge Weights

From the objective function (6), it is obvious that a positive edge weight con-

necting two samples expresses that those samples should be mapped close to

each other in feature space. In contrast, a negative edge weight expresses that

two samples should be mapped as far apart as possible, thus encoding output

dissimilarities. Nevertheless, the weighted unit variance constraint still applies,

so the solutions are not unbounded.

If the edge weights are non-negative, the smallest possible ∆ value is ∆ = 0.

However, if negative edge weights are allowed, some feasible features might have

∆ < 0. A feature with ∆ < 0 would appear to be “slower” than the infeasible

constant feature y = 1 with ∆ = 0, contradicting the intuitive interpretation of

slowness. Moreover, negative edge weights hinder the probabilistic interpreta-

tion of the graph (see Section 3.2.5), because some of the transition probabilities

γn,n′/R of the resulting Markov chain would be negative.

Training graphs constructed using the ELL method might include negative

edge weights, which would result in the disadvantages described above. There-

fore, in this section, an additional step is added to the ELL method to ensure

that the training graph has non-negative edge weights. More concretely, it is

shown how to transform a training graph with strictly positive vertex weights vn
and arbitrary edge weights Γ (positive and negative) into a graph with the same

vertex weights and only non-negative edge weights Γ′. The optimization prob-

lem defined by Γ′ is equivalent to the original optimization problem in terms of

its solutions and their order. Only the value of the objective function is linearly

changed (or, more precisely, changed by an affine function).

Assume that ∀n : vn > 0, and that there is at least one element γn,n′ < 0.

Let

c
def
= maxn,n′

−γn,n′
vnvn′

. (115)

The new edge weights Γ′ are defined as

Γ′
def
=

1

1 + cQ2/R
(Γ + cvvT). (116)

The properties of Γ′ and their relation to those of Γ are as follows:

1. All elements of Γ′ are greater or equal to zero, as desired. (Follows from

(115), which implies γn,n′ + cvnvn′ ≥ 0.)

2. Symmetry is preserved by (116). Clearly Γ′ is symmetric if and only if Γ

is symmetric.

76 CHAPTER 4. ELL AND THE DESIGN OF TRAINING GRAPHS

3. The sum of edge-weights is preserved:

R′
(82)
= 1TΓ′1

(116)
=

R+ cQ2

1 + cQ2/R
= R . (117)

4. Fulfillment of the graph consistency restriction (72) is preserved:

1TΓ
(72)
= R/QvT ⇒ 1TΓ′

(116)
=

1

1 + cQ2/R
(1TΓ + c1TvvT) (118)

(72)
=

1

1 + cQ2/R
(R/QvT + cQvT) (119)

=
R/Q

1 + cQ2/R
(1 + cQ2/R)vT (120)

= R/QvT . (121)

5. Γ and Γ′ define equivalent optimization problems. Let y be a feasible

solution. The constraints of the optimization problem are independent of

Γ′, and only the objective function is modified as follows:

∆′y
(76)
= 2− 2

R′
yTΓ′y (122)

(116,117)
= 2− 2

R(1 + cQ2/R)

(
yTΓy + cyTvvTy

)
(123)

(78)
= 2− 2

R(1 + cQ2/R)
yTΓy (124)

(76)
= 2− 2

R(1 + cQ2/R)

R

2
(2−∆y) (125)

=
1

(1 + cQ2/R)

(
∆y +

2cQ2

R

)
. (126)

Therefore, the objective function is only modified by a positive scaling

factor and a constant positive offset, proving that the optimal free solutions

to the training graph remain stable, as well as their order.

6. In particular, a feature y with ∆y = 2 preserves its delta value, i.e. ∆y =

2
(125)⇔ ∆′y = 2.

4.3.4 Auxiliary Labels for Boosting Estimation Accuracy

It is possible to provide additional auxiliary labels derived from the original

one `1 as a means to improve the estimation accuracy when GSFA is applied

repeatedly (e.g., cascaded or in a convergent hierarchical GSFA network).

Consider two GSFA nodes, one stacked on top of the other. If the first GSFA

node is not able to extract `1 accurately, it might still be capable of approximat-

ing labels `k = fk(`1), for 2 ≤ k ≤ K, where the functions fk(·) are nonlinear.

Since these features are derived from the original label `1, they contain a certain

4.3. EXPLICIT LABEL LEARNING FOR REGRESSION PROBLEMS 77

amount of information about it. When multiple labels are learned, the output

features are likely to contain (or more precisely, approximate) linear combina-

tions of labels `1, . . . , `k providing a redundant encoding of `1. These features

are likely to be easier to disentangle by the second node to approximate the

original label `1 more accurately.

The functions fk can be defined arbitrarily, one simple choice is to use

`k(n) = cos
(`1(n)−min(`1)

max(`1)−min(`1)
πk
)

, for 2 ≤ k ≤ K , (127)

where max(`1) is the largest label value, and min(`1) is the smallest one. As

usual, it is assumed that labels `1 to `K are weight decorrelated and normalized

before the ELL method is applied.

The eigenvalues corresponding to the auxiliary labels must be set smaller

than those of the original label. Otherwise, the slowest features might be more

similar to the auxiliary labels than to the original one. From now on, the term

target labels will be used to refer to the original and auxiliary labels, if present.

The use of auxiliary labels can be justified from information theory. Assume

that the samples have been ordered by increasing label `1. This implies that for

`k the argument of the cosine function ranges from 0 to kπ. Thus `2 describes

1 oscillation, `3 describes 1.5 oscillations, etc. In this sense, the auxiliary labels

are “higher-frequency” versions of `1. Notice that `2 contains almost all the

information about `1 except for 1 bit. That is, I(`1, `2) = H(`1)− 1, where I is

mutual information and H is entropy. Similarly, `4 loses 2 bits of information

about `1, `8 loses 3 bits, and so on. Thus, auxiliary labels contain a large

amount of information about `1.

Moreover, the use of auxiliary labels supports the goal that samples x(n) and

x(n′) with similar labels `1(n) and `1(n′) should have similar output features

yj(n) and yj(n
′) on average, for 1 ≤ j ≤ J . This property is desirable not only

for the slowest feature y1. The reason auxiliary labels favor the appearance of

this property among other features is the “smoothness” of the auxiliary labels

in terms of `1 (i.e., how fast they change w.r.t. `1). Notice that `1, `2, . . . , `J
are ordered by decreasing smoothness.

Interestingly, in regular SFA (or GSFA trained with the reordering graph)

particular auxiliary labels are included automatically (however, they are not

identical to those defined in (127)). The slowest free response is a half period of

a cosine function—approximately
√

2 cos(πn/(N−1))—, and the subsequent free

responses are the higher-frequency harmonics of the first one (see Section 4.4.2,

particularly Figure 4.4).

4.3.5 Computational Complexity of the ELL Method

The main drawback of ELL is its computational cost compared to efficient pre-

defined training graphs, a disadvantage that is more marked for large N . One

can analyze the efficiency of explicit label learning by considering its two main

parts: The construction of the training graph and training GSFA with it.

78 CHAPTER 4. ELL AND THE DESIGN OF TRAINING GRAPHS

The graph construction requires O(L2N +LN2) operations. The term L2N

is due to the transformation of L target labels into eigenvectors, which might

require a decorrelation step on L N -dimensional vectors. The term LN2 is due

to the computation of M, which involves L outer vector products uju
T
j .

When GSFA is trained, three computations are particularly expensive.

(1) The computation of CG, which takes O(NI2) operations. (2) The com-

putation of ĊG, which can be expressed as ĊG = 2
QXDiag(v)XT − 2

RXΓXT ,

where X =
(
x1, . . . ,xN

)
, taking O(N2I +NI2) operations. (3) The solution to

the generalized eigenvalue problem, which requires O(I3) operations. Therefore,

in general, training GSFA requires O(NI2 + N2I + I3) operations. Typically

N > I to avoid overfitting, so the computation of ĊG is the most expensive

part.

However, when an efficient pre-defined graph (e.g., the serial graph) is used

instead of an ELL graph, it is possible to avoid the explicit graph construction

and compute ĊG with optimized algorithms that take into account the regular

structure of the graph. In this way, efficient pre-defined graphs allow the com-

putation of ĊG in O(NI2) operations, which is equivalent to the complexity of

standard SFA on N I-dimensional samples. Moreover, if the number of edges

Ne ≤ N(N + 1)/2 is small, one can use (14) to compute ĊG in O(NeI
2) opera-

tions. Therefore, for these two special cases, training GSFA takes O(NI2 + I3)

and O((Ne+N)I2 +I3) operations, respectively. In Section 4.5.4 the complexity

of the ELL method is further discussed and in Section 4.5.5 a few approaches

to improve it are proposed.

4.4 Applications of Explicit Label Learning

This section presents three applications of the proposed method. The first one

illustrates how to solve a regression problem with GSFA explicitly, learning a

direct mapping from images to labels (see Figure 4.1.c). The second application

shows the analysis of two pre-defined graphs by computing their optimal free

responses. In the third application, the ELL method is used in a new way to

learn compact discriminative labels for classification.

4.4.1 Explicit Estimation of Gender with GSFA

This section addresses the problem of gender estimation from artificial face

images, which is treated here as a regression problem, because the gender pa-

rameter is defined as a real value by the face modeling software (FaceGen SDK,

Singular Inversions Inc., 2008). This application has been described in Sec-

tion 2.6.4 but is now addressed in more detail and with a newer method.

Input data. The input data consists of 12,000 64×64 grayscale images. Each

image is generated using a new subject identity, where the gender is explicitly

specified, and the rest of the parameters of the faces (e.g., age, racial composi-

4.4. APPLICATIONS OF EXPLICIT LABEL LEARNING 79

tion) are random. The average pixel intensity of each image is normalized by

multiplying the pixel values by an appropriate factor to eliminate skin color as

a cue for gender estimation. The resulting images show subjects with a fixed

pose, no hair or accessories, and the illumination is fixed, as well as the aver-

age pixel intensity and the background color (black). See Figure 4.2 for some

sample images. To specify the gender parameter, 60 different values are used

(−3,−2.9, . . . , 2.9).

Figure 4.2: Examples of normalized images, showing different values of the
gender parameter.

[Figure reproduced from (Escalante-B. and Wiskott, 2016b).]

The images are randomly split into a training and a test set. The training

set consists of 10,800 images, 180 images for each gender value, whereas the test

set consists of 1,200 images, 20 images for each gender value.

Besides the gender label, also a second “color” label is considered, which is

the average pixel intensity of the image before normalization. Due to normaliza-

tion, this label cannot be computed directly, but it can be estimated from other

cues, such as the subject’s apparent race and face size. In the following exper-

iment only the gender label is considered, but afterwards both labels (gender

and color) are used simultaneously.

Network used. For efficiency reasons, hierarchical GSFA (HGSFA) is used,

which is implemented by an 8-layer HGSFA network with the structure described

in Table 4.1. The nodes of the network have non-overlapping receptive fields

and use the 0.8Expo expansion function defined in (68), which can be stated as:

(x1, . . . , xn) 7→ (x1, . . . , xn, |x1|0.8, . . . , |xn|0.8), followed by linear GSFA. The

nodes of the first layer include a PCA pre-processing step that preserves 50 out

of 64 components.

Training graphs for gender estimation. Several training graphs are con-

structed using the ELL method described in Sections 4.3.2–4.3.4. These graphs

are denoted ELLg-L, where L is the total number of target labels considered,

with L ∈ {1, 10, 20, 30, 40, 50}, and the superscript g stands for gender (later c

will be used for color and g,c for gender and color). The first target label `1(n)

is the gender parameter, where 1 ≤ n ≤ 10,800. The remaining L− 1 labels are

auxiliary and computed using (127). For comparison purposes, the serial and

reordering training graphs are also evaluated.

80 CHAPTER 4. ELL AND THE DESIGN OF TRAINING GRAPHS

layer
number node’s receptive input dim expanded dim output dim
of nodes field (pixels) per node per node per node

1 8×8 8×8 64 100 40
2 4×8 16×8 80 160 40
3 4×4 16×16 80 160 40
4 2×4 32×16 80 160 40
5 2×2 32×32 80 160 40
6 1×2 64×32 80 160 40
7 1×1 64×64 80 160 40
8 1×1 64×64 40 80 6

Table 4.1: Structure of the GSFA hierarchical network. The inputs to the
nodes in the first layer are 8×8-pixel patches. The input to the node in layer 8
is the output of the node in layer 7. The inputs to all other nodes come from two
nodes in the previous layer that are contiguous either vertically or horizontally.

Label estimations. Three mappings from the slowest features to the label

estimation ˆ̀are tested. The first mapping (only available for the ELL graphs) is

an affine transformation ˆ̀= ±y1σ` + µ`, where µ` and σ` have been computed

previously for label normalization (98). Since the sign of y1 is arbitrary, it is

globally adjusted to fit the labels best. The second method is linear regression

(LR, ordinary least squares). For these two methods, final label estimation ˆ̀

is clipped to the valid label range [−3, 2.9]. The third mapping is the soft GC

method (see Section 3.4.5), which provides a soft estimation based on the class

probabilities estimated by a Gaussian classifier, in this case trained using 60

classes.

Results. Table 4.2 (left) shows the label estimation errors (RMSE) when gen-

der is estimated. Unless otherwise stated, all results have been averaged over

10 runs. Depending on the mapping, the ELLg-10 and ELLg-40 graphs outper-

form the rest. This supports the intuition that auxiliary labels are useful. 50

target labels perform worse than 40, probably in part because the output di-

mensionality of the intermediate nodes in the network is 40. Without the final

clipping step LR is clearly more accurate than the affine mapping (experiment

not shown), but both methods have similar accuracy if clipping is enabled. For

all graphs, the explicitly supervised soft GC method provided better accuracy

than the affine mapping, although the difference is smaller than one might have

expected.

For comparison, the serial graph results in RMSEs of 0.351 (soft GC, 1F)

and 0.349 (soft GC, 3F), whereas the reordering graph results in RMSEs of

0.353 (soft GC, 1F) and 0.347 (soft GC, 3F). The accuracy of these two graphs

appears to be similar; however, in more complex experiments the serial graph

has typically been more accurate (e.g. see Section 3.5.2). The ELLg-40 graph is,

therefore, slightly more accurate than the serial and reordering graphs but 25

4.4. APPLICATIONS OF EXPLICIT LABEL LEARNING 81

Graph ELLg-L

L
scaling LR soft GC soft GC
(1F) (1F) (1F) (3F)

1 0.376 0.380 0.364 0.365
10 0.364 0.365 0.353 0.356
20 0.372 0.374 0.356 0.357
30 0.367 0.368 0.350 0.349
40 0.368 0.367 0.346 0.345
50 0.376 0.375 0.351 0.350

Graph ELLg,c-L

L
scaling LR soft GC soft GC
(1F) (1F) (1F) (3F)

2× 1 0.298 0.299 0.289 0.284
2× 5 0.349 0.350 0.343 0.277

2× 10 0.423 0.426 0.410 0.288
2× 15 0.473 0.478 0.453 0.291
2× 20 0.508 0.514 0.479 0.292
2× 25 0.535 0.543 0.499 0.294

Table 4.2: Gender estimation errors (RMSE) using various graphs and either
one (1F) or three (3F) features. For the linear regression (LR) mapping, the
label is estimated as ˆ̀

1 = ay1+b, with a and b fitted to the training data. Chance
level (RMSE) is 1.731 if one uses the constant estimation ˆ̀

1 = −0.05. All errors
have been computed on test data and averaged over 10 runs. Estimation errors
using training graphs for gender estimation only (left) and using training graphs
for simultaneous estimation of gender and color (right).

times slower, taking about 250 min for training instead of about 10 min (single

thread).

Simultaneous learning of gender and color. A graph that encodes gender

and color simultaneously is constructed to learn labels `1, . . . , `L, where `1 is

the gender label, `2 is the color label, `3, `5, . . . , `L−1 are derived from `1, and

`4, `6, . . . , `L are derived from `2. Each set of labels is computed using (127)

similarly to the auxiliary labels for gender only but starting from either the

original gender or color labels. The chosen eigenvalues decrease linearly and

add to one. The resulting graphs are denoted ELLg,c-L, where L is the total

number of target labels, with L = 2×d, for d ∈ {1, 5, 10, 15, 20, 25}, and 2(d−1)

is the number of auxiliary labels used for gender and color.

The effect of encoding gender and color simultaneously on gender estimation

is shown in Table 4.2, right (compare to Table 4.2, left).

The ELLg,c-L graphs yield significantly higher accuracy than the ELLg-L

graphs (an MAE as small as 0.277 vs. 0.345). The results on color estimation

using the ELLg,c-L graphs are shown in Table 4.3, right (compare to Table 4.3,

left). The slowest extracted feature represents mostly gender. However, it must

also contain color information since it allows color estimation better than chance

level. When 3 features are preserved, the ELLg,c-L graphs yield higher accuracy

than the ELLc-L graphs. Similar experimental results have been reported, e.g.

by Guo and Mu (2014), who have shown that age estimation improves when

gender and race labels are also considered.

Learning label transformations. An additional experiment is performed

to verify that the method can learn other labels implicitly described by the

82 CHAPTER 4. ELL AND THE DESIGN OF TRAINING GRAPHS

Graph ELLc-L

L
scaling LR soft GC soft GC
(1F) (1F) (1F) (3F)

1 2.000 1.987 1.971 1.979
10 1.969 1.958 1.905 1.922
20 2.006 1.999 1.914 1.922
30 1.991 1.989 1.877 1.889
40 1.990 1.990 1.864 1.867
50 1.997 1.997 1.865 1.871

Graph ELLg,c-L

L
LR soft GC LR soft GC

(1F) (1F) (3F) (3F)

2× 1 4.247 4.291 1.393 1.221
2× 5 3.606 3.614 1.239 1.210

2× 10 3.214 3.185 1.337 1.180
2× 15 2.978 2.945 1.429 1.158
2× 20 2.828 2.802 1.501 1.141
2× 25 2.718 2.700 1.582 1.140

Table 4.3: Color estimation errors (RMSE) using various graphs and either one
(1F) or three (3F) features. Chance level is 7.447. All results have been com-
puted on test data and averaged over 10 runs. (Left) Error using training graphs
that encode only color. (Right) Error using training graphs that simultaneously
encode gender and color.

data. This is mostly useful to test the integrity of the method. More precisely,

GSFA is used to learn labels (`1)2 and (`1)3, which are distorted versions of the

original gender label `1. The graphs constructed for this purpose are denoted

ELLg-40(`1)2 and ELLg-40(`1)3 , respectively. Both of them include 39 auxiliary

labels besides the main distorted label. To better approximate the target labels,

more complex nonlinearities are used in some of the nodes of the hierarchical

networks. The (`1)2 network is identical to the `1 network, except that in the

top node the quadratic expansion is used instead of the 0.8Expo expansion.

Similarly, the (`1)3 network uses the quadratic expansion in the 7th layer, and

the 6th-degree polynomial expansion in the top node. In both networks, the

output dimension of the node in the 7th layer is set to 3 to avoid overfitting due

to the expansion in the 8th layer.

The corresponding label estimations are shown in Figure 4.3. For compari-

son, also the ELLg-40 graph is included. The results prove that the ELL method

can also be used to learn distortions of the main label. Admittedly, the accu-

racy of the estimations (expressed as a fraction of the respective chance levels)

decreases even though the complexity of the feature space has been increased.

4.4.2 Analysis of Pre-Defined Training Graphs

In this section, the method of Section 4.3.1 is used to extract the optimal free

responses of three graphs (reordering, serial and ELL-4). The optimal free

responses and their ∆ values (alternatively, the eigenvectors uj and eigenvalues

λj) fully characterize the properties of a training graph, and provide another

representation of it that might be more useful in some contexts.

Equations (91)–(93) are used to compute optimal free responses, and (97)

to compute their delta values. Therefore, these results have been obtained by

solving these analytical equations numerically and are not constrained by the

4.4. APPLICATIONS OF EXPLICIT LABEL LEARNING 83

Figure 4.3: Plots (a) to (c) show the label estimations on test data (a single
run) when different distorted versions of `1 are learned. The affine mapping is
used. Therefore, the estimations are only generated from the slowest feature.
Ground-truth values are shown in thicker black. The RMSE is expressed in
parenthesis as a percentage of the chance level. Plot (d) is analogous to (c) but
shows training data.

[Figure reproduced from (Escalante-B. and Wiskott, 2016b).]

input samples3. They are visualized in Figure 4.4, which shows an arbitrary label

to be learned (top), and three different graphs that can be used for this purpose.

OnlyN = 30 samples (ordered by increasing label) are used to ease visualization,

but the plots behave similarly for larger N . The following three graphs are

employed. 1) A reordering graph (Figure 3.3.b) that has been extended with

two edge weights γ0,0 = 1 and γN−1,N−1 = 1 to fulfill the consistency restriction

(32), which is required by the method. These weights introduce a constant

scaling N/(N + 2) of the delta values, without any further consequence. 2)

A serial graph (Section 3.4.3) with K = 15 groups of 2 samples each. 3) An

ELL-4 graph (Sections 4.3.2–4.3.4) that is constructed with the original labels

`1(n) = `(n), and 3 auxiliary labels computed using (127).

Figure 4.4 shows also that the most remarkable difference between these

graphs is the number of optimal free responses with ∆ < 2.0, which is 14 for

the reordering graph, 6 for the serial graph, and 4 for the ELL-4 graph, for the

parameters above. For arbitrary parameters, the reordering, serial and ELL-L

graphs have b(N − 1)/2c, b(K − 1)/2c, and, depending on the eigenvalues, up

to L ≤ N − 1 optimal free responses with ∆ < 2.0, respectively.

Although the graphs differ considerably in their connectivity, their first four

to five optimal free responses have a somewhat similar shape. Since in all graphs

the slowest free response y1 is increasing, a monotonic mapping would be enough

to approximate the label for any of these graphs. However, the slowest response

of the serial graph is constant within each group, which might lower accuracy

due to a discretization error. In contrast, the ELL-4 graph has been tailored to

learn a particular label, and therefore y1 is exactly `1 (the original label) except

for an offset and scaling.

3A less elegant method is to apply GSFA to a graph consisting of random samples and
the given edges. If the sample dimensionality is large enough, the extracted features will
approximate the optimal free responses due to extreme overfitting.

84 CHAPTER 4. ELL AND THE DESIGN OF TRAINING GRAPHS

Figure 4.4: An arbitrary label `(n) (top) and three graphs that can be used
to learn it. The five slowest optimal free responses y1 to y5 of each graph are
plotted, as well as the delta values of all optimal free responses. The ELL-4 graph
is almost fully connected, but here only the strongest 30% of the connections
are displayed. Samples have an index n from 0 to 29, and free responses have
an index j from 1 to 29. The free responses are also plotted against the original
label (smaller square plots). The polarity of the free responses was adjusted
once to make them negative for the first sample.

[Figure reproduced from (Escalante-B. and Wiskott, 2016b).]

4.4. APPLICATIONS OF EXPLICIT LABEL LEARNING 85

The analysis makes clear that the serial and ELL-4 graphs are more selective

than the reordering graph regarding the features that they consider slow. To

illustrate why this might be an advantage, consider a scaled and noisy version

ŷ1 of `1. More concretely, ŷ1(n) =
√

2
2 `1(n) +

√
2

2 e(n), where e(n) is an i.i.d.

zero-mean unit-variance noise signal. When the reordering graph is used, the

feature ŷ1 has an average ∆-value of about 1 (i.e. 〈∆ŷ1
〉 ≈ 1), and therefore

such a feature would appear to be faster than an auxiliary (127) feature y6 = `6,

because ∆`6 ≈ 0.38. Hence, a GSFA node trained with the reordering graph

would favor the extraction of y6 over ŷ1, even though ŷ1 is more similar to the

label. In contrast, the serial and ELL-4 graphs might favor the extraction of ŷ1,

because for these graphs ∆`6 is larger and close to 2.0.

4.4.3 Compact Discriminative Features for Classification

A well-known algorithm for supervised dimensionality reduction for classifica-

tion is Fisher discriminant analysis (FDA). According to the theory of FDA, if

there are C classes, C−1 features define a C−1 dimensional subspace that best

separates the classes. In practice, one typically uses all these C − 1 features,

because all of them contain discriminative information and contribute to clas-

sification accuracy. The same holds for GSFA if the clustered training graph is

used (GSFA+clustered), because in this case the features learned are equivalent

to those of FDA (see Section 3.6.3, and Klampfl and Maass, 2010).

One can take advantage of hierarchical processing to do classification using

the clustered graph (HGSFA+clustered). However, when the number of classes

C is large (e.g., C ≥ 100) it might become expensive to preserve C−1 features in

each node, because the size of the input to subsequent nodes would be a multiple

of C−1. Such a large dimensionality would be further increased by the expansion

function, resulting in a large training complexity. For instance, consider a 2-

layer nonlinear network for classification with two GSFA nodes in the first layer

and one in the top layer. Suppose the first two nodes have output dimensionality

C−1 = 99, making the input of the top node 198-dimensional, and suppose that

the top node applies a quadratic expansion to its input data before linear GSFA.

The expanded data would have dimensionality I ′ =19,701. The combination of a

large sample dimensionality I ′ and a large number of samples N (with N � I ′ to

avoid overfitting) would result in considerable computational and memory costs.

Therefore, if it were possible to encode the class information in the first layer

more compactly, one could reduce the output dimensionality of the first-layer

nodes and reduce overfitting, aiming at increasing classification accuracy.

In this section, the theory of explicit learning with multiple labels is used

to compute compact features for classification using GSFA. These features are

used to classify images of C = 32 traffic signs from the German traffic sign

recognition benchmark database (Houben et al., 2013).

The images are represented as 48×48-pixel color (RGB) images (see Fig-

ure 4.5). From 43 different traffic signs only 32 of them with the most samples

are used, so that the number of classes is a power of 2 and the number of sam-

86 CHAPTER 4. ELL AND THE DESIGN OF TRAINING GRAPHS

ples is maximized. For the training data, the same number of samples is used

for each class (traffic sign), namely 2,160 of them, making a total of 69,120 im-

ages. To reach 2,160 samples per class, images of some classes are used up to

6 times (since the database is unbalanced). The images used for training are

distorted by a random rotation r of −3.15 ≤ r ≤ 3.15 degrees, horizontal and

vertical translations ∆x, ∆y with −1.73 ≤ ∆x,∆y ≤ 1.73 pixels, and a scaling

factor s with 0.91 ≤ s ≤ 1.09. The purpose of these distortions is to improve

generalization and provide invariances to small misalignments. For testing, the

official test data is used, which ensures that the test images originate from signs

physically different from the ones used for training. The test data consists of

9,030 undistorted images.

Figure 4.5: The 32 traffic signs learned, one image per class.

[Figure reproduced from (Escalante-B. and Wiskott, 2016b).]

The employed GSFA architecture is simple (non-hierarchical): PCA is ap-

plied first to reduce the dimensionality to 120 principal components. Afterwards,

quadratic GSFA is applied using different training graphs, described below. Fi-

nally, since this is a classification problem, a nearest centroid classifier is used

instead of the affine mapping.

The ELL method is used to construct two training graphs with binary target

labels (i.e., label values are either 1 or −1). The first one has 5 labels (com-

pact+5) and the second one has 31 (compact+31). The target labels are defined

in Table 4.4. Notice that the first 5 labels (for both graphs) suffice, in principle,

to fully encode the class information, because they can be viewed as a binary

representation of the class number.

For the compact+5 graph, identical eigenvalues (λ1
1 = λ1

2 = λ1
3 = λ1

4 = λ1
5 =

0.2) are used to express equal importance of the target labels. The compact+31

graph has been included to show the effect of auxiliary labels `6, `7, . . . , `31. For

this graph, the first five eigenvalues (λ2
1, λ

2
2, . . . , λ

2
5) = (0.056, 0.056, . . . , 0.056)

are identical, but the rest decrease linearly: (λ2
6, λ

2
7, . . . , λ

2
31) = (0.053, 0.051, . . . ,

0.004, 0.002), where only three decimal places are shown. Thus, the importance

4.4. APPLICATIONS OF EXPLICIT LABEL LEARNING 87

c→ 1 2 3 4 5 6 7 8 9 . . . 16 17 . . . 30 31 32
`1(c) −1 −1 −1 −1 −1 −1 −1 −1 −1 . . . −1 +1 . . . +1 +1 +1
`2(c) −1 −1 −1 −1 −1 −1 −1 −1 +1 . . . +1 −1 . . . +1 +1 +1
`3(c) −1 −1 −1 −1 +1 +1 +1 +1 −1 . . . +1 −1 . . . +1 +1 +1
`4(c) −1 −1 +1 +1 −1 −1 +1 +1 −1 . . . +1 −1 . . . −1 +1 +1
`5(c) −1 +1 −1 +1 −1 +1 −1 +1 −1 . . . +1 −1 . . . +1 −1 +1
`6(c) −1 +1 +1 −1 +1 −1 −1 +1 +1 . . . −1 +1 . . . −1 −1 +1
`7(c) −1 −1 +1 +1 +1 +1 −1 −1 +1 . . . +1 +1 . . . +1 −1 −1

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
`30(c) −1 +1 −1 +1 +1 −1 +1 −1 −1 . . . −1 −1 . . . −1 +1 −1
`31(c) −1 +1 +1 −1 −1 +1 +1 −1 −1 . . . −1 −1 . . . +1 +1 −1

Table 4.4: Target labels used to encode the class information, compactly ex-
pressed as a function of the class number c. The compact+5 graph is constructed
with labels `1 to `5, whereas the compact+31 graph with `1 to `31. The first
five labels can be seen as the original ones and the rest as auxiliary.

given to the auxiliary labels decreases from `6 to `31. In both graphs, the

eigenvalues have been scaled to make their sum equal to 1.

The number of classes, C = 25, has been specifically chosen, because pow-

ers of two make it simple to obtain binary labels with a weighted zero mean,

weighted unit variance, and weighted decorrelation, as follows. The first five

original labels can be computed as `j(c) = 2(c−1
25−j

mod 2)−1, where 1 ≤ c ≤ C
is the class number, the division is integer division and “mod” is the modulo

operation (i.e., an image n of class c is assigned a label `j(c)). The auxiliary

labels are computed as the product of two or more labels `1 to `5, possibly mul-

tiplied by a factor −1 to make the label assigned to the first class negative. More

concretely, `6 is the product of all original labels, `7 to `11 are all products of

four of them, `12 to `21 are all products of three, and `22 to `31 are all products

of two (e.g., `6 = `1`2`3`4`5, `7 = −`1`2`3`4, `8 = −`1`2`3`5, `30 = −`3`5,

`31 = −`4`5).

For both graphs, vertex weights are set to 1 (i.e., v = 1). The corresponding

eigenvectors are uj
(101)
= Q−1/2`j , where Q

(11)
= N · 1 = 69,120 (N is the number

of training images). These eigenvectors are also binary and allow for a fast

computation of the covariance matrix in O(LNI2 + I3) operations, where L is

the number of target labels.

The classification error is plotted in Figure 4.6, where the number of slow fea-

tures d given to a nearest centroid classifier ranges from 4 to 31. For comparison,

the clustered graph is also evaluated. For d = 5 features, the compact+5 graph

results in the best accuracy with an error rate of 11.67%, against 12.42% (com-

pact+31) and 29.74% (clustered). However, the error rate of the compact+5

graph increases if one preserves more than 5 features, indicating that additional

features contain little or no discriminative information. For 6 ≤ d ≤ 30, the

compact+31 graph yields clearly better accuracy than the other graphs. Inter-

88 CHAPTER 4. ELL AND THE DESIGN OF TRAINING GRAPHS

Figure 4.6: Classification error when GSFA is trained with the compact+5,
compact+31, and clustered graph (FDA). This error is a function of the graph
and the number of slow features d passed to the classifier. For the clustered
graph, dropping even a single feature might increase the error rate significantly.
For instance, the error rate of using 30 features computed with the clustered
graph is worse than the error rate of 13 features computed with the compact+31
graph. Performance on 9,030 test samples, averaged over 10 runs. For d ≥ 4
the standard error or the mean is at most 0.38%.

[Figure reproduced from (Escalante-B. and Wiskott, 2016b).]

estingly, for d = 31 = C − 1 features, the compact+31 and clustered graph give

identical error rates of 2.89%, which is their top performance. In this case, the

features extracted are different but contain the same information since they can

be mapped to each other linearly. In other words, the first 31 free responses of

the two graphs describe the same subspace. Any single optimal free response

from the compact+31 graph contains 1 bit of discriminative information (which

might be redundant to the others). In contrast, the first features extracted

by the clustered graph might sacrifice discriminative information to minimize

within-class variance (e.g., a feature y(c) =
(
(C2)1/2,−(C2)1/2, 0, 0, . . . , 0

)
has

minimal (zero) within-class variance but provides little discriminative informa-

tion (less than 1 bit if C ≥ 9), because most of the time the feature takes the

value 0 and otherwise only the first two classes can be identified from it). Using

d > 31 features does not improve accuracy in any case. For comparison, the

highest performance obtained for this database during the official competition

is a 0.54% error rate for all 43 signs by Ciresan et al. (2012).

The method of compact discriminative classes provides more accurate label

estimations if the feature space is complex enough to allow the extraction of

features that approximate the binary labels. If the feature space is poor, the

compact graphs might not bring any advantage over the clustered one.

4.5. DISCUSSION OF EXACT LABEL LEARNING 89

4.5 Discussion of Exact Label Learning

This chapter has introduced the exact label learning (ELL) method, where the

labels are used explicitly to construct training graphs. When GSFA is trained

with an ELL graph, the final label estimation is just an affine transformation

of the slowest extracted feature. Thus, the proposed method allows the di-

rect solution of regression problems, without having to resort to a supervised

post-processing step. In other words, given a new input sample (e.g., an in-

put image) the first feature computed using an ELL graph directly provides

an approximation of the label (or an affine transformation of it). In practice,

even better results may be achieved using more than one feature and supervised

post-processing.

Supervised learning problems on high-dimensional data are of great practi-

cal importance, but they frequently result in systems with large computational

demands. A common approach is to apply feature extraction, dimensionality

reduction, and a supervised learning algorithm. A promising alternative ap-

proach is hierarchical GSFA (HGSFA), because its complexity scales in some

cases even linearly w.r.t. the input dimensionality and the number of samples.

In this context, it is especially useful to train HGSFA with an ELL graph since

the resulting architecture is simple and homogeneous, as shown in Figure 4.1.c.

A method to analytically compute the optimal free responses of a training

graph has been proposed. This method allows us to understand the type of

features that can be extracted from a training graph independently of the input

and the feature space. Moreover, it has been useful to develop the ELL method,

where the labels are explicitly considered to create the training graph. In the

resulting ELL graph, the optimal free responses are equal to a normalized version

of the labels, and if the feature space is complex enough, HGSFA will learn

features that approximate (or span) the original labels.

Graphs with negative edge weights would result in negative transition prob-

abilities, violating the probabilistic interpretation of the graph, and might yield

features with negative ∆ value, contradicting the notion of slowness. Therefore,

it is also shown how to transform a graph to make the edge weights non-negative

without altering the extracted features.

The usefulness of the ELL method has been proven by showing three types

of applications that are relevant in practice: ELL regression with multiple la-

bels, analysis of training graphs, and classification with compact discriminative

features.

It is crucial to emphasize that GSFA optimizes feature slowness, which de-

pends on the particular training graph used, and not label estimation accuracy.

However, when the ELL method is used, the training graphs define a slowness

objective that requires optimizing an output similarity function where the simi-

larities are intimately related to the desired label similarities. As a consequence,

the feature slowness objective and estimation accuracy objective become equiva-

lent when the feature space F is unlimited. That is, the slowest possible features

that can be extracted (i.e. optimal free responses) are equal to a normalized ver-

90 CHAPTER 4. ELL AND THE DESIGN OF TRAINING GRAPHS

sion of the label(s). In practice, F is finite to allow generalization from training

to test data and, if the features extracted are slow enough (i.e. close to the

optimal free responses), they are also good solutions to the original regression

problem. If the slowest feature extracted is not sufficiently similar to the label,

one can enhance the mapping from features to labels by mapping more than

one output feature, and one can boost feature slowness by including auxiliary

labels in the graph construction, as explained in Section 4.5.1.

It is important to underline that the ELL method is not equivalent to linear

regression from the data to the (weight decorrelated and normalized) target

labels `1, . . . , `L. Any feasible feature vector ỹ can be decomposed in terms of

the optimal free responses y1, . . . ,yN−1 as ỹ =
∑N−1

j=1 αjyj , with αTα = 1 to

ensure weighted unit variance. The ELL method ensures that the first L optimal

free responses y1, . . . ,yL are equal to the target labels `1, . . . , `L and have ∆

values ∆1, . . . ,∆L. The remaining free responses are defined implicitly and have

∆L<j<N = 2. The ∆ value of ỹ can be expressed as ∆ỹ =
∑N−1

j=1 (αj)
2∆j . Let

ỹ1, . . . , ỹJ be concrete output features of GSFA for particular data using an

ELL graph. The features ỹ1, . . . , ỹJ are ordered by slowness, and ỹj does not

necessarily approximate yj . In particular, ỹ1 is the slowest possible feature

in the feature space, and it may be a linear combination of the free responses

that is uncorrelated with y1 = `1 if y1 cannot be approximated in the feature

space (although this extreme case is less likely). In contrast, if one used linear

regression, each one of the target labels would be approximated separately (i.e.,

ỹj would approximate yj , regardless of the quality of the approximation). This

would be mostly disadvantageous when used hierarchically. For instance, if a

node in a network has output dimensionality J < L (this scenario is frequent

in the lower layers of the network), it is more preferable to preserve the J

slowest extractable features than the (eventually poor) linear approximations of

`1, . . . , `J .

The proposed ELL method explores the limits of HGSFA and is valuable

as a theoretical tool for the analysis and design of training graphs. However,

the results show that with certain adaptations (e.g., the use of supervised post-

processing) it is also sufficiently robust to be applied to practical computer vision

and machine learning tasks (although it is generally more costly).

4.5.1 Multiple and Auxiliary Labels

ELL allows learning multiple labels simultaneously, for instance to encode dif-

ferent aspects of the input at once (e.g., object color, size, shape, orientation).

The use of multiple labels has been inspired by biological systems, where com-

plementary information channels have been observed and appear to improve

feature robustness, for example, under incomplete information (Krüger et al.,

2013). Learning gender and color simultaneously yielded clearly smaller esti-

mation errors than when these labels were estimated separately (Section 4.4.1).

This shows that multiple label learning is not only theoretically possible, but

4.5. DISCUSSION OF EXACT LABEL LEARNING 91

that encoding complementary information channels might boost accuracy in

practice. For instance, an automatic system for face image processing might

benefit from the simultaneous extraction of the subject’s identity, age, gender,

race, pose, and expression.

One application of multiple labels is learning auxiliary labels derived from

the original one (e.g. “higher-frequency” transformations of it). The results

show that encoding auxiliary labels improves accuracy (Section 4.4.1). Such a

technique is particularly relevant for cascaded or convergent hierarchical GSFA

networks, where the outputs of some GSFA nodes feed other nodes. The use

of auxiliary labels has been justified based on the fact that these labels contain

substantial information about the original label (Section 4.3.4). For instance,

as explained before, the first auxiliary label `2 only lacks one bit of information

about the original label `1. Therefore, even if `1 does not belong to the fea-

ture space of a node, the auxiliary labels might be (approximately) extracted,

preserving information about `1. A GSFA node (or any supervised learning

algorithm) higher in the hierarchy may then be able to approximate `1 more

accurately by making use of the information carried by the auxiliary labels.

Additionally, auxiliary labels have been also justified by a smoothness heuris-

tic, where samples n and n′ having similar labels `1(n) and `1(n′) should have

similar output features yj(n) and yj(n
′), for 1 ≤ j ≤ J . Without auxiliary

labels only the first output feature would have this property, and the remaining

features might vary quickly w.r.t. the original label.

4.5.2 Application of the ELL Method

The experiments on gender (and skin-color) estimation from artificial face im-

ages demonstrate that the ELL method also works in practice when used hier-

archically.

The experiments of Section 4.4.1 and the analytical results of Section 4.4.2

show the strength of the serial graph when only a single label is available. In

this case, the ELL graph provided marginally better estimations than the serial

graph (an RMSE of 0.345 with the ELLg-40 graph vs. 0.349 with the serial

graph, in both cases using 3 features, the soft GC post-processing method,

and averaging over 10 runs), but the computation time was 25 times longer.

The difference between these RMSEs is small but statistically significant (the

difference is 1.8 times the sum of the standard errors of the means).

Although the shape of the slowest feature extracted with the serial graph

may be less similar to the label, a monotonic transformation of the slowest

feature learned by a nonlinear supervised step (e.g. soft GC) may suffice to

approximate it.

However, the results suggest that if two or more (intrinsically connected) la-

bels are available, the accuracy of using ELL graphs further increases. Efficient

pre-defined graphs are not available in this case. In the gender estimation ex-

periment, the RMSE was improved to 0.277 by jointly learning gender and skin

color (ELLg,c-(2× 5) graph, 3 features, soft GC). This is much better than the

92 CHAPTER 4. ELL AND THE DESIGN OF TRAINING GRAPHS

serial graph. Hence, a particularly promising application for the ELL method

is multiple label learning.

Various methods for mapping the slowest feature to a label were tested. The

affine mapping method is interesting from a theoretical point of view. However,

as one would expect, the soft GC method, which is nonlinear and supervised,

provides better accuracy on test data. Therefore, the latter might be preferred

in practical applications. Moreover, in this scenario, supervised post-processing

methods might be computationally inexpensive, because their input is frequently

low-dimensional (e.g., 1 to 3 slow features were used for gender estimation).

4.5.3 Classification with ELL

Although ELL was originally designed for regression, it has been shown that

it can also be useful for classification when particular labels are learned. The

experiment on traffic sign classification shows the benefit of using compact dis-

criminative features, implemented here by learning multiple binary labels. The

resulting system has a much smaller classification error than the clustered graph

(equivalent to nonlinear FDA) when the number of output dimensions is fewer

than C − 1, where C is the number of classes. The compactness of the feature

set can be useful to do classification with many classes. This is particularly

beneficial for hierarchical GSFA because fewer features have to be propagated

by the network, which might also reduce overfitting. Although ideally log2(C)

binary target labels suffice for perfect classification, the experiments show that

additional target labels via auxiliary labels improve classification accuracy in

practice.

Interestingly, the clustered graph for C classes (equivalent to FDA) and

the compact+(C − 1) graph are equivalent if the latter is constructed with

constant positive eigenvalues λ1 = · · · = λC−1 = 1/(C − 1). The reason for this

equivalence is that this compact+(C − 1) graph would only have within-class

transitions, because transitions between different classes cancel out each other.

Therefore, the clustered graph can be seen as a special case of the compact+(C−
1) graph, with maximum label redundancy (C−1 target labels) and giving equal

importance (eigenvalues) to all of them.

For simplicity the employed target labels are binary, but it is also possible

to use C-valued labels. For instance, the first label can be the class number,

and additional labels can be random permutations of this assignment (label

decorrelation and normalization still apply). Ideally, these labels might result

in an even more compact representation, because a single optimal free response

encodes the class information.

Contrary to many approaches for classification based on LPP, the goal of the

ELL method is strictly focused on learning the label information while being

invariant to any other aspect of the data. Learning the input manifold is not

a goal of this dissertation, and this is the main reason (besides scalability and

robustness) why nearest neighbors were not used to compute training graphs.

However, as shown by the (regression) experiments on simultaneous gender and

4.5. DISCUSSION OF EXACT LABEL LEARNING 93

color estimation, learning specific additional labels can also be useful to better

disentangle the discriminative information.

4.5.4 Efficiency of ELL

Section 4.3.5 explains that the complexity of creating an ELL graph is O(L2N+

LN2) operations, where N is the number of samples and 1 ≤ L ≤ N − 1 is the

number of target labels. The complexity of training a single GSFA node with an

ELL graph is O(IN2 +I2N+I3) operations, where I is the input dimensionality

(possibly after a nonlinear expansion), and N > I is the number of samples.

For comparison, the serial graph has a complexity of O(I2N + I3). Thus, the

main limitation of using ELL graphs is the training complexity when N is large.

However, this might not be a big disadvantage for the following reasons:

(1) The complexity of the ELL method is comparable to the complexity of LPP.

Similarity matrices in LPP are typically computed using nearest neighbors. In

practice, the complexity of computing these matrices is similar to O(IN2) (He,

2005), and the remaining steps of LPP have complexity O(I2N + I3) if the

number of edges is linear w.r.t. N .

(2) The experiment on the estimation of gender shows that it is feasible to apply

the ELL method to 10,800 64× 64 images in 250 min (single thread, Intel Core

i7-870 2.93GHz, 16 GByte RAM). This might be fast enough for some real-world

applications.

(3) The ELL method is of theoretical interest in any case, allowing the analysis

of training graphs and providing insights for the design of better hand-crafted

graphs.

In case better efficiency is still necessary, a few extensions to the ELL method

are outlined in Section 4.5.5, two of them trading accuracy for speed.

4.5.5 Extensions of ELL

The following extensions to the ELL method are possible (and may be com-

bined):

(1) Graph trimming. One might compute a sparse approximation of an ELL

graph with significantly fewer than O(N2) edges. For example, one might delete

a fraction of the edges having the smallest weights or a random selection of all

the edges. If the resulting number of edges is small, this can be much faster

than training using the whole graph.

(2) Sample grouping. Another method first groups the input samples ac-

cording to their labels, resulting in K groups of N/K samples each. The ELL

method is then applied to the average labels of the groups to compute a reduced

graph with K vertices and ≈ K2 edges. If the largest number of labels L is used,

i.e. L = K−1, the reduced graph can be constructed in O(K3) operations4. Af-

4In (Escalante-B. and Wiskott, 2016b) the maximum number of labels and the complexity
of creating the reduced graph have been stated incorrectly by as L = I and O(IK2 + I2K),
respectively.

94 CHAPTER 4. ELL AND THE DESIGN OF TRAINING GRAPHS

terwards, one can derive a specialized method to train GSFA using the reduced

graph. Such a method considers the transitions between all pairs of samples

of two connected groups in the same way as the serial graph. This avoids the

explicit computation of the full edge-weight matrix of size N ×N . The training

complexity would then be O(I2N + I2K2 + I3) using O(I2K + NI) memory.

An interesting value for K is K =
√
N , which divides the training data in

√
N

groups of
√
N samples each, resulting in O(I2N + I3) operations. The term

I2K in the memory complexity might be large, but one can sacrifice some per-

formance to reduce memory usage, resulting in O(I2N+I2KN+I3) operations

and O(I2 +NI) memory.

(3) Combination of graphs. Under some conditions, training graphs can be

meaningfully combined: Consider two training graphs that fulfill the consistency

restriction (72) and share the same vertices (samples) x(n) and vertex weights

v(n). Let Γ1 and Γ2 be the corresponding edge weight matrices, and 0 < α < 1

be a weighting factor. The combined graph has the same vertices and vertex

weights, but a combined edge weight matrix Γc
def
= αΓ1 +(1−α)Γ2. Assume that

1TΓ11 = 1TΓ21 = R (otherwise the edge weights of one graph can be scaled).

Since the vertices and vertex weights of all three graphs are identical, a feature

y that fulfills constraints (78) and (79) for one of the graphs also fulfills these

constraints for the remaining two graphs. Let ∆Γ1
y and ∆Γ2

y be the ∆ value of y

for the original graphs. Then, ∆Γc
y

(76)
= α∆Γ1

y + (1−α)∆Γ2
y . This implies that if

a feature y has a ∆-value smaller than an arbitrary constant β (i.e., ∆Γ1
y < β)

and it is not larger than β in the second one (i.e., ∆Γ2
y ≤ β), it can be warranted

that it will be also smaller than β in the combined graph (i.e., ∆Γc
y < β) for

any 0 < α < 1. This property may be useful to create graphs with optimal free

responses that span various labels. In practice, one typically uses β = 2.0 to

apply this extension.

The third extension can be used to combine ELL and/or pre-defined graphs

without distinction. The combination of graphs can be used to learn two or

more labels simultaneously, which can yield higher label estimation accuracy

than learning the labels separately, as shown in the color and gender experiments

(Tables 4.2 and 4.3). In fact, this extension will be used in Chapter 5 to combine

three efficient pre-defined graphs for face image analysis: two clustered graphs

for classification of race and gender, and a serial graph for the estimation of

age. The accuracy for age estimation on the MORPH-II database using the

combined graph (and an improved version of HGSFA) is a mean average error

(MAE) of 3.50 years, which is more accurate than the current state-of-the-art

systems for this database.

Chapter 5

Hierarchical Information-
Preserving GSFA (HiGSFA)

The previous two chapters have employed graph-based SFA (GSFA) to solve

supervised learning problems; in Chapter 3, this task has been solved using pre-

defined graphs, and in Chapter 4, using ELL-graphs. In both cases, hierarchical

GSFA (HGSFA) allows the extraction of slow features from high-dimensional

data more efficiently than direct GSFA. Moreover, HGSFA can span a more

complex feature space than direct GSFA due to the composition of the nonlin-

earities of the nodes of the network, allows the extraction of slower features, and

yields more accurate label estimations.

HGSFA is a promising algorithm for the solution of supervised learning prob-

lems on real-world high-dimensional data. However, in this chapter it is shown

that HGSFA has a shortcoming: the nodes of the network discard part of the

information useful for slowness maximization and label estimation prematurely

before it reaches higher nodes. This shortcoming is called unnecessary informa-

tion loss and it results in suboptimal global slowness and less accurate estima-

tions, because the global feature space is underexploited.

To counteract unnecessary information loss, in this chapter an extension

called hierarchical information-preserving GSFA (HiGSFA) is proposed, in

which information preservation complements the slowness-maximization goal.

To evaluate the efficacy of the extension, a 10-layer HiGSFA network is built to

estimate human age from facial photographs of the MORPH-II database. The

current state-of-the-art performance is improved by HiGSFA achieving a mean

absolute error (MAE) of 3.50 years. HiGSFA and HGSFA support multiple-

labels and offer a rich feature space, feed-forward training, and linear complex-

ity in the number of samples and dimensions. However, HiGSFA outperforms

HGSFA in terms of feature slowness, estimation accuracy and input reconstruc-

tion, giving rise to a more promising hierarchical supervised-learning approach.

The main contributions of this chapter are the following: (1) It is proven

that HGSFA networks can provide linear complexity w.r.t. the number of train-

ing samples and their dimensionality. (2) Two fundamental shortcomings of

95

96 CHAPTER 5. HiGSFA= HGSFA + INFORMATION PRESERVATION

HGSFA are revealed: unnecessary information loss and poor input reconstruc-

tion. (3) The concept of information preservation is introduced to HGSFA

networks, giving rise to the HiGSFA algorithm, which counteracts the two

shortcomings above. (4) The improved capabilities of HiGSFA over HGSFA

are verified empirically, and (5) the problem of age estimation is solved with

state-of-the-art accuracy.

The remainder of the chapter is organized as follows. The main ideas be-

hind HiGSFA are introduced, and related work is briefly discussed. Then, a

deeper analysis of the advantages and limitations of HGSFA is presented. Af-

terwards, the HiGSFA algorithm is proposed, and it is evaluated experimentally.

A discussion section concludes the chapter.

5.1 Introduction

A common problem in machine learning is the high computational cost of most

algorithms when the data is high-dimensional. This is also the case when GSFA

is applied to the data directly (i.e., direct GSFA), because it has cubic complex-

ity w.r.t. the number of dimensions. However, processing high-dimensional data

is still practical if one resorts to hierarchical GSFA (HGSFA), see Section 2.4.

Additional advantages of HGSFA over direct GSFA include lower memory com-

plexity, a more complex global nonlinear feature space spanned by the network,

and less overfitting due to the local extraction of slow features, see Figure 2.2.

Figure 5.1: Illustration of three different extensions to SFA (graph-based, hier-
archical, information-preserving). Each extension is represented by a different
direction. The combination of extensions results in 8 different versions of SFA.
This chapter proposes information preservation, which is used in iSFA, iGSFA,
HiSFA, and HiGSFA, the latter being the most promising version of SFA.

This chapter shows that HGSFA suffers from a shortcoming: The GSFA

nodes (the separate instances of GSFA that process the low-dimensional data

chunks in the network) may prematurely discard features that are not slow at

a local level but that would have been useful to improve global slowness (i.e.,

the slowness of the final output features) if combined in subsequent nodes with

5.2. RELATED WORK 97

other features originating in other nodes. This drawback, which is referred to

as unnecessary information loss, leads to an under-exploited feature space, i.e.,

the global feature space contains slower features than those actually extracted

by HGSFA.

To reduce unnecessary information loss in HGSFA, I suggest to complement

slowness with information preservation (i.e., maximization of mutual informa-

tion between the input data and the output features). For simplicity and ef-

ficiency, this idea is implemented here as the minimization of a reconstruction

error. The resulting network that considers both optimization goals is called

hierarchical information-preserving GSFA (HiGSFA), and the algorithm consti-

tuting each node of the network is called information-preserving GSFA (iGSFA).

The feature vector computed by iGSFA has two parts with different types of

components: (1) a slow part, which is a linear transformation of the (nonlinear)

features computed using GSFA, and (2) an input-reconstructive part computed

using PCA.

The iGSFA algorithm employed by HiGSFA reduces the redundancy between

the slow and reconstructive parts; the reconstructive part does not directly ap-

proximate the input data but only a version of them where the slow part has

been projected out, called residual data. This ensures that both parts are decor-

related. Moreover, iGSFA also ensures that the scale of the slow components

is compatible with the scale of the reconstructive components. This enables

meaningful processing by PCA in subsequent layers. Different versions of SFA

with and without information preservation are shown in Figure 5.1. The full

list of principles and heuristics behind HiGSFA is presented in Table 1.1.

The experiments show the advantages of HiGSFA over HGSFA: (1) slower

features, (2) better generalization to unseen data, (3) much better input recon-

struction (see Figure 5.2), and (4) improved accuracy for the supervised learning

problem. Furthermore, the computational and memory requirements of HiGSFA

have the same asymptotic order as those of HGSFA.

5.2 Related work

HiGSFA is the main extension to SFA proposed in this chapter and the most spe-

cialized algorithm of this dissertation. HiGSFA belongs to supervised dimension-

ality reduction (supervised DR), where existing algorithms include: Fisher dis-

criminant analysis (FDA) (Fisher, 1936), local FDA (LFDA) (Sugiyama, 2006),

pairwise constraints-guided feature projection (PCGFP) (Tang and Zhong,

2007), semi-supervised dimensionality reduction (SSDR) (Zhang et al., 2007),

and semi-supervised LFDA (SELF) (Sugiyama et al., 2010).

Previous extensions to SFA include extended SFA (xSFA) (Sprekeler et al.,

2010), generalized SFA (genSFA) (Sprekeler, 2011) and graph-based SFA

(GSFA, Chapter 3) (Escalante-B. and Wiskott, 2010, 2012, 2013). HiGSFA

extends hierarchical GSFA (HGSFA) by adding information preservation.

98 CHAPTER 5. HiGSFA= HGSFA + INFORMATION PRESERVATION

Figure 5.2: (a) An image from a private database after pose normalization. (b)
The same image fully pre-processed (i.e., after pose normalization and face sam-
pling, 96×96 pixels). Linear reconstructions on 75 features extracted with either
(c) PCA, (d) HiGSFA or (e) HGSFA. (f) Average over all pre-processed images
of the MORPH-II database. Notice that the reconstruction using HiGSFA fea-
tures is most similar to that of PCA, whereas the reconstruction using HGSFA
features is most similar to the average image.

5.3 Advantages and Limitations of Hierarchical Pro-

cessing by HSFA and HGSFA Networks

This section analyzes HSFA networks in terms of their advantages, particularly

their computational complexity, and their limitations, particularly unnecessary

information loss. The focus of this section is on HSFA, but HGSFA is covered by

extension and specifically addressed later. The central goal behind HiSFA and

HiGSFA is to overcome two shortcomings of HSFA and HGSFA. Therefore, the

analysis below of limitations of HSFA is crucial, since it justifies the extensions

with information preservation proposed in Section 5.4.

5.3.1 Advantages of HSFA and HGSFA Networks

The central advantages of hierarchical processing—compared to direct SFA—

have been mentioned in Section 2.4: (1) It reduces overfitting and can be seen

as a regularization method, as illustrated in Figure 2.2. (2) The nonlinearity of

the nodes accumulates in a compositional manner while the data traverses the

nodes of the network, so that even when using simple expansions the network

as a whole may describe a highly nonlinear feature space. (3) HSFA has better

computational efficiency than SFA.

Some remarks about these advantages are pertinent: Advantage (1) is ex-

plained by the fact that the input dimensionality to the nodes of the hierarchi-

cal network is much smaller than the original input dimensionality, whereas the

5.3. ADVANTAGES AND LIMITATIONS OF HSFA AND HGSFA 99

number of samples remains unchanged. Thus, individual nodes are less suscep-

tible to overfitting. As a consequently, the gap in generalization performance

between HSFA and direct SFA increases when polynomial expansions are in-

volved, because the large dimensionality of the expanded data in direct SFA

translates into stronger overfitting.

Advantage (2) is valuable in practice, because most real-life problems are

nonlinear (e.g., all problems involving translation invariance and inhomogeneous

backgrounds, since a simple linear mask cannot selectively ignore parts of the

input depending on the current object position). A complex feature space may

be necessary to extract the slowest hidden parameters and solve the supervised

problem with good accuracy.

Advantage (3) is addressed more precisely by recalling the computational

complexity of SFA and GSFA in the following paragraphs. This complexity

can then be compared with the complexity of a particular HSFA network (Sec-

tion 5.3.2). The focus is on the training complexity rather than on the com-

plexity of feature extraction, because the former can be considerable in practice,

whereas the latter is relatively lightweight in both HSFA and direct SFA. Follow-

ing standard notation of algorithm complexity, computational (time) complexity

is denoted by T (e.g., TSFA), and memory (space) complexity is denoted by S

(e.g., SSFA). As stated in Section 2.3, training linear SFA has a time (computa-

tional) complexity

TSFA(N, I) = O(NI2 + I3) , (128)

where N is the number of samples and I is the input dimensionality (possibly

after a nonlinear expansion). The same complexity holds for GSFA if one uses an

efficient training graph (e.g., the serial graphs or clustered graph, see Sections 3.3

and 3.4), otherwise (for arbitrary graphs) it can be as large as

TGSFA(N, I) = O(N2I2 + I3) . (129)

For large I (i.e., high-dimensional data) direct SFA and direct GSFA are

therefore inefficient. However, their complexity can be reduced by using HSFA

and HGSFA. The exact resulting complexity of HSFA and HGSFA depends on

the structure and parameters of the hierarchical network. It is proven below

that it can be linear in I and N for certain networks.

5.3.2 Complexity of a Quadratic HSFA Network

Although existing systems based on HSFA have resorted to hierarchical process-

ing for efficiency reasons, apparently its actual asymptotic complexity has not

yet been formally established. In this section, the computational complexity of

a concrete quadratic HSFA (QHSFA) network is computed, see Figure 5.3. This

network has L layers and operates on data with a 1D structure (i.e., vectors).

All nodes of the network perform quadratic SFA (QSFA, i.e., a quadratic ex-

pansion followed by linear SFA). The receptive field, fan-in, and stride of the

100 CHAPTER 5. HiGSFA= HGSFA + INFORMATION PRESERVATION

nodes in layer 1 is k input values, where k is a fixed parameter. In the rest of

the layers, the fan-in and stride of the nodes is 2 nodes. Assume that the total

input dimensionality is I and that each node reduces the dimensionality of the

data from k input components to k/2 output components.

Figure 5.3: Example of a 1D QHSFA network with binary fan-ins and no
overlap. Each node performs quadratic SFA and reduces the dimensionality
from k to k/2 components. A small fan-in results in a network with a large
number L of layers and is, thus, useful to build deep networks.

From the structure described above, it follows that the receptive fields of

the nodes are non-overlapping, the network’s output has k/2 components, the

number of layers L is related to I and k:

I = k2L−1 , (130)

and the total number of nodes in the network is

M = 2L − 1 . (131)

The input to each QSFA node is k dimensional. The quadratic expansion

increases the number of dimensions to k(k + 3)/2 components. Afterwards,

linear SFA reduces the dimensionality to k/2. From the information above, one

can compute the complexity of training a single (nonlinear) node:

TQSFA(N,k)
(128)
= O(N(k(k + 3)/2)2 + (k(k + 3)/2)3) (132)

= O(Nk4 + k6) . (133)

5.3. ADVANTAGES AND LIMITATIONS OF HSFA AND HGSFA 101

The number of nodes is M
(130,131)

= O(I/k). Therefore, the complexity of

training the whole network is

TQHSFA(N,I,k)
(133)
= O((Nk4 + k6)I/k) = O(INk3 + Ik5) . (134)

Thus, the complexity of the complete QHSFA network above is linear w.r.t.

the input dimension I, whereas the complexity of direct QSFA is

TQSFA(N,I)
(133)
= O(NI4 + I6) , (135)

which is linear w.r.t. I6. Therefore, the QHSFA network is computationally

much more efficient than direct QSFA.

Since each layer in the QHSFA network is quadratic, in general the output

features of layer l can be written as polynomials of degree 2l on the input values.

In particular, the output features of the whole network are polynomials of degree

2L. However, the actual feature space spanned by the network does not include

all polynomials of this degree but only a subset of them due to the restricted

connectivity of the network. In contrast, direct QSFA only contains quadratic

polynomials (although all of them).

One could try to train direct SFA on data expanded by a polynomial

expansion of degree 2L (to encompass the feature space of QHSFA), but

the complexity would be prohibitive: The expanded dimensionality would be∑2L

d=0

(
d+I−1
I−1

)
. Thus, the last term of the summation is

(
2L+I−1
I−1

)
= (2L+I−1)!

2L!(I−1)!
.

Assuming this term dominates the others, letting d
def
= 2L, and assuming

1 � k � d � I, one can use Stirling’s formula (n! ≈
√

2πn(n/e)n) as well

as other simplifications to crudely approximate the expanded dimensionality as
1√
2πd

(e(1 + k/2))d (k enters into the equation, because k
(130)
= I/2L−1). Substi-

tuting d
(130)
= 2I/k yields 1

2
√
πI/k

(e(1 + k/2))2I/k dimensions. Thus, the com-

plexity of training SFA with an expansion of degree 2L would be approximately

O(N(e(1 + k/2))4I/k + (e(1 + k/2))6I/k), being even less feasible than direct

QSFA.

The memory (space) complexity of linear SFA is

SSFA(N,I) = O(I2 +NI) , (136)

where the term NI is due to the input data. One can reduce this complexity by

using HSFA and by training the nodes separately, one at a time, independently

of whether an expansion is used or not. For instance, the memory complexity

of direct QSFA is

SQSFA(N,I) = O(I4 +NI) , (137)

102 CHAPTER 5. HiGSFA= HGSFA + INFORMATION PRESERVATION

whereas the memory complexity of the QHSFA network is only

SQHSFA(N,I,k) = O(k4 +NI) . (138)

The excellent computational and memory complexity of the QHSFA net-

work is not exclusive to this simple architecture. It is possible to design more

sophisticated networks and preserve a similar computational complexity. For

example, the network that is proposed in Section 5.5 has overlapping receptive

fields, larger fan-ins, and a 2D structure, but its complexity is also linear in I

and N (concrete analysis not provided).

5.3.3 Limitations of HSFA and HGSFA Networks

In spite of the remarkable advantages of HSFA and HGSFA networks, they also

have some shortcomings in their current form. The analysis below focuses on

HSFA, but it applies to all networks in which the nodes have only one criterion

for DR, namely, slowness maximization, including HGSFA. Besides the slowness

maximization objective, no other limitation is imposed to the nodes; they might

be linear or nonlinear, include additive noise, clipping, various passes of SFA,

etc.

It is shown here that relying only on slowness to determine which aspects of

the data that are preserved results in two shortcomings: unnecessary information

loss and poor input reconstruction, explained below.

(1) Unnecessary information loss. This shortcoming occurs when the

nodes of the network discard dimensions of the data that are not significantly

slow locally (i.e., at the node level), but which would have been useful for slow-

ness optimization by nodes at higher levels of the network if they had been

preserved and combined with other dimensions.

The following minimal theoretical experiment shows that dimensions crucial

to extract global slow features are not necessarily slow locally. Consider four

zero-mean, unit-variance signals: s1(t), s2(t), s3(t) and n(t) that can only take

binary values, either −1 or +1 (n stands for noise here, and t is time, or more

precisely, sample number). Assume the signals are ordered by slowness (∆s1 <

∆s2 < ∆s3 < ∆n = 2.0)1 and these signals are statistically independent. The

same holds for GSFA if the graph is consistent and has no self-loops. Let the 4-

dimensional input to the network be (x1, x2, x3, x4)
def
= (s2, s1n, s3, n) and assume

the number of samples is large enough.

The direct application of QSFA to this data would allow us to extract the

slowest possible feature, namely, x2x4 = (s1n)n = s1 (or equivalently −x2x4).

However, let us assume that a 2-layer QHSFA network with 3 nodes is used,

where the output of the network is: QSFA
(
QSFA(s2, s1n),QSFA(s3, n)

)
. Each

QSFA node reduces the number of dimensions from 2 to 1. Since ∆s2 < ∆s1n =

1One can show that the expected ∆ value of a random unit-variance i.i.d. noise feature is
2.0, see Section 4.3.2.

5.3. ADVANTAGES AND LIMITATIONS OF HSFA AND HGSFA 103

2.0, the first bottom node computes QSFA(s2, s1n) = s2, and since ∆s3 < ∆n =

2.0, the second bottom node computes QSFA(s3, n) = s3. The top node would

then extract QSFA(s2, s3) = s2. Therefore, the network would miss the slowest

feature, s1, even though it actually belongs to the feature space spanned by the

network.

The problem can be expressed in information theoretic terms:

I(s1n, s1) = 0 , and (139)

I(n, s1) = 0 , but (140)

I((s1n, n), s1) = H(s1) > 0 , (141)

where H is entropy, and I denotes mutual information2. Equations (139)–(141)

show that it is impossible to locally rule out that a feature contains information

that might yield a slow feature (in this case s1), unless one globally observes

the whole data available to the network. The problem above could be solved

if the network could preserve s1 and s1n by applying other criteria besides

slowness. For example, if the signals above were instead 10s1 and 10s1n, one

could distinguish these features based on their variance.

Figure 5.4: ∆ values of the first 40 slow features of an HGSFA network trained
for age estimation and averaged over all the nodes of the first layer (∆1 = 1.859,
∆2 = 1.981, and ∆3 = 1.995, not shown). The training graph employed is
a serial graph with 32 groups (see Section 5.5.3). Most ∆ values are close to
2.0, indicating that at this early stage, where the nodes have small 6×6-pixel
receptive fields, the slowest extracted features are not substantially slow.

Unnecessary information loss can also affect applications in practice. As

an example, consider the problem of age estimation from human face images.

Figure 5.4 shows the ∆ values of the slowest features extracted by the first

layer of an HGSFA network trained for age estimation. Most ∆ values are

2H(X) is the average amount of information given by instances of a random variable X.
I(X,Y) is the average amount of information that a random variable X gives about another
random variable Y (or vice-versa). In other words, it denotes how much information is dupli-
cated in X and Y on average. If I(X,Y) = 0, the variables are independent.

104 CHAPTER 5. HiGSFA= HGSFA + INFORMATION PRESERVATION

approximately 2.0, and only a few of them are less than 2.0. The value 2.0 is

crucial; a feature with ∆ = 2.0 can be a transformation of the input data, a

transformation of inherent noise, or a mixture of both. In fact, if two or more

feasible features have the same ∆ value, GSFA outputs an arbitrary rotation

of them, even though one might prefer features that are transformations of the

input rather than noise. Due to DR only a few features with ∆ = 2.0 can

be preserved, and these may include “noise” features. Some of the discarded

features with ∆ ≥ 2.0 might still have contained useful information (that could

have potentially resulted in slower features in a subsequent node).

One might try to preserve a large number of features to reduce informa-

tion loss. However, this might be impractical because it would increase the

computational cost and contradicts the goal of dimensionality reduction.

(2) Poor input reconstruction. Input reconstruction is the task of generat-

ing an (artificial) input with a given feature representation (or an approximation

of it). Wilbert (2012) has studied this task for HSFA, and used it to visualize

which features the network is sensitive to.

In the field of image processing, reconstruction might be relevant for image

morphing and interpolation. In this work, morphing is defined as the task of

finding how the input must be modified to reflect modifications introduced to

the output features. For example, assume SFA was trained to extract body mass

index (BMI) from facial images. Morphing would allow us to visualize how a

particular person would look after losing or gaining a few kg.

Experiments have shown that input reconstruction from top-level features

extracted by HSFA is a challenging task (Wilbert, 2012). The difficulty of this

task has also been confirmed by several experiments conducted for this thesis

using various nonlinear methods for input reconstruction, including local and

global methods.

It is shown here that poor input reconstruction may not be caused by the

weakness of the reconstruction algorithms employed but rather by insufficient

reconstructive information in the slow features: The extracted features ideally

depend only on the hidden slow parameters and are invariant to any other factor.

In the BMI estimation example, the extracted features would be strongly related

to the BMI and harmonic functions of it (assuming the extracted features are

close to the optimal free responses predicted by theory). Thus, they would

be mostly invariant to other factors, such as the identity of the person, his

or her facial expression, the background, etc. Therefore, in theory only BMI

information would be available for reconstruction.

In practice, residual information about the input data can still be found in

the extracted features. However, one cannot rely on this information because

it may be partial, making reconstructions not unique, and highly nonlinear,

making it difficult to untangle it. Even the features extracted by linear SFA

typically result in inaccurate reconstructions. HSFA consists on many layers of

SFA nodes, potentially aggravating the problem.

5.4. HIERARCHICAL INFORMATION-PRESERVING GSFA (HiGSFA) 105

One exception where reconstruction is possible is when SFA is trained with

artificial data generated using only a set of slowly changing parameters. In this

setup, the output features might encode generative parameters that allow input

reconstruction using an appropriate reconstruction method.

The connection between the problems of unnecessary information loss and

poor input reconstruction is evident if one distinguishes between two types of in-

formation: (a) information about the full input data and (b) information about

the global slow parameters. Losing (a) results in poor input reconstruction,

whereas losing (b) results in unnecessary information loss. Of course, (a) con-

tains (b). Therefore, both problems originate from losing different but related

types of information.

The extensions proposed in the next section counteract unnecessary infor-

mation loss and poor input reconstruction.

5.4 Hierarchical Information-Preserving GSFA

(HiGSFA)

This section formally proposes HiGSFA, an extension to HGSFA that counter-

acts the problems of unnecessary information loss and poor input reconstruction

by extracting reconstructive features in addition to slow features. HiGSFA is

a hierarchical implementation of iGSFA. For simplicity, the presentation below

focuses on iSFA, but iSFA can be trivially extended into iGSFA and HiGSFA.

Information preservation is denoted with a lowercase ‘i’ to prevent a name clash

between iSFA and independent SFA (ISFA) (Blaschke et al., 2007).

iSFA combines two learning principles: the slowness principle and informa-

tion preservation, without compromising the former in any way. Information

preservation requires the maximization of the mutual information between the

output features and the input data. However, for finite, discrete, and typically

unique data samples, it is difficult to measure and maximize mutual information

unless one assumes a specific probability model. Therefore, information preser-

vation is implemented more practically as the minimization of a reconstruction

error. A closely related concept is the explained variance, but such a term is

avoided here because it is typically restricted to linear transformations.

The rest of the section presents a high-level description of iSFA, describes

its construction in detail, shows how to approximate an inverse transformation,

and discusses the main properties of iSFA. Finally, the extension of iSFA into

iGSFA and HiGSFA is discussed.

5.4.1 Algorithm Overview (iSFA)

The goal of HiSFA is to improve feature extraction of HSFA networks at the

node and global level. This goal is pursued by replacing the SFA nodes by

iSFA nodes, leaving the network structure unchanged (although one can tune

the network structure to achieve better accuracy, if desired).

106 CHAPTER 5. HiGSFA= HGSFA + INFORMATION PRESERVATION

The feature vectors computed by iSFA are composed of two parts: (1) a

slow part derived from SFA features, and (2) a reconstructive part derived from

principal components (PCs). Generally speaking, the slow part captures the

slow aspects of the data and is basically composed of standard SFA features,

except for an additional linear mixing step to be explained in Sections 5.4.2 and

5.4.4. The reconstructive part ignores the slowness criteria and focuses instead

on linearly describing the input as closely as possible (disregarding the part

already described by the slow part). In Section 5.5 it is shown that, although

the reconstructive features are not particularly slow, they indeed contribute to

global slowness maximization.

The proposed algorithm takes care of the following important considerations:

(a) Given the output dimension D, it decides how many features the slow and

reconstructive part should contain. (b) It minimizes the redundancy between

the slow and the reconstructive part, allowing the output features to be more

compact and have higher information content. (c) It corrects the amplitudes of

the slow features (SFA features have unit variance) to make them compatible

with the PCs and allow their processing by PCA in subsequent nodes (PCA is

a rotation and projection. Thus, it preserves the amplitude of the original data

in the retained directions).

5.4.2 Algorithm Description (Training Phase of iSFA)

In this section, the details of iSFA, or more precisely of its training phase, are

presented. Algorithm 1 describes the whole algorithm compactly. Figure 5.5

shows the employed components.

Figure 5.5: Block diagram of the iSFA node showing the components used for
training and feature extraction. Signal dimensionalities are given in pharenthe-
sis. The components and signals are explained in the text.

Let X
def
= (x1, . . . ,xN) be the I-dimensional training data, D the output

dimensionality, h(·) the nonlinear expansion function, and ∆T ≈ 2.0 (a ∆-

threshold, in practice slightly smaller than 2.0). The iSFA algorithm does the

following. First, the average sample x̄
def
= 1

N

∑
n xn is removed from the N

training samples resulting in the centered data X′
def
= {x′n}, with x′n

def
= xn − x̄,

where 1 ≤ n ≤ N . Then, X′ is expanded via h(·), resulting in vectors zn =

h(x′n) of dimensionality I ′. Afterwards, linear SFA is trained with the expanded

data Z
def
= {zn}, resulting in a weight matrix WSFA and an average input vector

5.4. HIERARCHICAL INFORMATION-PRESERVING GSFA (HiGSFA) 107

z̄. The slow features extracted from Z are sn = WT
SFA(zn − z̄). The first J

components of sn with ∆ < ∆T and J ≤ min(I ′, D) are denoted s′n. The

remaining components of sn are discarded.

Algorithm 1 Training phase of iSFA

Require: D > 0: output dimensionality
1: procedure train(X) . X = (x1, . . . ,xN): training samples
2: ∀n : x′n ← xn − x̄ . x̄: average sample
3: ∀n : zn ← h(x′n) . Z = (z1, . . . , zN): expanded samples
4: WSFA, z̄← SFA.train(Z,output dim = min(I ′, D))
5: ∀n : sn ←WSFA

T (zn − z̄)
6: ∀n : s′n ← (sn1, . . . , snJ)T . Preserve the first J features with ∆ < ∆T

7: ∀n : an ←Ms′n + d . For M and d, such that MS′ + b ≈ X′

8: ∀n : y′n ← Rs′n . For QR = M, the QR decomposition of M
9: ∀n : bn ← x′n − an

10: WPCA ← PCA.train(B,output dim = D − J)
11: ∀n : cn ←WT

PCAbn . Only D − J PCs are preserved
12: ∀n : yn = y′n|cn . Concatenation of slow and reconstructive parts
13: return Y = (y1, . . . ,yN), x̄, WSFA, z̄, WPCA, J , Q, R, d
14: end procedure

The J features comprised by S′
def
= {s′n} have zero mean and unit variance.

The next steps correct the amplitude of S′: The centered data X′ is approxi-

mated from S′ linearly by using ordinary least squares to compute a matrix M

and a vector d, such that

A
def
= MS′ + d1T ≈ X′ , (142)

where A is the approximation of the centered data given by the slow part (i.e.,

x′n ≈ an
def
= Ms′n + d) and 1 is a vector of 1s of length N . Since X′ and S′

are centered, d could be discarded because d = 0. However, when GSFA is

used the slow features have only weighted zero mean, and d might improve the

approximation of X′. Afterwards, the QR decomposition of M

M = QR (143)

is computed, where Q is orthonormal and R is upper triangular. Then, the

(amplitude-corrected) slow feature part is computed as

y′n = Rs′n . (144)

Section 5.4.4 justifies the mixing and scaling (144) of the slow features s′n.

To obtain the reconstructive part, residual data bn
def
= x′n − an is computed,

i.e., the data that remains after the data linearly reconstructed from y′n (or

s′n) is removed from the centered data. Afterwards, PCA is trained with {bn},

108 CHAPTER 5. HiGSFA= HGSFA + INFORMATION PRESERVATION

resulting in a weight matrix WPCA. There is no bias term, because bn is

centered. The reconstructive part cn is then defined as the first D−J principal

components of bn and computed accordingly.

Thereafter, the slow part y′n (J features) and the reconstructive part cn (D−
J features) are concatenated, resulting in the D-dimensional output features

yn
def
= y′n|cn, where | is vector concatenation.

Finally, the algorithm returns Y = (y1, . . . ,yN), x̄, WSFA, z̄, WPCA, J ,

Q, R, and d. The output features Y are usually computed only during feature

extraction (see Algorithm 2). Still, they are kept here to simplify the under-

standing of the signals involved.

5.4.3 Feature Extraction by iSFA

The feature extraction algorithm is similar to the training algorithm, except

that the parameters x̄, WSFA, z̄, WPCA, J , Q, R, and d have already been

learned from the training data. Algorithm 2 shows how a single input sample is

processed, however, it can be easily and efficiently adapted to process multiple

input samples by taking advantage of matrix operations.

Algorithm 2 Feature extraction with iSFA

Require: D, x̄, WSFA, z̄, WPCA, J , Q, R, d
1: procedure extract(x) . x: a new sample
2: x′ ← x− x̄ . x̄: mean of the training data
3: z← h(x′)
4: s←WT

SFA(zn − z̄) . Extract the first J slow features
5: s′ = (s1, s2, . . . , sJ)
6: y′ ← Rs′

7: a← Qy′ + d
8: b← x′ − a
9: c←WT

PCAb
10: y = y′|c
11: return y
12: end procedure

5.4.4 Mixing and Scaling of Slow Features

In the iSFA algorithm, the J-dimensional slow features s′n are transformed into

the scaled y′ features. Such a transformation is necessary to make the amplitude

of the slow features compatible with the amplitude of the PCA features, so that

PCA processing of the two sets of features together is possible and meaningful

in the next layers.

A scaling method should ideally offer two key properties of PCA. (1) If one

adds unit-variance noise to one of the output features (e.g., principal compo-

nents), the variance of the reconstruction error also increases by one unit. (2) If

5.4. HIERARCHICAL INFORMATION-PRESERVING GSFA (HiGSFA) 109

one adds independent noise to two or more output features simultaneously, the

variance of the reconstruction error increases additively.

The QR scaling, used by Algorithm 1, as well as a sensitivity-based scaling,

are explained below. Both methods ensure that the amplitude of the slow fea-

tures is approximately equal to the reduction in the reconstruction error that

they allow. In practice, a lower bound on the scales (not shown in the pseudo-

code) ensures that all features have amplitudes> 0 even if they do not contribute

to reconstruction.

Consider first the QR scaling method (142)–(144). The input can be linearly

approximated as x̃ = ã + b̃ + x̄, where ã = Qy′ + d and b̃ = WPCAc (see Sec-

tion 5.4.5 and recall that WPCA = (WT
PCA)−1). Approximations are denoted

here using tilded variables. The vector y = y′|c fulfills the two key proper-

ties of reconstruction of PCA above because matrix Q and matrix WPCA are

orthogonal, and because the rows of the two matrices are mutually orthogonal.

One small drawback is that (144) mixes the slow features. Polynomial ex-

pansion functions combined with SFA are invariant to invertible linear trans-

formations (e.g., SFA(QExp(Ux)) ≡ SFA(QExp(x)), where U is any invertible

matrix and QExp is the quadratic expansion). Thus, polynomial SFA can ex-

tract the same features from s′ or y′. However, other expansions do not have

this property. One example of them is the 0.8Exp expansion function (68),

0.8Exp(x1, x2, . . . , xI)
def
= (x1, x2, . . . , xI , |x1|0.8, |x2|0.8, . . . , |xI |0.8). SFA is in-

variant to scalings of the input data if combined with 0.8Exp, but it is not

invariant to their mixing, i.e., SFA(0.8Exp(Λx)) ≡ SFA(0.8Exp(x)), where Λ

is a diagonal matrix with diagonal elements λi 6= 0, but SFA(0.8Exp(Ux)) 6≡
SFA(0.8Exp(x)) in general. The 0.8Exp expansion has been motivated by

a model where the slow features are noisy harmonics of increasing frequency

of a hidden parameter and it should be applied to the slow features directly.

Thus, mixing of the slow features would break the assumed model and might

compromise slowness extraction in the next layers in practice.

Technically, feature mixing by QR scaling could be reverted in the next

layer (e.g., by an additional application of linear SFA before the expansion),

but such a step would add unnecessary complexity. For this reason, besides the

QR scaling, a second scaling method is proposed: The sensitivity based scaling,

which scales the slow features without mixing them, as follows.

y′ = Λs′ , (145)

where Λ is a diagonal matrix with diagonal elements λj
def
= ||Mj ||2 (the L2-norm

of the j-th column vector of M). Therefore,

a(t)
(142,145)

= MΛ−1y′(t) + d . (146)

Clearly, the transformation (145) does not mix the slow features, it only

scales them. From the two key reconstruction properties of PCA mentioned

110 CHAPTER 5. HiGSFA= HGSFA + INFORMATION PRESERVATION

above (adding noise of certain variance to either one or many features increases

the variance of the reconstruction error by the same amount), the first one (noise

on a single feature) is fulfilled, because the columns of MΛ−1 have unit norm

since Λ−1 = Diag(1/λ1, . . . , 1/λJ). The second property is not fulfilled, because

MΛ−1 is in general not orthogonal (in contrast to Q).

At first glance, it seems like multi-view learning might be an alternative for

the scaling methods used here. However, multi-view learning actually solves a

different problem. Moreover, it would mix the slow and reconstructive parts

and might be too expensive computationally. For instance, the system of Xia

et al. (2010) has cubic complexity w.r.t. N , whereas QR scaling and sensitivity

based scaling have linear complexity w.r.t. N .

5.4.5 Input Reconstruction for iSFA

One interesting property of iSFA is that the features are nonlinear w.r.t. the in-

put data, both the slow and the reconstructive part. The slow part is nonlinear

due to the expansion function. The residual data is nonlinear because it is com-

puted using the (nonlinear) slow part and the centered data. The reconstructive

part is computed using the residual data and is linear w.r.t. the residual data

but nonlinear w.r.t. the input data.

Even though the computed features are all nonlinear, iSFA allows a linear

approximation of the input (linear input reconstruction). In contrast, standard

SFA does not have a standard input reconstruction method, although various

gradient-descent and vector-quantization methods have been tried (e.g., Wilbert,

2012) with limited success.

The reconstruction algorithm is simple: a (the contribution of the slow part

to the centered data) is approximated as ã = Qy′ + d. Then, b (the residual

vector) is approximated as b̃ = WPCAc. The reconstructed sample is then

x̃ = ã + b̃ + x̄. See Algorithm 3 for details.

Algorithm 3 Linear input reconstruction for iSFA

Require: D, x̄, WPCA, J , Q, b
1: procedure linear-reconstruction(y)
2: y′ ← (y1, . . . , yJ) . Slow part
3: c← (yJ+1, . . . , yD) . Reconstructive part
4: x̃← (Qy′ + d) + WPCAc + x̄ . ã + b̃ + x̄
5: return x̃
6: end procedure

The linear reconstruction algorithm has interesting properties: It is shorter

than the feature extraction algorithm, the nonlinear expansion h and WSFA

are not used, and it has lower computational complexity, because it consists of

only two matrix-vector multiplications and three vector additions, none of them

using expanded I ′-dimensional data.

Linear reconstruction for iSFA is simple and effective. However, nonlinear

5.5. EXPERIMENTAL EVALUATION OF HiGSFA 111

reconstruction is also possible and can be implemented as follows: Assume y is

the iSFA feature representation of a sample x. This is denoted by y = iSFA(x).

Since x is unknown, the reconstruction error cannot be computed directly. How-

ever, one can indirectly measure the accuracy of a particular reconstruction x̃

by means of the feature error, which is defined here as efeat
def
= ||y − iSFA(x̃)||.

The feature error can be minimized for x̃ using the function iSFA(·) as a black

box and gradient descent or other generic nonlinear minimization algorithms.

Frequently, such algorithms require a first approximation, which can be very

conveniently provided by the linear reconstruction algorithm.

Although nonlinear reconstruction methods might result in higher recon-

struction accuracy than linear methods, they are typically more expensive com-

putationally. Moreover, in Section 5.6.4 it is explained why minimizing efeat

does not necessarily improve the reconstruction error unless additional aspects

of the training data are considered.

5.4.6 Some Remarks on iSFA, iGSFA, and HiGSFA

Clearly, the computational complexity of iSFA is at least that of SFA, because

iSFA consists of SFA and a few additional computations. However, none of the

additional computations is done on the expanded I ′-dimensional data but at

most on I or D-dimensional data (e.g., PCA is applied to I-dimensional data,

and the QR decomposition is applied to an I× I-matrix. These operations have

an O(NI2 +I3) and O(I3) complexity, respectively). Therefore, iSFA is slightly

slower than SFA but has the same complexity order. Practical experiments

(Section 5.5) confirm this observation.

The presentation above focuses on iSFA. To obtain information-preserving

GSFA (iGSFA) one only needs to substitute SFA by GSFA inside the iSFA

algorithm and provide GSFA with the corresponding training graph during the

training phase. Notice that GSFA features have weighted zero mean instead of

the simple (unweighted) zero mean enforced by SFA. This difference has already

been compensated by the vector d. HiGSFA is constructed simply by connecting

iGSFA nodes in a hierarchy, just as HGSFA is constructed by connecting GSFA

nodes.

5.5 Experimental Evaluation of HiGSFA

In this section, HiGSFA is evaluated using the problem of age estimation from

human face photographs. HiGSFA is employed instead of HiSFA to be able

to explicitly use the labels to boost estimation accuracy. However, due to the

close connection between these algorithms, many aspects of the evaluation also

extend to HiSFA.

This section is structured as follows. First, the topic of age estimation is

introduced. Then, the image pre-processing method is described. Afterwards,

the training graph used to learn age, race, and gender simultaneously is pre-

sented. Finally, an HiGSFA network is described and evaluated according to

112 CHAPTER 5. HiGSFA= HGSFA + INFORMATION PRESERVATION

three criteria: feature slowness (compared with HGSFA), age estimation er-

ror (compared with state-of-the-art algorithms), and linear reconstruction error

(compared with PCA).

5.5.1 Age Estimation and Previous Work on this Problem

The study of age estimation from photographs is relatively recent and has useful

applications for human-computer interaction, group-targeted advertisement, de-

mographics, face recognition, control of age-related policies, and security. How-

ever, age estimation is a challenging task, because different persons experience

facial aging differently depending on factors such as their gender, race, nutrition,

health, exposure to the weather, use of cosmetics, and operations.

Two types of age have been distinguished. The real (ground-truth) age,

which is the chronological age of the person, and the apparent age, which is

the age conveyed solely by the information present in the image. Clearly, an

algorithm cannot determine the real age exactly, at most it might determine the

apparent age.

Different methods for age estimation have been proposed. For a more com-

prehensive literature review see the work of Ramanathan et al. (2009) and Fu

et al. (2010). Geng et al. (2007) have proposed aging pattern subspace (AGES),

which is based on temporal sequences of images of individual persons, the so-

called aging patterns. The images are represented using an appearance model

that combines geometric and texture information. In their system, a subspace is

constructed for each aging pattern. Given a new image, the subspace providing

the best possible reconstruction is found. Then, the position of the image within

the aging pattern is determined.

Guo et al. (2009b) have proposed the use of bio-inspired features (BIF). Their

architecture consists of two layers, in which the units of the first layer compute

Gabor functions inspired by simple cells, whereas the units of the second layer

compute a standard-deviation operation inspired by complex cells. Then, PCA

is applied to reduce the dimensionality of the data to fewer than 1,000 features.

Finally, an SVM or SVR provides the final age estimate.

The first SFA architecture for age estimation is a four-layer HSFA network

that has been applied to raw images without prior feature extraction (Escalante-

B. and Wiskott, 2010). The input images are synthetic and created using special

software for 3D-face modeling. However, the complexity of the face model was

probably too simple, which allowed linear SFA (in fact linear GSFA) to achieve

good performance, and left open the question of whether SFA/GSFA could also

be successful on real photographs.

Race and gender are two factors that influence the accuracy of age estimation

(e.g., Guo et al., 2009a; Luu et al., 2009). This idea is exploited by the system

of Guo and Mu (2010), where the faces are first classified according to race and

gender, and age is then estimated in the particular race/gender group. Other

algorithms allow the estimation of age, race, and gender simultaneously. Guo

and Mu (2011) proposed the use of kernel partial least squares regression (KPLS)

5.5. EXPERIMENTAL EVALUATION OF HiGSFA 113

on top of the BIF features.

More recently, various methods based on canonical correlation analysis

(CCA) have been proposed by Guo and Mu (2014), particularly regularized

kernel CCA (rKCCA), on top of BIF features in a framework for the joint esti-

mation of age, race, and gender, providing good accuracy.

The use of a multi-scale convolutional neural network (MCNN) trained on

images decomposed as 23 48×48-pixel image patches has been proposed by Yi

et al. (2015). Each patch has one out of four different scales and is centered

on a particular facial landmark. This method represents the state-of-the-art

accuracy before HiGSFA (see Table 5.4).

5.5.2 Image Database and Image Pre-Processing

The MORPH-II database (i.e. MORPH, Album 2) (Ricanek Jr. and Tesafaye,

2006) is a large database available for a symbolic fee and suitable for age esti-

mation. It contains 55,134 images of about 13,000 different persons with ages

ranging from 16 to 77 years. The images were taken under partially controlled

conditions (e.g. frontal pose, absence of glasses, good image quality, absence of

strong shadows), and include variations in head pose (e.g. tilt angle) and expres-

sion. The database includes annotations stating the age of the persons, their

gender (M or F), “race”: “black” (B), “white” (W), “asian” (A), “hispanic”

(H), and “other” (O), and the coordinates of the eyes. The procedure used to

assign the race label does not seem to be documented by the database. Most of

the images are of black (77%) or white races (19%), making it probably more

difficult to generalize to other races, such as asian. This database has been

chosen for this research because of its large number of images.

The evaluation method used by Guo and Mu (2014) and many other works

is also adopted here. In this method, the input images are partitioned in 3

disjoint sets S1 and S2 of 10,530 images, and S3 of 34,074 images. The racial

and gender composition of S1 and S2 is the same: they have about 3 times

more images of males than females and the same number of white and black

people. Other races are omitted. More exactly, |MB| = |MW | = 3980, |FB| =
|FW | = 1285. The remaining images constitute the set S3, which is composed

as follows: |MB| = 28 872, |FB| = 3187, |MW | = 1, |FW | = 28, |MA| = 141,

|MH| = 1667, |MO| = 44, |FA| = 13, |FH| = 102 and |FO| = 19. Training

and testing are done twice, using either S1 and S1-test
def
= S2 + S3 or S2 and

S2-test
def
= S1 + S3.

The input images are pre-processed in two steps: pose normalization and face

sampling (Figure 5.2). The pose-normalization step fixes the position of the eyes

ensuring that: (a) the eye line is horizontal, (b) the inter-eye distance is constant,

and (c) the output resolution is 256×260 pixels. After pose normalization, the

face sampling step selects the head area only, enhances the contrast, and scales

down the image to 96×96 pixels. Typically the chin, forehead, and some hair

are visible in the resulting images.

114 CHAPTER 5. HiGSFA= HGSFA + INFORMATION PRESERVATION

On top of the S1, S2, and S3 datasets, three extended datasets (DR, S, and

T) are defined in this work: A DR-dataset is used to train HiGSFA (or the DR

algorithm), an S-dataset is used to train the supervised step on top of HiGSFA

(a Gaussian classifier), and a T-dataset is used for testing. The DR and S-

datasets are created using the same training images (either S1 or S2), and the

T-dataset with the corresponding test images, either S1-test or S2-test.

The images of the DR and S-datasets go through a distortion step during

face sampling, which includes a small random translation of max ±1.4 pixels, a

rotation of max ±2 degrees, a rescaling of ±4%, and small fluctuations in the av-

erage color and contrast. The exact transformations are random and uniformly

distributed in their corresponding intervals. Although such small distortions are

frequently imperceptible, they teach HiGSFA to become invariant to small er-

rors during image normalization and are necessary due to its feature specificity

to improve generalization to test data. Other algorithms that use pre-computed

features, such as BIF, or particular structures (e.g., convolutional layers, max

pooling) are mostly invariant to such small transformations by construction

(e.g., Guo and Mu, 2014).

Distortions allow us to increase the number of images used for training. The

images of the DR-dataset are distorted 22 times, each time using a different

random distortion, and those of the S-dataset 3 times, resulting in 231,660 and

31,590 images, respectively. The images of the T-dataset are not distorted and

used only once.

5.5.3 Efficient Training Graphs for Learning Multiple-Labels

A main factor for the appeal of GSFA is its efficient pre-defined training graphs.

Predefined graphs include a clustered graph (classification) and a serial graph

(regression), both having a training complexity of O(NI2 + I3). However, up

to now efficient graphs have only been defined for a single (categorical or nu-

merical) label. In Section 4.5.5, a method for the combination of graphs has

been proposed. This idea is used here to propose an efficient graph that encodes

three labels and is based on three pre-defined graphs: two clustered graphs (for

gender and race classification) and a serial graph for age estimation.

Clustered graphs for gender and race. The graph used for gender clas-

sification is a clustered graph (see Section 3.3) that has only two classes

(male/female) of NM and NF samples, respectively. For the actual experiments,

NF = 2570r and NM = 7960r, where r
def
= 22 is a multiplicity factor.

The graph used for race classification is similar to the graph above. Only

two classes are considered by the graph (B and W), and the number of samples

per class is NB = NW = 5265r.

Serial graph for age estimation. The serial graph for age estimation (see

Section 3.4) is described in Figure 5.6.

5.5. EXPERIMENTAL EVALUATION OF HiGSFA 115

Figure 5.6: Illustration of a serial training graph for age estimation. The training
images are first ordered by increasing age and then grouped into L = 32 groups
of Ng = 7238 samples each. Each dot represents an image, edges represent
connections, and ovals represent the groups. The images of the first and last
group have weight 1 and the remaining images have weight 2 (image weights
represented by smaller/bigger dots). All edges have a weight of 1.

Efficient graph for age, race, and gender estimation The method pro-

posed in Section 4.5.5 (third extension) for the combination of graphs is used

here for the first time to combine three pre-defined graphs. Such a method

guarantees that the slowest optimal free responses of the combined graph span

the slowest optimal free responses of the original graphs.

The method provides a compact feature representation. For example, one

can combine a clustered graph for gender (M or F) estimation and another for

race (B or W). The first two features of the resulting graph are then enough for

gender and race classification. Alternatively, one could create a clustered graph

with four classes (MB, MW, FB, FW), so that 3 features would be needed for

classification instead of 2. However, such a representation would be impractical

for larger numbers of classes. For example, if the original numbers of classes

were C1 = 10 and C2 = 12, one would need to extract C1C2 − 1 = 119 features,

whereas in the proposed graph combination, one would only need to preserve

(C1 − 1) + (C2 − 1) = 20 features.

To learn age, race, and gender labels, a graph G3 is proposed by combining

a serial graph for age estimation, a clustered graph for gender, and a clustered

graph for race. The serial graph has vertex weights not quite the same as in the

clustered graphs, but this might not affect the accuracy of the combined graph

significantly. For comparison purposes, a serial graph G1 that only learns age

is also used.

The first 4 to 7 features extracted from the S-dataset are used to train three

separate Gaussian classifiers (GC), one for each label. For race only two classes

are considered (B and W), and for gender only M and F. For age, the images are

ordered by increasing age and partitioned in 39 classes of the same size. This

hyper-parameter has been tuned independently of the number of groups in the

graph, which is 32. The classes have average ages of {16.6, 17.6, 18.4, . . . , 52.8,

116 CHAPTER 5. HiGSFA= HGSFA + INFORMATION PRESERVATION

57.8} years. To compute these average ages, as well as to order the samples by

age in the serial graph, the age of the persons is considered with a day resolution

(e.g., an age may be expressed as 25.216 years). However, for the evaluation,

integer ground-truth labels and integer estimates are used.

After the GC has been trained, the final age estimation (on the T-dataset)

is computed using the soft GC method given by Equation (67) that exploits

class membership probabilities of the GC. However, an additional step keeps

the integer part of the age estimation. Equation (67) has been designed to

minimize the root mean squared error (RMSE). Although it incurs in an error

due to the discretization of the labels, the soft nature of the estimation has

provided good accuracy and robustness to misclassifications.

5.5.4 Evaluated Algorithms

Besides HiGSFA, other algorithms are included in the evaluation for comparison

purposes: HGSFA, PCA, and state-of-the-art age-estimation algorithms. iGSFA

and GSFA are not used directly but indirectly in HiGSFA and HGSFA in order

to take advantage of the benefits of hierarchical processing.

The structure of the HiGSFA and HGSFA networks is described in Table 5.1.

In both networks, the nodes are simply an instance of iGSFA or GSFA preceded

by different linear or nonlinear expansion functions, except in the first layer,

where PCA is applied to the pixel data to preserve 20 out of 36 principal com-

ponents prior to the expansion. The method used to scale the slow features

is the sensitivity method of Section 5.4.4. The hyper-parameters have been

hand-tuned to achieve best accuracy on age estimation using educated guesses,

random sets S1, S2 and S3 different to those used for the evaluation, and fewer

image multiplicities to speed up the process.

The proposed HGSFA/HiGSFA networks are different in several aspects from

SFA networks used in the literature (e.g., Franzius et al., 2007). For example,

to improve feature specificity at the lowest layers, no weight sharing is used.

Moreover, the input to the nodes (fan-in) originates mostly from the output

of 3 nodes in the preceding layer (3×1 or 1×3). Such a small fan-in reduces

the computational cost because the input dimensionality is minimized. In this

case it results in networks with 10 layers, potentiating the accumulation of

nonlinearities across the network.

The employed expansion functions are a mixture of different nonlinear func-

tions on subsets of the input vectors and include: (1) The identity function

I(x) = x. (2) Quadratic terms QT(x)
def
= {xixj}Ni,j=1. (3) A normalized version

of QT: QN(x)
def
= { 1

1+||x||2xixj}
N
i,j=1. (4) The terms 0.8ET(x)

def
= {|xi|0.8}Ni=1

of the 0.8Exp expansion, which is useful to improve generalization and re-

sistance against outliers (Escalante-B. and Wiskott, 2011). (5) The function

max2(x)
def
= {max(xi,xi+1)}N−1

i=1 . The max2 function is proposed here moti-

vated by an state-of-the-art algorithm for age estimation (Yi et al., 2015) that

includes max pooling or a variant of it. As a concrete example of the nonlin-

5.5. EXPERIMENTAL EVALUATION OF HiGSFA 117

layer size
node

stride
output dim. per node

fan-in HGSFA HiGSFA

0 96×96 pixels — — — —
1 31×31 nodes 6×6 3×3 14 18
2 15×31 nodes 3×1 2×1 20 27
3 15×15 nodes 1×3 1×2 27 37
4 7×15 nodes 3×1 2×1 49 66
5 7×7 nodes 1×3 1×2 60 79
6 3×7 nodes 3×1 2×1 61 88
7 3×3 nodes 1×3 1×2 65 88
8 1×3 nodes 3×1 1×1 65 93
9 1×1 nodes 1×3 — 66 95
10 1×1 nodes 1×1 — 75 75

Table 5.1: Description of the HiGSFA and HGSFA networks. Both networks
have the same number of nodes and general structure, but they differ in the
type of nodes and in the number of features preserved by them. Layer 0 denotes
the input image, whereas layer 10 is the top node.

ear expansions employed by the HiGSFA network, the expansion of the first

layer is I(x1, . . . , x18) |0.8ET(x1, . . . , x15) |max2(x1, . . . , x17) |QT(x1, . . . , x10),

where | indicates vector concatenation. The details of the expansions used in

the remaining layers are available upon request.

The parameter ∆T of layers 3 to 10 is set to 1.96. ∆T is not used in layers

1 and 2, and instead the number of slow features is fixed to 3 and 4, resp. The

number of features given to the supervised algorithm, shown in Table 5.2, has

been tuned for each DR algorithm and supervised problem.

Algorithm Age Race Gender

HiGSFA (G3) 5 6 4
HGSFA (G3) 5 5 7

PCA 54 54 60

Table 5.2: Number of output features given to the supervised step (a Gaussian
classifier).

Since the data dimensionality allows it, PCA is used directly (it was not

resorted to hierarchical PCA) to provide more accurate principal components

and smaller reconstruction errors.

5.5.5 Experimental Results

The results of HiGSFA, HGSFA and PCA on three evaluation criteria are pre-

sented now. Individual scores are reported as a± b, where a is the average over

the test images (S1-test and S2-test), and b is the standard error of the mean

(i.e., half the absolute difference).

118 CHAPTER 5. HiGSFA= HGSFA + INFORMATION PRESERVATION

Feature Slowness

The weighted ∆ values of GSFA (Equation 77) are denoted here as ∆DR,G3
j

and depend on the graph G3, which in turn depends on the training data and

the labels. To measure slowness (or rather fastness) of test data, standard ∆

values are computed using the images ordered by increasing age label, ∆T,lin
j

def
=

1
N−1

∑
n(yj(n+ 1)− yj(n))2. The last expression is equivalent to a weighted ∆

value using a linear graph (Figure 3.3.b). In all cases, the features are normalized

to unit variance before computing their ∆ values to allow for fair comparisons

in spite of the feature scaling method.

Table 5.3 shows ∆DR,G3
1,2,3 (resp. ∆T,lin

1,2,3), that is, the ∆ values of the three

slowest features extracted from the DR-dataset (resp. T-dataset) using the graph

G3 (resp. a linear graph).

PCA HGSFA (G3) HiGSFA (G3)

∆DR,G3
1 — 1.23 1.17

∆DR,G3
2 — 1.46 1.38

∆DR,G3
3 — 1.56 1.53

∆T,lin
1 1.99 0.45 0.38

∆T,lin
2 1.93 1.12 0.99

∆T,lin
3 1.99 1.90 1.90

Table 5.3: Average delta values of the first three features extracted by PCA,
HGSFA, and HiGSFA on either training or test data (smaller values are better).
The first feature extracted is the most stable according to the age-ordered linear
graph, indicating that this is the main feature that encodes age. For comparison,
the ∆ value of unit-variance i.i.d. noise is 2.0.

Table 5.3 shows that HiGSFA outperforms HGSFA in slowness maximiza-

tion. The ∆T,lin values of the PCA features are larger, which is not surprising,

because PCA does not optimize for slowness. Since ∆DR,G3 and ∆T,lin are

computed from different graphs, they should not be compared with each other.

∆T,lin considers transitions between images with the same or very similar ages

but arbitrary race and gender. ∆DR,G3 only considers transitions between im-

ages having at least one of a) the same gender, b) the same race, or c) different

but consecutive age groups.

Age Estimation Error

Some real-life applications only need a coarse categorization of age in broad age

groups. However, other applications benefit from a more precise estimation,

making it convenient to treat age estimation as a regression problem requiring a

concrete numerical estimation, usually expressed as an integer number of years.

Three metrics are used to measure age estimation accuracy: (1) the mean

absolute error (MAE) (see Geng et al., 2007), which is the most frequent metric

5.5. EXPERIMENTAL EVALUATION OF HiGSFA 119

for age estimation, (2) the root mean squared error (RMSE), which is common

in Machine Learning as a loss function for regression, and (3) cumulative scores

(CS) (see Geng et al., 2007), which indicate the fraction of the images that have

an estimation error below a given threshold. For instance, CS(5) is the fraction

of estimates (e.g., expressed as a percentage) having an error of at most 5 years

w.r.t. the real age. The CSs at various thresholds are provided, facilitating

future comparisons with other methods. Although the RMSE is sensitive to

outliers and has almost not been used in the literature on age estimation, some

applications might benefit from its stronger penalization of larger estimation

errors.

Algorithm Age (MAE) Age (RMSE) Race (CR) Gender (CR)

BIF+3Step 4.45± 0.01 — 98.80%± 0.04 97.84%± 0.16
(Guo and Mu, 2010)

BIF+KPLS 4.18± 0.03 — 98.85%± 0.05 98.20%± 0.00
(Guo and Mu, 2011)

BIF+rKCCA 3.98± 0.03 — 99.00%± 0.00 98.45%± 0.05
(Guo and Mu, 2014)
BIF+rKCCA+SVM 3.92± 0.02 — — —
(Guo and Mu, 2014)

baseline CNN 4.60± 0.05 — — —
(Yi et al., 2015)
MCNN? no align 3.79± 0.09 — — —
(Yi et al., 2015)

MCNN? only age 3.63± 0.00 — — —
(Yi et al., 2015)

MCNN? 3.63± 0.09 — 98.6%± 0.05 97.9%± 0.1
(Yi et al., 2015)

PCA (control) 6.804± 0.007 8.888± 0.000 96.75%± 0.06 91.54%± 0.24
HGSFA (G3) (control) 3.921± 0.018 5.148± 0.049 98.60%± 0.08 96.40%± 0.12
HiGSFA (G1) (control) 3.605± 0.001 4.690± 0.000 — —

HiGSFA (G3) (proposed) 3.497 ± 0.008 4.583 ± 0.000 99.15% ± 0.01 97.70%± 0.01

Chance level 9.33 10.95 87.58% 86.73%

Table 5.4: Accuracy in years of state-of-the-art algorithms for age estimation
on the MORPH-II database (test data). Classification rates (CR) for race and
gender estimation are also provided. The chance level is the best possible perfor-
mance when the estimation is constant. ?A mistake in the evaluation protocol
of MCNN (Yi et al., 2015) made their training and test data not disjoint, thus
the actual accuracy might differ, see http://www.cbsr.ia.ac.cn/users/dyi/

agr.html.

The accuracies are summarized in Table 5.4. The MAE of HGSFA is 3.921

years, which is better than that of BIF+3Step, BIF+KPLS and BIF+rKCCA,

similar to BIF+rKCCA+SVM, and worse than the MCNNs (except the base-

line). However, the MAE of HiGSFA is only 3.497 years, which seems to be

better than all previous algorithms found in the literature. In contrast, PCA

has the largest MAE, namely an MAE of 6.804 years. Detailed cumulative scores

for HiGSFA and HGSFA are provided in Table 5.5.

The RMSE of HGSFA on test data is 5.148 years, HiGSFA yields an RMSE of

http://www.cbsr.ia.ac.cn/users/dyi/agr.html
http://www.cbsr.ia.ac.cn/users/dyi/agr.html

120 CHAPTER 5. HiGSFA= HGSFA + INFORMATION PRESERVATION

4.583 years, and PCA an RMSE of 8.888 years. The RMSE of other approaches

does not seem to be available.

The poor accuracy of PCA for age estimation is not surprising, because prin-

cipal components might lose wrinkles, skin imperfections, and other information

that could reveal age in adults. Another reason is that principal components are

too unstructured to be properly untangled by the soft GC method, in contrast

to slow features, which have a very specific and simple structure.

Algorithm cs(0) cs(1) cs(2) cs(3) cs(4) cs(5) cs(6) cs(7) cs(8) cs(9) cs(10)

HGSFA 8.80 26.42 42.41 55.80 66.38 74.86 81.31 86.37 90.12 92.93 94.96
HiGSFA 9.87 29.16 46.23 60.14 71.04 79.56 85.70 90.04 93.12 95.45 96.92

cs(11) cs(12) cs(14) cs(16) cs(18) cs(20) cs(22) cs(24) cs(26) cs(28) cs(30)

HGSFA 96.43 97.42 98.67 99.34 99.69 99.85 99.92 99.97 99.97 99.98 99.99
HiGSFA 97.91 98.56 99.34 99.70 99.84 99.91 99.94 99.96 99.97 99.98 99.99

Table 5.5: Percentual cumulative scores (the larger the better) for various max-
imum allowed errors ranging from 0 to 30 years.

The behavior of the estimation errors of HiGSFA is plotted in Figure 5.7 as a

function of the real age. On average, older persons are estimated much younger

than they really are. This is in part due to the small number of older persons

in the database, and because the oldest class used in the supervised step has an

average of about 58 years, making this the largest age that can be estimated by

the system. The MAE is surprisingly low for persons below 45 years. The most

accurate estimation is an MAE of only 2.253 years for 19-year-old persons.

Reconstruction Error

A reconstruction error is a measure of how much information the output features

retain from the original input. In order to compute it, a linear global model for

input reconstruction is assumed here.

Let X be the input data and Y the corresponding set of extracted features.

A matrix D and a vector c are learned from the DR-dataset using linear regres-

sion such that X̂
def
= DY +c1T approximates X as closely as possible, where 1 is

a vector of N ones. Thus, X̂ is a matrix containing the reconstructed samples

(i.e. x̂n
def
= Dyn + c is the reconstruction of the input xn given its feature repre-

sentation yn). Figure 5.2 shows examples of face reconstructions using features

extracted by different algorithms.

Since the model is linear and global, output features are mapped to the

input domain linearly using ordinary least squares. For PCA this gives the

same result as the usual multiplication with the transposed projection matrix

plus image average. An alternative (local) approach for HiGSFA would be to

use the linear reconstruction algorithm of each node to perform reconstruction

from the top of the network to the bottom, one node at a time. However, such

a local approach is less accurate than the global one.

5.5. EXPERIMENTAL EVALUATION OF HiGSFA 121

Figure 5.7: The average age estimates of HiGSFA are plotted as a function
of the real age. The MAE is also computed as a function of the real age and
plotted as age±MAE(age).

The normalized reconstruction error, computed from the T-dataset, is then

defined as

erec
def
=

∑N
n=1 ||(xn − x̂n)||2∑N
n=1 ||(xn − x̄)||2

, (147)

which is the ratio between the energy of the reconstruction error and the variance

of the test data except for a factor N/(N − 1).

Chance level HGSFA HiGSFA PCA

erec 1.0 0.818 0.338 0.201

Table 5.6: Reconstruction errors on test data using 75 features and various
algorithms. The original dimensionality is 962 = 9216 components.

The reconstruction errors of HGSFA, HiGSFA and PCA using 75 features

are given in Table 5.6. The largest reconstruction error results from the constant

reconstruction x̄ (chance level). As expected, HGSFA does slightly better than

chance level, but worse than HiGSFA, which is closer to PCA. PCA yields the

best possible features for the given linear global reconstruction method, and is

better than HiGSFA by 0.127. For HiGSFA, from the 75 output features, 8 of

them are slow features (slow part), and the remaining 67 are reconstructive. If

one uses 67 features instead of 75, PCA yields a reconstruction error of 0.211.

122 CHAPTER 5. HiGSFA= HGSFA + INFORMATION PRESERVATION

HiGSFA Network with HGSFA Hyper-Parameters

In the experiments above, the hyper-parameters of the HiGSFA and HGSFA net-

works (e.g., nonlinear expansion functions, output dimensionalities) have been

tuned separately. To verify that the performance of HiGSFA is better than

that of HGSFA not simply due to different hyper-parameters, the performance

of an HiGSFA network is evaluated using the hyper-parameters of the HGSFA

network (the only difference is the use of iGSFA nodes instead of GSFA nodes).

The hyper-parameter ∆T , not present in HGSFA, is set as in the tuned HiGSFA

network. As expected, the change of hyper-parameters affected the performance

of HiGSFA: The MAE increased to 3.72 years, and the RMSE increased to 4.80

years. The reconstruction error improved slightly to 0.322. Although the subop-

timal hyper-parameters increased the estimation errors of HiGSFA, it was still

clearly superior to HGSFA.

Sensitivity to the Delta Threshold ∆T

The influence of ∆T on estimation accuracy and numerical stability is evaluated

by testing different values of ∆T . For simplicity, the same ∆T is used from layers

3 to 10 in this experiment (∆T is not used in layers 1 and 2, where the number of

features in the slow part is constant and equal to 3 and 4 features, respectively).

The performance of the algorithm as a function of ∆T is shown in Table 5.7.

The ∆T yielding minimum MAE and used in the optimized architecture is 1.96.

∆T
Age Age

erec
Race Gender #Features

MAE RMSE CR CR L3

1.92 3.506 4.583 0.330 99.15 97.58 2.87
1.94 3.499 4.583 0.333 99.15 97.64 3.22
1.96 3.497 4.583 0.338 99.15 97.00 3.66
1.98 3.530 4.637 0.359 99.09 94.72 4.14

Table 5.7: Performance of HiGSFA on the MORPH-II database using different
∆T (default value is ∆T = 1.96). The reported results are the age estimation
errors (MAE and RMSE), the reconstruction error (erec), the percentual classi-
fication rate for race and gender, and the average length of the slow part in the
features computed by the nodes of the third HiGSFA layer. All error measures
have been computed on test data.

The average number of slow features in the third layer changes moderately

depending on the value of ∆T , ranging from 2.87 to 4.14 features, and the final

error measures change only slightly. This shows that the parameter ∆T is not

critical and can be tuned easily.

5.5. EXPERIMENTAL EVALUATION OF HiGSFA 123

Evaluation on the FG-NET Database

The FG-NET database (Cootes, 2004) is a small database with 1002 facial im-

ages taken under uncontrolled conditions (e.g., many are not frontal) and in-

cludes identity, race, and gender annotations. Due to its small size, it is unsuit-

able to evaluate HiGSFA directly. However, FG-NET is used here to investigate

the capability of HiGSFA to generalize to a different test database. The HiGSFA

(G3) network that has been trained with images of the MORPH-II database (ei-

ther with the set S1 or S2) is tested using images of the FG-NET database. For

this experiment, images outside the original age range from 16 to 77 years are

excluded.

For age estimation, the MAE is 7.32 ± 0.08 years and the RMSE is 9.51

± 0.13 years (using 4 features for the supervised step). For gender and race

estimation, the classification rates (5 features) are 80.85% ± 0.95% and 89.24%

± 1.06%, resp. The database does not include race annotations, but all inspected

subjects appear to be closer to white than to black. Thus, it is assumed that

all test persons have white race.

The most comparable cross-database experiment seems to be done using a

system (Ni et al., 2011) trained on a large database of images from the internet

and tested on FG-Net. By restricting the ages to the same 16–77 year range

used above, this system achieved an MAE of approximately 8.29 years.

Alternative Evaluation Protocol

The protocol by Guo and Mu (2014) that has been used to create the training

and test data used in the experiments (based on the sets S1, S2 and S3) has been

frequently used before for age estimation. However, it has a few disadvantages.

Thus, the “leave one person out” (LOPO) (Choi et al., 2011; Huerta et al., 2015)

protocol is also adopted here. For efficiency reasons, 2000 persons are left out of

the training set instead of one. That is, the test data is created with the images

of 2000 persons chosen at random (about 8000 images), whereas the training

data is simply the remaining images (about 45 000 images).

The alternative protocol has the following properties in contrast to the one

proposed by Guo and Mu (2014): (a) The distribution of the training and test

images is the same on average: |M | = 85%, |F | = 15%, |B| = 77%, |W | = 19%,

|H| = 3%, |A| < 1%, |O| < 1%. This is a basic assumption in machine learning.

In contrast, the original protocol has: |M | = 76%, |F | = 24%, |B| = 50%, |W | =
50%, |O| = |A| = |H| = 0% for training, and |M | = 87%, |F | = 13%, |B| = 84%,

|W | = 12%, |H| = 4%, |A| < 1%, and |O| < 1% for testing. (b) The number of

training images available is 4 times larger (about 45,000 vs 10,530 images), which

might improve generalization. (c) Since realistic applications might involve age

estimations from unknown persons, the test images are restricted to persons

not appearing in the training data. In the protocol of Guo and Mu (2014),

44% of the test images belong to persons previously seen in training. (d) One

can improve evaluation accuracy by repeating the protocol several times (here

124 CHAPTER 5. HiGSFA= HGSFA + INFORMATION PRESERVATION

5 times). The original protocol is repeated twice.

Note that the alternative protocol is similar but not equivalent to 5-fold cross

validation: Each execution of the protocol is independent, making different test

sets not necessarily disjoint, and the ratio training data/test data is larger (5.63

vs. 4.0 in 5-fold cross validation).

The alternative protocol has more training images than the original pro-

tocol. To keep efficiency manageable, each image is distorted only 4 times to

create the DR-dataset (instead of 22 times) and once to create the S-dataset

(instead of 3 times). Notice that all races appear in the training and test data.

Therefore, during training two classes are considered: B and a virtual class R
def
= W+A+H+O to preserve a binary clustered graph for race estimation and

balance the size of the classes. However, for fair comparisons, the classification

rate is computed using images of only the B and W races. The results are shown

in Table 5.8. The top MAE achieved by HiGSFA is the same for both protocols

when rounded to two digits: 3.50 years (though, using different networks and

training graphs).

Algorithm Age (MAE) Age (RMSE) Race (CR) Gender (CR)

BIF+3SVM †‡ 4.2 — — —
(Han et al., 2013)

CNN (5CV)?‡ 3.88 — — —
(Huerta et al., 2015)

HiGSFA (G3) 3.511± 0.002 4.626± 0.026 98.80% ± 0.01 98.53 % ± 0.02
HiGSFA (age only) 3.502 ± 0.003 4.583 ± 0.000 — —

Chance level 9.16 10.78 87.53% 80.69%

Table 5.8: Accuracy of HiGSFA on MORPH-II using the alternative protocol.
Some results are written in this table as a±b, where a is the average over 5 runs
(test data) and b is the standard error of the mean. ?5-fold cross validation.
†Uses a larger version of the database but only 10 001 training images. ‡As in
the alternative protocol, it has been ensured that the persons in the training
and test data are disjoint.

5.6 Discussion of HiGSFA

This chapter has proposed an extension to HGSFA, called hierarchical

information-preserving GSFA (HiGSFA), that complements the slowness prin-

ciple with information preservation resulting in improved global slowness, input

reconstruction and label estimation accuracy compared with HGSFA.

The advantages and limitations of HSFA (and HGSFA) networks have been

analyzed, particularly the phenomena of unnecessary information loss and poor

input reconstruction. Unnecessary information loss occurs when a node in the

network prematurely discards information that would have been useful for slow-

ness maximization in another node higher up in the hierarchy. Poor input

5.6. DISCUSSION OF HiGSFA 125

reconstruction refers to the difficulty of approximating an input accurately from

its feature representation. It is shown that these phenomena are the result of

optimizing slowness locally, yielding suboptimal global features.

HiGSFA improves feature extraction at the local level to address these short-

comings. The feature vectors computed by iGSFA nodes of an HiGSFA network

are divided in two parts: a slow and a reconstructive part. The features of the

slow part follow a slowness optimization goal and are slow features transformed

by a linear scaling. The features of the reconstructive part follow the principle

of information preservation (i.e. maximization of mutual information between

outputs and labels), which is implemented in practice as the minimization of

a reconstruction error. The parameter ∆T (∆-threshold) allows the combina-

tion of PCA and GSFA. This parameter balances the lengths of the slow and

reconstructive parts, J and D− J features, respectively, where D is the output

dimensionality and J is the number of features with ∆ < ∆T .

A small ∆T results in more reconstructive features and a large ∆T results in

more slow features. In particular, when ∆T < 0, iGSFA becomes equivalent to

PCA, and when ∆T ≥ 4.0, iGSFA becomes equivalent to GSFA except for a lin-

ear transformation (positive edge weights and a consistent graph are assumed).

Theory justifies fixing ∆T slightly smaller than 2.0 (Section 5.3.3), resulting in

some features being similar to those of GSFA and other features being similar

to those of PCA (on residual data).

The method proposed in Section 4.5.5 is used for the first time to combine

various efficient pre-defined training graphs into a single efficient training graph,

allowing efficient and accurate learning of multiple labels.

The experimental results show that HiGSFA is better than HGSFA in terms

of feature slowness, input reconstruction and age estimation accuracy. Moreover,

HiGSFA offers even higher accuracies than current state-of-the-art algorithms

for age estimation, including approaches based on bio-inspired features and con-

volutional neural networks. The improvement over state-of-the-art multi-scale

CNNs is a reduction by 48.5 days (≈ 1.5 months) in the average estimation

error. The improvement over HGSFA is larger: 154 days (≈ 5 months). This is

a significant improvement technically and conceptually.

The next sections provide additional insights—mostly conceptual—into the

proposed approach, the obtained results, and future work.

5.6.1 The Approach

Information preservation can be guaranteed by preserving the information con-

tained in the data that describes the global slow features. However, it has been

shown that one cannot always identify such information at a local level. There-

fore, HiGSFA resorts to a reconstruction goal to preserve as much information

about the local input as possible, which is likely to also include information

relevant to extract the global slow features.

The features extracted by HiGSFA are better than those of HGSFA quan-

titatively and qualitatively. Even if unlimited training data and computational

126 CHAPTER 5. HiGSFA= HGSFA + INFORMATION PRESERVATION

resources were available, the features extracted by HGSFA do not necessarily

converge to those of HiGSFA. In this overfitting-free scenario, information loss

would only decrease partially in HGSFA, because the main cause of this problem

is not overfitting but the local optimization of slowness.

Besides the approach followed by HiGSFA, the slowness principle and infor-

mation preservation may be combined by optimizing a single objective function

that integrates both criteria, favoring directions that are slow and have a large

variance. However, I have found in previous experiments that balancing these

two criteria is difficult in practice. In addition, splitting the two allows to keep

SFA nonlinear and PCA linear.

HiGSFA inherits from SFA a close connection to unsupervised learning. Like

GSFA can be emulated with SFA (see Section 3.2.5), HiGSFA can be emulated

by training HiSFA in an unsupervised fashion with data generated from a par-

ticular Markov chain. This emulation would incur in a small error due to PCA

being unaware of sample weights, which could be easily fixed by using the ver-

tex weights as weighting factors of the samples during the computation of the

covariance matrix by PCA.

The idea of complementing GSFA with information preservation in hierarchi-

cal networks can also be applied to SFA (e.g., either using HiSFA or an HiGSFA

network trained with a linear graph, where the samples are ordered by time).

The improved feature slowness of HiSFA over HSFA might be useful to improve

simulations based on SFA for Neuroscience. Moreover, existing neural models

based on the slowness principle might benefit from incorporating information

preservation.

The slow and reconstructive parts of the extracted features can be seen as

two information channels: The first one encodes information representing the

slow parameters, and the second one encodes information representing the re-

maining aspects of the input. Although the information in the slow part is

somewhat mixed in the age/gender/race estimation experiments, it can be fur-

ther decomposed into three channels; the 3rd slowest feature is mostly related to

race, the 4th one to gender, and the remaining ones to age. Therefore, HiGSFA

follows two of the suggestions by Krüger et al. (2013) based on findings from

Neuroscience regarding the primate visual system useful for successful computer

vision, namely, hierarchical processing and information-channel separation.

The iGSFA node has been implemented in Python (including iSFA, see Ap-

pendix A). In the next few months, I plan to make the node public by integrating

it into the MDP toolkit (Zito et al., 2009).

5.6.2 Network Parameters

By selecting the network structure appropriately, the computational complexity

of HiGSFA (and other hierarchical versions of SFA) is linear w.r.t. the number of

samples and their dimensionality, resulting in feasible training times. Training

a single HiGSFA network (231 660 images of 96×96 pixels) takes only 10 hours,

whereas HiSFA takes about 6 hours (including the time needed for data loading,

5.6. DISCUSSION OF HiGSFA 127

the supervised step, training, and testing) on a single computer (24 Xeon X7542

cores @ 2.67GHz and 128 GB of RAM) without GPU computing. However, the

algorithm can also be implemented on GPUs or using distributed processing,

because the nodes within a layer can be trained independently. For comparison,

the system of Guo and Mu (2014) takes 24.5 hours (training and testing) on a

setup with fewer images and lower resolution.

HiGSFA is more accurate than HGSFA even when the output dimension-

alities and network hyper-parameters have been tuned for the latter network.

However, HiGSFA yields even higher accuracies if larger output dimensional-

ities are used than those providing best accuracies for HGSFA. This can be

explained by various factors: (a) In both networks, the input dimensionality of

a single GSFA node is I ′ (the expanded dimension), whereas in HiGSFA the

input dimensionality of a single PCA node is I, where typically I ′ � I. Hence,

slow features may overfit more than reconstructive features for this setup. (b)

In HGSFA, the features of all the nodes are attracted to the same optimal free

responses, whereas in HiGSFA the reconstructive part is attracted to the (dif-

ferent for each node) local principal components. Thus, in HGSFA overfitting

might accumulate through the layers more than in HiGSFA. (c) The HGSFA

network may benefit less from more input features, because faster features might

be noise-like and result in more overfitting without providing much additional

information.

In the iSFA and iGSFA algorithms, the number of slow features J with ∆ <

∆T should be smaller than the output dimensionality D, so that D − J output

features are reconstructive. Otherwise, the output features would not have a

reconstructive part, negating the advantages of the method. This might happen

if too many slow parameters, their mixtures, or higher-frequency harmonics are

present in the data. One might avoid this problem by setting a smaller ∆T ,

by directly controlling the number of the slow features, and by using training

graphs with a small number of optimal free responses with ∆ < 2.0.

5.6.3 Age, Gender and Race Estimation

The problem of age estimation from adult facial photographs has been chosen

for this work, because it appears to be an ideal problem to test the capabilities

of HiGSFA. For age estimation, PCA is not very useful because wrinkles, skin

texture and other higher-frequency features are poorly represented. Therefore,

it is not obvious and even counter-intuitive that feature slowness improves by

incorporating PCs in HiGSFA. Improvements on feature slowness using other

supervised learning problems, such as digit and traffic sign recognition, and

the estimation of gender, race, and horizontal-position from face image patches,

would be less conclusive because for such problems a few PCs encode the dis-

criminative information relatively well.

To estimate age, race, and gender simultaneously, a graph G3 has been con-

structed combining three pre-defined graphs, encoding sensitivity to the partic-

ular labels, and favoring invariance to any other factor. The graphs used are a

128 CHAPTER 5. HiGSFA= HGSFA + INFORMATION PRESERVATION

serial graph for age estimation with 32 groups and two clustered graphs with

2 clusters each for race and gender estimation. The number of features with

∆ < 2.0 that can be extracted from these graphs is 15, 1 and 1, respectively

(due to their particular geometry, see Section 4.4.2). Since the vertex weights

of these graphs are not exactly proportional, the conditions to apply the theory

of combination of graphs are not fulfilled perfectly. This results in a combined

graph that has more than 17 optimal responses with ∆ < 2.0 instead of 17,

as predicted by theory. In spite of this small discrepancy from the theoretical

assumptions, the method yields the expected features and the first 5 of them

contain most of the information relevant to solve these problems.

Out of the 75 features extracted in the top-most node, 8 are slow and 67

are reconstructive. The input to the supervised step is the first 4 to 7 slow

features of the output, and the reconstructive part is not used. This shows that

HiGSFA and HGSFA concentrate the label information in the first features.

One can actually replace the iGSFA node on the top of the HiGSFA network

by a regular GSFA node, so that all features are slow, without affecting the

performance. The superiority in age estimation of HiGSFA over HGSFA is thus

not due to the use of principal components in the final supervised step but to

the higher quality of the slow features.

The performance of HiGSFA for age estimation is the highest reported on

the MORPH-II database with an MAE of 3.497 years. Previous state-of-the-art

results are an MAE of 3.63 years using a multi-scale CNN (Yi et al., 2015) and

3.92 using BIF+rKCCA+SVM (Guo and Mu, 2014). These results suggest that

age estimation is not quite a convolutional problem; age-sensitive features may

be considerably different at different facial landmarks. Multi-scale techniques

for CNNs reduce this problem but do not eliminate it.

Even though the proposed system performs slightly better than state-of-the-

art algorithms, this is not the main goal of this research. The specific goal is

to improve HGSFA. In this sense, the central claim is that HiGSFA is better

than HGSFA regarding feature slowness, input reconstruction and estimation

accuracy.

5.6.4 Reconstruction from Slow Features

The experiments confirm that PCA is more accurate than HiGSFA at recon-

struction using the same number of features (here 75), which was expected

because PCA features are optimal when reconstruction is linear. From the 75

features extracted by HiGSFA, 67 are reconstructive (8 fewer than in PCA)

and they are computed hierarchically (locally), in contrast to the PCA fea-

tures, which are global. Thus, it is encouraging that the gap between PCA and

HiGSFA at input reconstruction is moderate. In turn, HiGSFA is more accurate

than HGSFA, because reconstruction is the secondary goal of HiGSFA, whereas

HGSFA does not pursue reconstruction. The improved reconstruction capability

of HiGSFA might facilitate certain applications, such as image morphing.

Since the HiGSFA network implements a nonlinear transformation, it is rea-

5.6. DISCUSSION OF HiGSFA 129

sonable to employ nonlinear reconstruction algorithms. Nonlinear reconstruc-

tion can provide more accurate reconstructions in theory, but in practice it is

difficult to train such type of algorithms well enough to perform better on test

data than the simpler global linear reconstruction algorithm. An algorithm

for nonlinear reconstruction that minimizes the feature error efeat has been de-

scribed in Section 5.4.5. However, since the number of dimensions is reduced by

the network, one can expect many samples with feature error efeat = 0 (or efeat

minimal) that differ substantially from any valid input sample (e.g., not looking

at all like a face). To correct this problem, one might need to consider the input

distribution to limit the range of valid reconstructions.

In the context of convolutional networks, generative adversarial net-

works (Goodfellow et al., 2014; Alec Radford, 2015; Denton et al., 2015) have

been used to generate random inputs with excellent image quality. For HiGSFA

networks, such a promising approach might be useful also to do nonlinear re-

construction, if properly adapted.

5.6.5 Final Words

A hypothesis of this dissertation is that it is possible to develop successful learn-

ing algorithms based on a few simple but strong learning principles and heuris-

tics, and this is the approach that I tried to pursue with HiGSFA. An algorithm

that might be strong but cannot be understood and justified analytically would

be of less interest to me.

The proposed algorithm is general purpose (e.g., it does not know anything

about face geometry), but it is still capable of outperforming special-purpose

state-of-the-art algorithms, at least for the age estimation problem. The results

show the improved versatility and robustness of the algorithm and make it a

good candidate for many other problems of computer vision on high-dimensional

data, particularly those lying at the intersection of image analysis, nonlinear

feature extraction, and supervised learning.

Chapter 6

Discussion

This chapter presents a general, global, and conceptual discussion. Additional

method-specific topics are addressed in the discussion sections of each chapter.

This dissertation addresses the question of how to use SFA to solve super-

vised learning problems on high-dimensional data in an efficient and accurate

manner. In order to answer this question, a family of algorithms that extend

HSFA has been proposed (e.g., HGSFA, HiGSFA, ELL method). These ex-

tensions enhance the capabilities of HSFA for supervised learning, amplifying

its strengths, reducing its limitations, and allowing a deeper understanding of

the role of SFA in supervised learning scenarios. Preference has been given

to principled methods when developing the extensions, because the goal is to

develop algorithms supported by theory that can be applied to a broad range

of supervised learning problems with minimal customization instead of having

to develop a new method every time. The most complex and promising ex-

tension is HiGSFA, since it encompasses all techniques used in the remaining

extensions and provides the strongest results. Experiments prove the efficacy of

the approach: HiGSFA yields much slower features than HSFA and has a good

computational complexity of the same order as HSFA. Moreover, HiGSFA yields

more accurate solutions than HSFA for classification and regression, providing

competitive results for several face-analysis problems (x-pos, y-pos, scale, age,

gender, race). For the problem of age estimation, HiGSFA is superior to CNNs

and even improves the state-of-the-art age estimation accuracy.

Supervised learning on real-life high-dimensional data is a challenge. For this

type of data, existing classification and regression algorithms sometimes yield

good results for specific tasks, but generally suffer from poor efficiency (e.g., have

quadratic or cubic complexity w.r.t. the number of samples or dimensions) and

their accuracy is usually suboptimal. In the last decade, convolutional neural

networks (CNNs) have allowed excellent accuracy for several real-life supervised

tasks on high-dimensional data and good efficiency with an architecture that ex-

tensively profits from parallelism in graphics cards to speed up otherwise lengthy

computations. However, the development of CNNs has been typically based on

technical advances and less on theoretical ideas, like Zeiler and Fergus (2014)

affirm: “. . . there is still little insight into the internal operation and behavior

131

132 CHAPTER 6. DISCUSSION

of these complex models (CNNs), or how they achieve such good performance.

From a scientific standpoint, this is deeply unsatisfactory”.

Algorithms with more solid scientific foundations are desirable. Therefore,

the extensions proposed in this work follow a principled approach. The most

advanced extension, HiGSFA, provides a new way to construct and train deep

neural networks in a principled, scalable, and accurate way. The chosen prin-

ciples are mostly inspired by biological neural systems, particularly the visual

system of mammals.

The main hypothesis of this dissertation (see Section 1.4 for a list of all

hypotheses) is that a few simple but strong principles and heuristics, such as the

slowness principle, allow the design of successful supervised learning algorithms

that provide good efficiency and label-estimation accuracy. This hypothesis is

supported by experimental results, including those on age estimation, where

HiGSFA achieves a mean average error (MAE) of 3.50 years improving the

previous state-of-the-art result of 3.63 years by a multi-scale CNN (Yi et al.,

2015). HGSFA achieves an MAE of 3.92 years, which is a good accuracy but not

as good as that of HiGSFA. HiGSFA (among other extensions) is well suited for

large scale real-life problems since it has linear computational complexity in the

number of samples and in their dimensionality. Moreover, additional challenging

supervised learning problems may be handled by HiGSFA without modifying the

approach, if enough training data is available, because the feature space spanned

by the network is highly complex.

A second hypothesis of this work affirms that even though the slowness

principle is unsupervised, it is a fundamental learning principle that can be used

for supervised learning in an efficient and accurate way. This is corroborated

by the reported results, particularly when the slowness principle is implemented

by SFA and combined with additional principles. A more detailed discussion of

this topic is left to Section 6.2.

HiGSFA relies on the following principles and heuristics: the slowness prin-

ciple, divide and conquer computation, spatial localization of features, exploita-

tion of label similarity through slowness, nonlinear expansions that are robust

to outliers, information preservation, and multiple information channels. The

first three principles have already been considered by HSFA before this work

(Wiskott, 1998; Franzius et al., 2011). Table 1.1 shows the methods used to

implement these principles and heuristics.

A third hypothesis stated in Section 1.4 focuses on real-life face images and

maintains that HSFA (and its extensions) can be robust enough to extract the

desired labels and overcome, to a good extent, the variations present in this

type of data. This hypothesis is also verified in general using various problems

on face images: age, gender, race, x-pos, y-pos, and scale estimation. HGSFA

is capable of computing features mostly invariant to several image variations.

The most difficult variation seems to be the lighting conditions. Invariance to

extreme lighting conditions (strong unidirectional light and on-face shadows) is

necessary for the subproblems comprised by face detection (x-pos, y-pos, scale).

6.1. PROPOSED EXTENSIONS 133

In part, the difficulty lies in a too small number of images with extreme lighting

that does not represent this type of variation well enough. However, good results

are still achieved even for this extreme type of image variation.

The extensions to HSFA proposed in this thesis can be easily combined

(see Figure 5.1). Each extension incorporates an additional principle and yields

improved results, making the final combined system significantly more accurate

than HSFA. Efficiency is only minimally affected by the extensions; for instance,

the computational complexity of HiGSFA trained on a combination of three

efficient pre-defined graphs has the same order of complexity as HSFA. However,

feature quality is highly improved, yielding also improved feature slowness and

label estimation accuracy.

Experiments show that HiGSFA and HGSFA can extract various face at-

tributes including age, gender, race, x-pos, y-pos, and scale (experiments on the

last three attributes and HiGSFA not reported due to space considerations). In

all cases, no face model or landmarks were explicitly provided or constructed;

only the position of the eyes and mouth was used in order to normalize the im-

ages. Good results have also been obtained for digit and traffic sign recognition.

The approach is general purpose: To address a new problem or dataset, one

only needs training samples and their respective labels.

The employed datasets have been limited to images and the focus has been on

solving classification and regression problems. However, the proposed extensions

can be applied to other types of data with minimal or small modifications, such

as audio and video, as well as other problems, such as class density estimation,

and other sub-fields of machine learning, such as reinforcement learning.

The remainder of the discussion is structured as follows: The proposed ex-

tensions are shortly summarized. Then, the use of the slowness principle for

supervised learning is justified. Afterwards, an information analysis that in-

spired the different extensions to SFA is presented. Thereafter, implications of

this research and negative results are outlined, and promising topics for future

research are proposed. A conclusion closes the dissertation.

6.1 Proposed Extensions

The three main practical contributions of this work are the proposed extensions

to SFA: (1) graph-based SFA (GSFA), (2) exact label learning (ELL), and (3)

hierarchical information-preserving GSFA (HiGSFA). Each extension has been

presented and detailed in a separate chapter, but they and their main advantages

are shortly synthesized below.

6.1.1 Graph-Based SFA (GSFA)

The GSFA optimization problem is a natural extension to the SFA optimization

problem that allows transitions between arbitrary samples as specified by the

edges of a training graph. This allows us to include more information regarding

134 CHAPTER 6. DISCUSSION

desired output similarities (SFA involves N − 1 transitions, whereas GSFA in-

volves up to N(N + 1)/2 transitions). Contrary to SFA, GSFA does not involve

a sequence of samples. The training graph as a whole constitutes the training

data, and the generalized slowness objective given by Equation (6) is no longer

temporal but depends on the graph connectivity.

An optimal solution to the GSFA optimization problem can be computed

using the GSFA algorithm, which is similar to the SFA algorithm; the fun-

damental change is how the covariance matrix of the data and the derivative

second-moment matrix are computed. The new computation accounts for each

sample and edge of the training graph, as well as for their respective weights.

Compared to SFA + reordering, the quality of the features extracted by

GSFA is improved, providing higher label estimation accuracy and more ro-

bustness to new data. Labels are not provided explicitly to GSFA but implicitly

in the connectivity of the graph. Pre-defined graphs encode a large part of the

label information: Label similarities are encoded by the strength of the edge

weights. When the goal is regression, even more information can be encoded by

means of an ELL graph.

6.1.2 Exact Label Learning (ELL)

The ELL method is a mathematical framework that allows us to: (1) Analyze

the inherent properties of existing graphs. This method decomposes an existing

graph into its optimal free responses and computes their corresponding delta

values, providing an alternative representation of the graph that is useful to

understand its underlying structure. (2) Design new graphs sensitive to any

desired labels. The constructed ELL graph represents the label information

more precisely than pre-defined graphs, typically resulting in a dense edge-weight

matrix.

ELL provides excellent flexibility regarding the labels that can be encoded in

the graph. One can use ELL, for example, to encode multiple labels in a single

training graph, while balancing the importance of each label. The resulting

ELL graph can then be used to train a single HGSFA network to learn multiple

labels simultaneously. The resulting HGSFA network is more efficient than using

separate HGSFA networks and provides even higher label estimation accuracies

for some experiments (e.g., those reported in Table 5.4 on page 119, but not

those reported in Table 5.8 on page 124). When and why exactly these label

synergies occur is an open question.

6.1.3 Hierarchical Information-Preserving GSFA

Experiments with HGSFA and a conceptual analysis of how features are pro-

cessed by HGSFA networks have suggested the presence of two shortcomings

in HGSFA and HSFA: unnecessary information loss and poor input reconstruc-

tion. HiGSFA reduces these problems and is a scalable algorithm (if the network

structure is appropriate) that achieves competitive results for different problems.

6.2. SUPERVISED LEARNING VIA THE SLOWNESS PRINCIPLE 135

The key idea behind HiGSFA is to complement the slowness principle with

information preservation by dividing the feature vector into two parts. The

slow part contains slow components, whereas the reconstructive part contains

features that allow linear reconstruction of the input. Reconstructive features

allow more information to propagate to the top of the network.

A comparison of HGSFA and HiGSFA networks shows that HiGSFA inherits

the advantages of HGSFA and that both span a similar feature space. However,

results confirm that compared with HGSFA the features computed by HiGSFA

are slower, more reliable for test data (since they overfit less), contain more label

information, and result in more accurate label estimations. The experimental

results show that HiGSFA is a powerful and promising algorithm for super-

vised learning on high-dimensional data, especially for the solution of regression

problems.

A list of the datasets and supervised learning problems addressed in this

work is provided in Table 6.1.

Databases Problems considered

BioID (Jesorsky et al., 2001)
Face detection, including: estimation of the
horizontal and vertical position of a face in a
face patch (x-pos, y-pos), as well as the face
scale and position of the eyes. Discrimination
of face and non-face patches.

Caltech (Fink et al., 2003)
CAS-PEAL (Gao et al., 2008)
FaceTracer (Kumar et al., 2008)
FRGC (Phillips et al., 2005)
LFW (Huang et al., 2007)

Images rendered using Face-
Gen and PovRay

Estimation of gender and average color from
artificial face images.

FG-Net (Cootes, 2004)
Estimation of age, gender and race from real
face photographs.

MORPH-II (Ricanek Jr.
and Tesafaye, 2006)

MNIST Hand-written digit recognition.

GTSRB (Houben et al., 2013)
Traffic sign recognition. Compact discrimina-
tive features.

Table 6.1: Problems and databases addressed in this work using the proposed
extensions to SFA.

6.2 Supervised Learning via Slowness Principle

In biological learning systems labels are not available (or at least they are not

explicitly supplied). The slowness principle provides an excellent learning mech-

anism for such an unsupervised and temporal setup, because it captures the

natural heuristic that fundamental aspects of the environment change slowly on

average (e.g., due to physical and biological constraints).

One can do supervised learning with SFA by applying it to the raw (e.g.,

sensory) data. The features extracted by SFA must be post-processed by an

explicit supervised learning algorithm. However, such an approach is usually

136 CHAPTER 6. DISCUSSION

less effective, because the extracted features may be too unspecific w.r.t the

particular label one wants to learn: Many aspects of the data may be slow

besides the aspects related to the label. Therefore, this temporal SFA approach

is suboptimal, because the label of interest cannot be guaranteed to be contained

in the first few extracted features.

It is possible to obtain more label-specific features by using SFA + reordering,

or even better, by using GSFA. Training graphs allow the inclusion of more label

information than sample reordering (the amount of information depends on the

particular graph used). Strictly speaking, GSFA does not rely on the slowness

principle as originally conceived, because the data is not temporal. However,

the probabilistic interpretation of a graph indicates that GSFA is equivalent to

SFA if one trains SFA with an artificial sequence generated from a specially

constructed Markov chain, in which similar labels translate into frequent tran-

sitions. Hence, GSFA can be seen as a computational optimization of learning

in such an unsupervised and temporal setting.

This equivalence between supervised and unsupervised learning in GSFA

is a remarkable property that is also present in HGSFA (and in HiGSFA if a

weighted version of PCA is used). Such a property originates from SFA/the

slowness principle and appears to be unique to these extensions. It is a very

appealing property conceptually, because it strengthens the hypothesis of slow-

ness as a fundamental learning principle. For instance, unsupervised HiSFA is

equivalent to HiGSFA, if HiSFA is trained with appropriate data. Therefore,

(unsupervised) HiSFA is more accurate than (supervised) CNNs for age estima-

tion, if trained in an environment where the data is generated randomly using

a specific Markov model (see Section 3.2.5), and equally accurate as HiGSFA.

6.3 Analysis of Information as a Criterion for Algo-

rithm Design

Many of the contributions of this dissertation arose from an understanding of

SFA as an algorithm not just for feature extraction but rather for information

processing. This section explains how this view has lead to GSFA, ELL and

HiGSFA.

Assume the goal is to solve a regression problem with a single target label,

and consider the information available to regular SFA using the sample reorder-

ing method: The samples on their own provide little or no information regarding

the target label, and they could also be associated with several other labels. In-

formation about the specific target label is available to SFA through the order

of the samples in the training sequence. That is, only label-rank information is

available and the remaining explicit label information is lost (the samples may

still contain all label information implicitly, but it cannot be distinguished from

alternative labels).

Although label-rank information is available to the SFA + reordering method

in principle, this information is not fully exploited by SFA: The slowest extracted

6.3. ANALYSIS OF INFORMATION FOR ALGORITHM DESIGN 137

feature, for example, minimizes average squared differences between consecutive

output values. Thus, strictly speaking, SFA only enforces output similarities be-

tween consecutive outputs at times t and t+ 1. Nothing is explicitly guaranteed

regarding the similarities of outputs at time t and t+ k, for |k| > 1.

The use of training graphs in GSFA allows us to specify more transitions than

in standard SFA, encoding desired output similarity information more precisely

(and implicitly exploiting the label information better). Pre-defined graphs,

such as the serial or sliding window graphs, are also constructed based on the

label rank but make better use of the label information than standard SFA

(reordering method). For example, when GSFA is trained with a serial graph,

output similarity is enforced between a sample n in group l and all samples n′

in groups l−1 and l+ 1. However, the transitions of pre-defined graphs are still

somewhat imprecise, because they are specified by edge weights that usually

take only the values 1 or 0, instead of varying continuously depending on the

label values.

The ELL method is the next logical step to increase and maximize the label

information encoded by the graph. ELL graphs make even better use of the label

information by considering the exact numerical value of the labels (not only their

rank) to set the weight of all edges precisely. The resulting edge weight between

samples n and n+k takes into account not only the corresponding pair of labels

but in fact the labels of all samples.

GSFA trained with an ELL graph is aware of the complete label information,

except for the offset, scale and a global sign of the label, which is unavoidable

due to the constraints and objective function of GSFA. The GSFA optimization

problem requires that the output features have weighted zero-mean and weighted

unit variance, but is insensitive to the feature polarity. If the feature space is

unrestricted and the samples are all different, the slowest feature extracted by

GSFA + ELL graph is then an affine transformation of the label. This result

extends to multiple label learning (though one should consider the issues of

label decorrelation and possible feature combinations).

The analysis above focuses on label information that is explicitly provided

for training data and how it is encoded by the sample connectivity. However, it

is also possible to analyze the implicit label information that is encoded in the

samples (the implicit label information can be measured as the mutual infor-

mation between the samples and their labels). Such implicit label information

is propagated by the network and is used to estimate the label of old and new

samples. For age estimation, these explicit and implicit types of label informa-

tion are called ground-truth age and apparent age, respectively. It has been

shown that HGSFA can lose part of the implicit label information (see unneces-

sary information loss in Section 5.3.3). HiGSFA, as the name implies, preserves

and propagates more information about the original data to higher layers. In

general it is not possible to always identify all implicit label information at the

local level (i.e., during learning in an individual node), and some of it may be

lost by the hierarchy. Therefore, the heuristic behind HiGSFA is to preserve

138 CHAPTER 6. DISCUSSION

as much information of the local inputs as possible, which in turn is likely to

contain a large amount of implicit label information. Such additional implicit

label information is responsible for the superior performance of HiGSFA over

HGSFA.

One can compare the information processing in HiGSFA and CNNs, at least

abstractly. The effect of information preservation in HiGSFA might be similar

to the effect of unsupervised pre-training and joint supervised and unsupervised

optimization in CNNs. All of these techniques result in more input information

being propagated from the original images to the network outputs. During fea-

ture extraction, the information flow in HiGSFA and CNNs is similar (bottom

up). However, the information flow during training is quite different: Label

information in CNNs is not available to the layers of the network directly, but

it is provided indirectly as an error signal that is back-propagated and used to

compute local gradients. In this sense, HGSFA and HiGSFA seem to make more

extensive use of the explicit label information (encoded in a training graph and

available to all nodes). Still, the error signal used by backpropagation provides

useful feedback from the network output to the local nodes that combines ex-

plicit and implicit label information. Currently, neither HGSFA nor HiGSFA

employ backpropagation, though in principle such a method may further im-

prove global slowness and label estimation accuracy (at the cost of local slowness

in some nodes other than the top node). Therefore, one open line of research is

the implementation of backpropagation for HiGSFA as supervised post-training.

6.4 Implications of this Work

This section outlines how this research might be exploited by researchers in

relevant fields:

(1) HiSFA is very likely to provide better features than HSFA for unsu-

pervised learning. Information preservation and HiGSFA were motivated in the

context of supervised learning and all experiments were conducted in supervised

learning settings. Although this lies out of the scope of this work, the theory

suggests that unsupervised learning settings may also benefit from information

preservation. Therefore, I recommend the use of HiSFA instead of HSFA in

future experiments and simulations, particularly in the fields of robotics and

computational neuroscience.

(2) This work confirms that if label information is available, supervised learn-

ing principles that explicitly use the label information may be more appropriate

or at least complement the unsupervised ones. General principles of unsuper-

vised learning include the slowness principle (in its original temporal form) and

the preservation of input similarities (manifold learning, as in LPP). These prin-

ciples are excellent for unsupervised learning and for solving problems involv-

ing feature extraction for an unspecific task, but are suboptimal for supervised

learning.

6.4. IMPLICATIONS OF THIS WORK 139

(3) Consequently, the use of standard SFA or HSFA is discouraged if the

goal is to solve supervised learning problems. As shown both theoretically and

empirically, the approach SFA + supervised step is suboptimal w.r.t. label esti-

mation accuracy and can be improved by using the extensions proposed in this

dissertation, particularly GSFA and HiGSFA.

(4) The use of deep HSFA architectures with light-weight layers is suggested

(i.e., layers that can be trained efficiently due to a small expanded dimensional-

ity). Hierarchical SFA networks used in other works have a different structure

compared with the networks used in this thesis. In general, previous networks

have between 2 and 5 layers, the nonlinear expansion functions are polynomial,

and the extracted features are less specific, requiring large output dimension-

alities to achieve acceptable performance. The proposed networks have a large

number of layers (up to 11), but these are lightweight. For example, the net-

works used for face detection have up to 11 layers, the output dimensionality of

the nodes is at most 60 features, and the fan-ins of the nodes are 4× 4 pixels in

the first layer and either 1× 2 or 2× 1 nodes in the remaining layers. This type

of network structure has been used by both HGSFA and HiGSFA as a result

of optimizing the network empirically in terms of accuracy on test data and

training efficiency. Different datasets have required only moderate adjustments

to this network structure, and it is well suited to handle high-dimensional data

and reduce overfitting.

(5) Researchers using polynomial expansions and experiencing overfitting

problems are encouraged to try the 0.8Exp expansion. A key element for the

success of HGSFA and HiGSFA is the choice of the nonlinear expansion func-

tions. These functions are usually required since most interesting problems are

nonlinear. The most common expansions are polynomial expansions, which

provide a complex feature space; if the degree is unrestricted, this expansion

constitutes a basis for all polynomials and can approximate most functions of

practical relevance. Moreover, polynomial expansions are conceptually simple

and mathematically tractable. However, they have the disadvantages that they

are less robust against outliers and tend to overfit (Escalante-B. and Wiskott,

2011). Although resistance against outliers has not been formally addressed in

this thesis, it is possible to improve it by using expansion functions that satu-

rate or are normalized. An example is the 0.8Exp expansion (see Section 3.5.1).

Although the 0.8Exp expansion is less elegant and the exponent has been tuned

experimentally, it can be justified based on a computational model (Escalante-B.

and Wiskott, 2011). The experiments of this dissertation show that sometimes

one can obtain even better results by combining the 0.8Exp expansion with a

polynomial expansion or a normalized version of it (this was exploited by the

HiGSFA network for age estimation).

(6) The information analysis of SFA and its extensions consists of viewing

these algorithms as methods for information processing and encoding. Such a

paradigm turned out to be quite effective. Further use of this paradigm might

140 CHAPTER 6. DISCUSSION

be useful to develop further extensions to SFA and design other algorithms in

machine learning.

This work has allowed the transformation of HSFA from an algorithm that

has been successful for supervised learning mostly on artificial or low-complexity

datasets into an algorithm that can deal with more challenging tasks on real

images (e.g., HiGSFA). The original title of this work was “Feature Extraction

from Face Images with Hierarchical Slow Feature Analysis”. Such an unspecific

title had been chosen because at the beginning of the project it was not evident

that improvements to HSFA would allow the solution of face analysis problems—

among others—with good accuracies.

6.5 Negative Results

In recent years, the importance of publishing negative results has been acknowl-

edged for ethical reasons and to facilitate future research. This section briefly

describes some experiments that did not validate their hypotheses but are nev-

ertheless valuable.

Hexagonal receptive fields did not outperform square ones. According to

the heuristic of feature localization, which states that data relevant to compute

useful features tends to be spatially localized, one might expect better results

using circular receptive fields than using square or rectangular receptive fields

(constrained to the same number of pixels). A good compromise between square

and circular receptive fields are hexagonal receptive fields. They are similar to a

honeycomb structure with receptive-field centers positioned in a regular lattice.

Two of their advantages are that they are regular and cover the plane without

overlap (though, if desired, overlap is also possible). However, (unpublished) ex-

periments showed no significant improvement in estimation accuracy compared

with square receptive fields (using HGSFA for age and gender estimation from

artificial images). A theoretical explanation is that SFA can learn to ignore

certain pixels of the receptive fields, if such pixels indeed do not contribute to

slowness maximization, adjusting the effective shape. These results suggest that

even though square/rectangular receptive fields are less ‘natural’ from a biolog-

ical perspective and suboptimal from the feature localization heuristic, they are

convenient in practice since they are easy to code and give similar accuracy to

hexagonal receptive fields.

Not all methods that combine slowness and principal components are equally

successful. The problem of information loss motivated the combination of the

slowness principle and information preservation. This idea turned out to be

quite beneficial in HiGSFA, where information preservation is implemented by

computing principal components to minimize a reconstruction error. I tested

at least two other approaches that yielded less accurate results. In one of them

the slowness objective function was modified by introducing a bias towards the

principal components in the matrix R of the GSFA algorithm (the larger the

principal component, the ‘slower’ the direction appeared). In another approach

6.5. NEGATIVE RESULTS 141

a new optimization objective was used, consisting of the weighted average of the

objective functions of SFA and PCA. Both approaches suffered from poor ro-

bustness and needed additional parameters that are difficult to tune. However,

HiGSFA overcomes these problems effectively by learning the slowest features

using the objective function of SFA/GSFA in unaltered form and learning re-

constructive features by using PCA.

First methods for semi-supervised HGSFA did not improve results. The goal

of semi-supervised learning is to exploit inexpensive unlabeled data to obtain

higher accuracy on test data than when only labeled data is available. This

research included semi-supervised learning experiments where the horizontal

position of faces was estimated using HGSFA. The unlabeled images had faces

centered at random horizontal positions. These images were used to improve

the accuracy of the sample covariance matrix C, which otherwise would have

been computed using only labeled samples. However, this approach did not

improve the results. A more theoretical analysis of such an approach indicates

that it was incorrect and equivalent to training HGSFA with an extended graph

in which each of the unlabeled samples is disconnected. Thus, HGSFA learned

features similar to those of classification, where all labeled samples constitute

a single class, and each unlabeled sample constitutes a new class. Another

approach joins all the unlabeled samples in a complete sub-graph that extends

the original graph. This improved approach has provided better results than

the supervised setting in some experiments, but is still suboptimal: The first

optimal free response of the extended graph is binary and encodes whether the

sample is labeled or not. The next few free responses encode the label for the

labeled samples in the same way as the original graph and are zero for the

unlabeled ones. Therefore, this improved approach is still not fully backed by

the theory of optimal free responses of training graphs, indicating that in order

to do semi-supervised learning with HGSFA/HiGSFA other methods need to be

developed.

HGSFA is less effective for small datasets. The classification experiments

addressed in this thesis are handwritten digit recognition (MNIST), traffic sign

recognition (GTSRB), and gender/race recognition (MORPH-II and a synthetic

database generated using FaceGen software). Besides these experiments, an

experiment on object classification was carried out using a subset of a private

image database of Dr. Christian Faubel. The images were taken in the local

robotics lab and involve everyday objects lying on a white table, such as a

tin can, hair gel, and a package of cookies. There are 30 different objects,

approximately 33 52×52-pixel images per object, and each object lies in a few

positions. The images were converted to grayscale to remove color as a trivial

clue for classification, and HGSFA was trained on them. However, classification

accuracy did not generalize well to test images due to the small number of

images. This occurred even though the model complexity had been reduced.

Other experiments suggest that a ratio of at least 10 to 1 in the number of

samples and their dimensionality (possibly after an expansion) is usually enough

142 CHAPTER 6. DISCUSSION

to achieve low overfitting, a ratio that was not achieved for this data. The results

on object classification indicate that HGSFA (and other extensions of SFA)

would profit from new methods to deal with scenarios in which the number of

images is small, which occurs frequently in some fields, such as in medical image

processing. Possible improvements include explicit regularization and effective

methods for semi-supervised learning.

6.6 Recommendations for Future Research

A direction for future work is the implementation and analysis of the extensions

to the ELL method proposed in Section 4.5.5, namely: (1) reduction in the

number of edges in the ELL graph via graph trimming, (2) grouping of data

samples in a pre-processing step, and (3) combination of graphs. Extensions

1 and 2 would be useful to reduce the computational complexity of the ELL

method. Extension 3 has already been used in Chapter 5 for the age estimation

experiment by combining a serial graph and two clustered graphs, but further

ways of combining graphs are possible. For example, one may combine two

regression graphs: the serial and reordering graphs. Such a graph combination

might yield higher label estimation accuracy than each graph alone: The serial

graph has a large number of edges and provides good generalization, whereas

the reordering graph does not incur in the quantization error of the first one

caused by label discretization.

The ELL method supports learning of multiple target labels and guarantees

that the optimal free responses span the target labels exactly if the number of

output features is at least L (i.e., the number of target labels). However, it can

be impractical to preserve L features per node if L is large, particularly when

using HGSFA and HiGSFA. Propagating fewer than L features may result in

poor approximation of some target labels. A possible solution to this problem is

to develop methods that concentrate the label information (e.g., by computing a

compressed representation of the labels) to reduce the number of effective target

labels. In fact, one can often compress the labels of datasets with several labels,

because they are categorical and sparse (e.g., ImageNet database, Deng et al.,

2009).

The advantage of learning auxiliary labels in addition to the original ones is

a higher label estimation accuracy. This might seem counter-intuitive since the

inclusion of auxiliary labels may influence the slowest extracted features mak-

ing them less similar to the original labels. However, auxiliary labels have been

justified by information theory and a smoothness heuristic (see Section 4.3.4).

There are different methods to compute auxiliary labels, but a particular one

has been suggested with Equation (127). Here, an interpretation of this equa-

tion is provided when the original label is a single label `: The target (i.e.,

original and auxiliary) labels computed using this equation are similar to the

basis used in the discrete cosine transform, if the period is T = max(`)−min(`).

An alternative to (127) that has not been explored in this work but is neverthe-

6.6. RECOMMENDATIONS FOR FUTURE RESEARCH 143

less interesting, is to use auxiliary labels `2, `3, . . . , `L, where the superscript is

component-wise exponentiation. Such auxiliary labels would result in a different

basis. Yet another possible way to compute auxiliary labels is to follow an opti-

mization criterion and explicitly maximize estimation accuracy. The assignment

of the eigenvalues could also be optimized in this way. However, apparently it

is difficult to determine optimal auxiliary labels and eigenvalues analytically.

In the ELL method, several eigenvectors remain unspecified (those with

indices L + 1 to N − 1) and their corresponding eigenvalues are implicitly set

to zero. As suggested by an anonymous reviewer of the Journal of Machine

Learning Research, one could use these eigenvectors and their eigenvalues to

construct graphs with special structural constraints, such as a minimum and

maximum number of edges per vertex.

HiGSFA has proven to be a promising algorithm for face analysis due to its

good estimation accuracy in various problems (age, gender, and race estima-

tion). One may further improve estimation accuracy by increasing the model

complexity via more complex hierarchical networks. For instance, one can in-

crease the overlap of the receptive fields and use more complex nonlinearities.

More training images might improve accuracy as well. A similar effect to hav-

ing more training data might be obtained by implementing true face-distortion

methods and not just simple transformations of the images (i.e., small rotations,

rescalings, and translations).

This work has shown that even though CNNs are one of the most successful

algorithms for image analysis currently available, HiGSFA provides better ac-

curacy for the problem of age estimation. One possible explanation is that the

most useful low-level features for age estimation depend strongly on the spe-

cific face region (e.g., eye, nose, mouth, forehead) and a convolutional structure

might be too unspecific to provide a single set of features that are good for most

regions. However, a more general claim regarding HiGSFA and CNNs cannot

be made before these algorithms are compared experimentally using additional

datasets and problems. From the impressive results of CNNs in recent years,

it would be surprising if CNNs do not outperform HiGSFA for most regression

problems (for classification problems the current lead of CNNs over HiGSFA is

clear and significant).

To further boost the accuracy of HiGSFA one may continue the paradigm

of using (to some extent) general principles and heuristics to guide algorithm

design and incorporate additional ones. The empirical comparison of HiGSFA

and CNNs suggested above could be useful to find possible improvements to

HiGSFA, perhaps also principled ones.

Multi-scale CNNs achieve good performance for age estimation (though not

as good as HiGSFA). This type of networks has receptive fields centered at

specific facial points and achieves an MAE of 3.63 years compared with an MAE

of 3.79 years using non-aligned receptive fields (i.e., receptive fields centered not

at the corresponding facial points but at their average position computed over

all training images). The benefit of using receptive fields centered at specific

144 CHAPTER 6. DISCUSSION

facial-points is that the complexity of the transformation needed to extract the

labels is reduced, because the learned features can be more specific to the facial-

point region, and the feature space is not wasted in learning position invariance.

The application of multi-scale techniques to HiGSFA is feasible, and it is likely

to improve the estimation accuracy.

Besides the research directions outlined above, there are two important prac-

tical applications: face detection and face recognition. These applications are

considered in the following subsections.

6.6.1 Face Detection

The efficacy of HGSFA has been shown experimentally using the problem of

estimating the horizontal position of faces in image patches. Other experiments

that have been carried out but have not been documented in detail in this

thesis include the estimation of the vertical position and size of faces, and the

discrimination of face image patches from non-face image patches. A different

network was trained for each problem and they were later combined to build

the HGSFA-based system for face detection described in Section 2.6.4.

Such a system participated in a face detection competition (Mohamed and

Mahdi, 2010) and defeated a system based on the Viola-Jones algorithm, which

was the only competitor. While several factors were in favor of HGSFA, such

as the evaluation criteria and parameter choice, the system still constitutes a

promising proof of concept and demonstrates the capabilities of the approach.

The HGSFA-based face detection system already achieves quite good de-

tection on frontal images. The challenge is to improve detection rates on un-

controlled images (i.e., increase the number of true positives and reduce the

number of false negatives). Various ideas may be useful to achieve this: (1) One

can use more training images with more variations. (2) One can use the ELL

method and HiGSFA instead of HGSFA. (3) Different pose parameters can be

estimated simultaneously using a single network (learning horizontal position,

vertical position, and face scale simultaneously). (4) One can learn the screen

angle of the eye line and possibly also additional angles of the head pose. (5)

The face discrimination step (which distinguishes face from non-face patches)

can be further improved. The current version has been trained with non-face

patches centered at random positions. However, the real problem is to discard

non-face patches that have already been centered by the pose normalization

steps. Thus, dark regions in non-face patches might have been shifted to the

positions where the eyes usually appear, for example. Therefore, the training

data could be improved to account for such a centering step. Additionally, the

number of non-face images could be increased.

6.6.2 Face Recognition

Multiple problems on face analysis have been addressed in this dissertation,

but face recognition is a challenging problem that has not yet been addressed

6.6. RECOMMENDATIONS FOR FUTURE RESEARCH 145

explicitly. This section outlines two approaches for face recognition that use

techniques proposed in this thesis.

(1) Invariant learning of subject attributes. This approach uses HiGSFA

to learn features that are sensitive to several facial attributes. Matching subject

identities can then be reduced to matching feature vectors. HiGSFA would be

used to learn not only age, gender, and race simultaneously, but many more

attributes, such as the shape and size of the face, mouth, eyebrows, nose, and

ears, the distance between different keypoints, the presence and location of pim-

ples, moles, and wrinkles, the most likely nationality or geographical location,

and the body mass index.

The identity of the most similar face in feature space can be found by min-

imizing the L2 norm of the feature vector differences or by using a probability

model. Alternatively, one could estimate each attribute separately from the

feature vector and find the face with the most similar attributes (i.e., matching

would be done in attribute space instead of feature space).

Since the world population is about 7,000 millions, fewer than 33 bits of

information are necessary to identify any subject uniquely (233 ≈ 8.6×109). This

gives an estimate on how many attributes should be learned. Some attributes,

such as gender, provide about 1 bit of information, whereas other attributes can

provide less information (e.g., presence of pimples) or more information (e.g.,

age). In practice, one should keep in mind that attributes are frequently not

independent and compensate for it with enough redundancy.

(2) Invariant learning of subject identities. A more elegant approach is

to train HiGSFA on images of different subjects, where each subject is considered

as a single class. To ensure robustness to new subjects and new images, one

should include several subjects in the training data and provide a large number

of images per subject, including a large amount of variations in the images

conditions (pose, backgrounds, lighting, etc.). For classification one typically

uses the clustered graph. The optimal free responses of this graph would provide

a constant and unique representation for images of any particular subject. If

the features are accurately learned (no overfitting), an unseen subject would

have a new representation that would be (ideally) similar to the representation

of subjects with similar attributes. However, as previously explained, it can be

difficult to handle such a large number of classes when hierarchical processing

and the clustered graph are used, because one would need to preserve up to

C−1 features for good recognition, where C is the number of classes or subjects

in this case. Therefore, this is an ideal scenario to employ the compact graph

method described in Section 4.4.3, where one can limit the number of output

features to a value between log2C and C − 1, if binary target labels are used.

Apparently approaches (1) and (2) are both feasible; one might need to

implement them to determine which one is better in practice in terms of accuracy

and efficiency. Although this would be less elegant, one might also improve

accuracy through multi-stage/hierarchical face recognition. For example, in a

146 CHAPTER 6. DISCUSSION

first step, a demographic group to which a face most likely belongs can be

determined (e.g., females/adults). In a second step, the concrete subject may

be identified within this group.

6.7 Conclusion

This dissertation presents various extensions to SFA that allow us to solve su-

pervised learning problems on real-life high-dimensional data with competitive

accuracy and efficiency.

SFA is an elegant algorithm backed by a strong theoretical foundation. At

the same time it is versatile and has practical applications in both supervised and

unsupervised learning. This work confirms that SFA and the slowness principle

may be a fundamental algorithm and learning principle, respectively, and shows

that they may play a more important role for supervised learning than originally

thought.

The features extracted by the extensions are quantitatively and qualitatively

better than those extracted by HSFA. In the particular setting of supervised

learning on high-dimensional data, HSFA had been originally used as a less

specific feature extraction algorithm, and it was necessary to preserve tens or

hundreds of features to achieve good performance with the supervised post-

processing algorithm. The output features thus contained less label information,

which was more spread within them.

HSFA has been enhanced in this work by means of additional heuristics and

principles, which have resulted in different extensions, most notably HiGSFA.

HGSFA and HiGSFA solve the supervised learning problems almost completely

on their own by computing features that concentrate the label-predictive infor-

mation: Generally, fewer than 10 features yielded best label estimation for the

experiments considered. HiGSFA represents a new powerful and conceptually

interesting tool for supervised feature extraction. The experimental results in-

dicate that HiGSFA outperforms HGSFA in terms of label estimation accuracy

and feature slowness independently of the training graph. In turn, ELL graphs

outperform pre-defined graphs, and HGSFA outperforms HSFA.

The proposed extensions are supported by a solid theoretical foundation and

enable new insights regarding HSFA for supervised learning. HiGSFA potenti-

ates the advantages of HSFA allowing (1) the extraction of slower features, (2)

smaller label estimation errors, (3) better generalization to new data, and (4)

more accurate input reconstruction. Still, the computational and memory com-

plexities are minimally increased, and they are of the same order as in HSFA.

Besides the current advantages of HiGSFA, it can be understood well theoreti-

cally and technically, facilitating several possible improvements, and making it

a promising algorithm for further research and applications.

Bibliography

Adali, T. and Haykin, S. Adaptive Signal Processing: Next Generation Solutions.

Adaptive and Learning Systems for Signal Processing, Communications and

Control Series. John Wiley & Sons, 2010.

Alec Radford, S. C., Luke Metz. Unsupervised representation learning with

deep convolutional generative adversarial networks. e-print arXiv:1511.06434,

November 2015.

Belkin, M. and Niyogi, P. Laplacian eigenmaps for dimensionality reduction and

data representation. Neural Comput., 15(6):1373–1396, 2003.

Bengio, Y. Learning deep architectures for AI. Foundations and Trends in

Machine Learning, 2(1):1–127, 2009.

Berkes, P. Pattern recognition with Slow Feature Analysis. Cognitive Sciences

EPrint Archive (CogPrints), February 2005a. URL http://cogprints.org/

4104/.

Berkes, P. Handwritten digit recognition with nonlinear Fisher discrimi-

nant analysis. In ICANN, volume 3697 of LNCS, pages 285–287. Springer

Berlin/Heidelberg, 2005b.

Berkes, P. and Wiskott, L. Slow Feature Analysis yields a rich repertoire of

complex cell properties. Journal of Vision, 5(6):579–602, 2005.

Blaschke, T., Zito, T., and Wiskott, L. Independent Slow Feature Analysis

and nonlinear blind source separation. Neural Computation, 19(4):994–1021,

2007.

Böhmer, W., Grünewälder, S., Nickisch, H., and Obermayer, K. Generating

feature spaces for linear algorithms with regularized sparse kernel slow feature

analysis. Machine Learning, 89(1):67–86, 2012.

Bray, A. and Martinez, D. Kernel-based extraction of slow features: Complex

cells learn disparity and translation invariance from natural images. In NIPS,

volume 15, pages 253–260, 2003.

Chang, C.-C. and Lin, C.-J. LIBSVM: A library for support vector machines.

ACM Transactions on Intelligent Systems and Technology, 2:27:1–27:27, 2011.

147

http://cogprints.org/4104/
http://cogprints.org/4104/

148 BIBLIOGRAPHY

Choi, S. E., Lee, Y. J., Lee, S. J., Park, K. R., and Kim, J. Age estimation

using a hierarchical classifier based on global and local facial features. Pattern

Recognition, 44(6):1262–1281, 2011.

Ciresan, D., Meier, U., Masci, J., and Schmidhuber, J. Multi-column deep

neural network for traffic sign classification. Neural Networks, 32:333–338,

2012. Selected Papers from IJCNN 2011.

Cootes, T. Face and gesture recognition research network (FG-NET) aging

database, 2004. URL http://www-prima.inrialpes.fr/FGnet/.

Dähne, S., Höhne, J., Schreuder, M., and Tangermann, M. Slow Feature Anal-

ysis - a tool for extraction of discriminating event-related potentials in brain-

computer interfaces. In ICANN, volume 6791 of Lecture Notes in Computer

Science, pages 36–43. 2011.

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-Fei, L. ImageNet:

A large-scale hierarchical image database. In Computer Vision and Pattern

Recognition, IEEE Conference on, pages 248–255. IEEE, 2009.

Denton, E. L., Chintala, S., Szlam, A., and Fergus, R. Deep generative image

models using a Laplacian pyramid of adversarial networks. In Advances in

Neural Information Processing Systems 28, pages 1486–1494. 2015.

Escalante-B., A. N. and Wiskott, L. Gender and age estimation from syn-

thetic face images with Hierarchical Slow Feature Analysis. In International

Conference on Information Processing and Management of Uncertainty in

Knowledge-Based Systems, Dortmund, Germany, pages 240–249, 2010.

Escalante-B., A. N. and Wiskott, L. Heuristic evaluation of expansions for Non-

Linear Hierarchical Slow Feature Analysis. In Proc. of the 10th International

Conference on Machine Learning and Applications, Honolulu, Hawaii, USA,

pages 133–138. IEEE Computer Society, 2011.

Escalante-B., A. N. and Wiskott, L. Slow Feature Analysis: Perspectives for

technical applications of a versatile learning algorithm. Künstliche Intelligenz

[Artificial Intelligence], 26(4):341–348, 2012.

Escalante-B., A. N. and Wiskott, L. How to solve classification and regres-

sion problems on high-dimensional data with a supervised extension of Slow

Feature Analysis. Journal of Machine Learning Research, 14:3683–3719, De-

cember 2013.

Escalante-B., A. N. and Wiskott, L. Improved graph-based SFA: Information

preservation complements the slowness principle. e-print arXiv:1601.03945, 1

2016a.

Escalante-B., A. N. and Wiskott, L. Theoretical analysis of the optimal free

responses of graph-based SFA for the design of training graphs. Journal of

Machine Learning Research, 17(157):1–36, 8 2016b.

http://www-prima.inrialpes.fr/FGnet/

BIBLIOGRAPHY 149

Fink, M., Fergus, R., and Angelova, A. Caltech 10,000 web faces,

2003. URL http://www.vision.caltech.edu/Image_Datasets/Caltech_

10K_WebFaces/.

Fisher, R. A. The use of multiple measurements in taxonomic problems. Annals

of Eugenics, 7:179–188, 1936.

Földiák, P. Learning invariance from transformation sequences. Neural Com-

putation, 3(2):194–200, 1991.

Franzius, M., Sprekeler, H., and Wiskott, L. Slowness and sparseness lead to

place, head-direction, and spatial-view cells. PLoS Computational Biology, 3

(8):1605–1622, 2007.

Franzius, M., Wilbert, N., and Wiskott, L. Invariant object recognition and pose

estimation with slow feature analysis. Neural Computation, 23(9):2289–2323,

2011.

Fu, Y., Guo, G., and Huang, T. S. Age synthesis and estimation via faces: A

survey. IEEE Transactions on Pattern Analysis and Machine Intelligence, 32

(11):1955–1976, 2010.

Gao, W., Cao, B., Shan, S., Chen, X., Zhou, D., Zhang, X., and Zhao, D. The

CAS-PEAL large-scale Chinese face database and baseline evaluations. IEEE

Transactions on Systems, Man, and Cybernetics, Part A, 38(1):149–161, 2008.

Geng, X., Zhou, Z.-H., and Smith-Miles, K. Automatic age estimation based on

facial aging patterns. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 29(12):2234–2240, 2007.

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair,

S., Courville, A., and Bengio, Y. Generative adversarial nets. In Advances in

Neural Information Processing Systems 27, pages 2672–2680. 2014.

Guo, G. and Mu, G. Human age estimation: What is the influence across race

and gender? In IEEE Computer Society Conference on Computer Vision and

Pattern Recognition Workshops (CVPRW), pages 71–78, June 2010.

Guo, G. and Mu, G. Simultaneous dimensionality reduction and human age

estimation via kernel partial least squares regression. In Proc. of IEEE Con-

ference on Computer Vision and Pattern Recognition, pages 657–664, 2011.

Guo, G. and Mu, G. A framework for joint estimation of age, gender and

ethnicity on a large database. Image and Vision Computing, 32(10):761–770,

2014. ISSN 0262-8856. Best of Automatic Face and Gesture Recognition 2013.

Guo, G., Mu, G., Fu, Y., Dyer, C., and Huang, T. A study on automatic age

estimation using a large database. In IEEE 12th International Conference on

Computer Vision, pages 1986–1991, Sept 2009a.

http://www.vision.caltech.edu/Image_Datasets/Caltech_10K_WebFaces/
http://www.vision.caltech.edu/Image_Datasets/Caltech_10K_WebFaces/

150 BIBLIOGRAPHY

Guo, G., Mu, G., Fu, Y., and Huang, T. S. Human age estimation using bio-

inspired features. In CVPR, pages 112–119, 2009b.

Han, H., Otto, C., and Jain, A. Age estimation from face images: Human

vs. machine performance. In International Conference on Biometrics (ICB),

pages 1–8, June 2013.

He, X. Locality Preserving Projections. PhD thesis, Computer Science Depart-

ment, The University of Chicago, Chicago, IL, USA, 2005.

He, X. and Niyogi, P. Locality Preserving Projections. In Neural Information

Processing Systems, volume 16, pages 153–160, 2003.

Hinton, G. E. Connectionist learning procedures. Artificial Intelligence, 40(1-3):

185–234, 1989.

Höfer, S., Hild, M., and Kubisch, M. Using Slow Feature Analysis to extract

behavioural manifolds related to humanoid robot postures. In Tenth Interna-

tional Conference on Epigenetic Robotics, pages 43–50, 2010.

Houben, S., Stallkamp, J., Salmen, J., Schlipsing, M., and Igel, C. Detection of

traffic signs in real-world images: The German Traffic Sign Detection Bench-

mark. In International Joint Conference on Neural Networks, number 1288,

2013.

Huang, G. B., Ramesh, M., Berg, T., and Learned-Miller, E. Labeled faces in the

wild: A database for studying face recognition in unconstrained environments.

Technical Report 07-49, University of Massachusetts, Amherst, October 2007.

Huerta, I., Fernández, C., Segura, C., Hernando, J., and Prati, A. A deep

analysis on age estimation. Pattern Recognition Letters, 2015.

Jesorsky, O., Kirchberg, K. J., and Frischholz, R. Robust face detection using the

Hausdorff distance. In Proc. of Third International Conference on Audio- and

Video-Based Biometric Person Authentication, pages 90–95. Springer-Verlag,

2001.

Jia, S. and Cristianini, N. Learning to classify gender from four million images.

Pattern Recognition Letters, 58:35–41, 2015. URL http://dblp.uni-trier.

de/db/journals/prl/prl58.html.

Klampfl, S. and Maass, W. Replacing supervised classification learning by Slow

Feature Analysis in spiking neural networks. In Proc. of NIPS 2009: Advances

in Neural Information Processing Systems, volume 22, pages 988–996. MIT

Press, 2010.

Koch, P., Konen, W., and Hein, K. Gesture recognition on few training data

using slow feature analysis and parametric bootstrap. In International Joint

Conference on Neural Networks, pages 1 –8, 2010.

http://dblp.uni-trier.de/db/journals/prl/prl58.html
http://dblp.uni-trier.de/db/journals/prl/prl58.html

BIBLIOGRAPHY 151

Krizhevsky, A., Sutskever, I., and Hinton, G. E. ImageNet classification with

deep convolutional neural networks. In Advances in Neural Information Pro-

cessing Systems 25, pages 1097–1105. 2012.

Krüger, N., Janssen, P., Kalkan, S., Lappe, M., Leonardis, A., Piater, J.,

Rodriguez-Sanchez, A., and Wiskott, L. Deep hierarchies in the primate

visual cortex: What can we learn for computer vision? IEEE Transactions

on Pattern Analysis and Machine Intelligence, 35(8):1847–1871, 2013.

Kuhnl, T., Kummert, F., and Fritsch, J. Monocular road segmentation using

slow feature analysis. In Intelligent Vehicles Symposium, IEEE, pages 800–

806, june 2011.

Kumar, N., Belhumeur, P. N., and Nayar, S. K. FaceTracer: A search engine for

large collections of images with faces. In European Conference on Computer

Vision (ECCV), pages 340–353, 2008.

LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. Gradient-based learning

applied to document recognition. In Proceedings of the IEEE, pages 2278–

2324, 1998.

Legenstein, R., Wilbert, N., and Wiskott, L. Reinforcement learning on slow fea-

tures of high-dimensional input streams. PLoS Comput Biol, 6(8):e1000894,

08 2010.

Luu, K., Ricanek, K., Bui, T., and Suen, C. Age estimation using active appear-

ance models and support vector machine regression. In IEEE 3rd Interna-

tional Conference on Biometrics: Theory, Applications, and Systems, pages

1–5, Sept 2009.

Madrigal, L. and Kelly, W. Human skin-color sexual dimorphism: a test of the

sexual selection hypothesis. American journal of physical anthropology, 132

(3):470–482, 2007.

Mitchison, G. Removing time variation with the anti-Hebbian differential

synapse. Neural Computation, 3(3):312–320, 1991.

Mohamed, N. M. and Mahdi, H. A simple evaluation of face detection algo-

rithms using unpublished static images. In 10th International Conference on

Intelligent Systems Design and Applications, pages 1–5, 2010.

Murphy, K. P. Machine learning: a probabilistic perspective. MIT press, 2012.

Ni, B., Song, Z., and Yan, S. Web image and video mining towards universal and

robust age estimator. Multimedia, IEEE Transactions on, 13(6):1217–1229,

2011.

Phillips, P. J., Flynn, P. J., Scruggs, T., Bowyer, K. W., Chang, J., Hoffman, K.,

Marques, J., Min, J., and Worek, W. Overview of the face recognition grand

152 BIBLIOGRAPHY

challenge. In Proc. of IEEE Conference on Computer Vision and Pattern

Recognition, volume 1, pages 947–954. IEEE Computer Society, 2005.

Poloni, F. “Complexity of eigenvalue decomposition” (May 15, 2017).

Message posted to https://mathoverflow.net/questions/62904/complexity-of-

eigenvalue-decomposition, 2015.

Ramanathan, N., Chellappa, R., and Biswas, S. Age progression in human faces:

A survey. Journal of Visual Languages and Computing, 15:3349–3361, 2009.

Rehn, E. M. On the slowness principle and learning in hierarchical temporal

memory. Master’s thesis, Bernstein Center for Computational Neuroscience,

2013.

Rehn, E. M. and Sprekeler, H. Nonlinear supervised locality preserving pro-

jections for visual pattern discrimination. In International Conference on

Pattern Recognition (ICPR), pages 1568–1573, 2014.

Ricanek Jr., K. and Tesafaye, T. Morph: A longitudinal image database of nor-

mal adult age-progression. In Proceedings of the 7th International Conference

on Automatic Face and Gesture Recognition, FGR ’06, pages 341–345. IEEE

Computer Society, 2006.

Rish, I., Grabarnik, G., Cecchi, G., Pereira, F., and Gordon, G. J. Closed-form

supervised dimensionality reduction with generalized linear models. In Proc.

of the 25th ICML, pages 832–839. ACM, 2008.

Rubia, L. B. and Manimala, K. Slow feature analysis for recognizing prison-

ers activities to assist jail authorities. International Journal of Advances in

Engineering and Emerging Technology, 1:1–6, 2013.

Schmidhuber, J. Deep learning in neural networks: An overview. Neural Net-

works, 61:85–117, 2015.

Schoenfeld, F. and Wiskott, L. Modeling place field activity with hierarchical

slow feature analysis. Frontiers in Computational Neuroscience, 9(51), 2015.

Singular Inversions Inc. FaceGen SDK, 2008. http://www.facegen.com.

Sprekeler, H. On the relation of slow feature analysis and Laplacian eigenmaps.

Neural Computation, 23(12):3287–3302, 2011.

Sprekeler, H. and Wiskott, L. A theory of slow feature analysis for

transformation-based input signals with an application to complex cells. Neu-

ral Computation, 23(2):303–335, 2011.

Sprekeler, H., Zito, T., and Wiskott, L. An extension of slow feature analy-

sis for nonlinear blind source separation. Cognitive Sciences EPrint Archive

(CogPrints), 2010. URL http://cogprints.org/7056/.

http://www.facegen.com
http://cogprints.org/7056/

BIBLIOGRAPHY 153

Sprekeler, H., Zito, T., and Wiskott, L. An extension of Slow Feature Analysis

for nonlinear blind source separation. Journal of Machine Learning Research,

15:921–947, 2014. URL http://jmlr.org/papers/v15/sprekeler14a.html.

Stallkamp, J., Schlipsing, M., Salmen, J., and Igel, C. The German Traffic

Sign Recognition Benchmark: A multi-class classification competition. In

International Joint Conference on Neural Networks, pages 1453–1460, 2011.

Sugiyama, M. Local Fisher discriminant analysis for supervised dimensionality

reduction. In Proc. of the 23rd ICML, pages 905–912, 2006.

Sugiyama, M., Idé, T., Nakajima, S., and Sese, J. Semi-supervised local Fisher

discriminant analysis for dimensionality reduction. Machine Learning, 78(1-

2):35–61, 2010.

Sun, L., Jia, K., Chan, T., Fang, Y., Wang, G., and Yan, S. DL-SFA: deeply-

learned slow feature analysis for action recognition. In IEEE Conference on

Computer Vision and Pattern Recognition, CVPR 2014, pages 2625–2632,

2014.

Szeliski, R. Computer vision: algorithms and applications. Springer Science &

Business Media, 2010.

Tang, W. and Zhong, S. Computational Methods of Feature Selection, chap-

ter Pairwise Constraints-Guided Dimensionality Reduction. Chapman and

Hall/CRC, 2007.

Vollgraf, R. and Obermayer, K. Sparse optimization for second order kernel

methods. In International Joint Conference on Neural Networks, pages 145–

152, 2006.

Wang, K., Zhang, Z., and Wang, L. Violence video detection by discriminative

slow feature analysis. In Pattern Recognition - Chinese Conference, CCPR

2012. Proceedings, pages 137–144, 2012.

Wilbert, N. Hierarchical Slow Feature Analysis on visual stimuli and top-down

reconstruction. PhD thesis, Humboldt-Universität zu Berlin, Mathematisch-

Naturwissenschaftliche Fakultät I, 2012.

Wiskott, L. Learning invariance manifolds. In Proc. of 5th Joint Symposium on

Neural Computation, San Diego, CA, USA, volume 8, pages 196–203. Univ.

of California, 1998.

Wiskott, L. Slow Feature Analysis: A theoretical analysis of optimal free re-

sponses. Neural Computation, 15(9):2147–2177, 2003a.

Wiskott, L. Estimating driving forces of nonstationary time series with Slow

Feature Analysis. arXiv.org e-Print archive, December 2003b. URL http:

//arxiv.org/abs/cond-mat/0312317/.

http://jmlr.org/papers/v15/sprekeler14a.html
http://arxiv.org/abs/cond-mat/0312317/
http://arxiv.org/abs/cond-mat/0312317/

154 BIBLIOGRAPHY

Wiskott, L. and Sejnowski, T. Slow Feature Analysis: Unsupervised learning of

invariances. Neural Computation, 14(4):715–770, 2002.

Xia, T., Tao, D., Mei, T., and Zhang, Y. Multiview spectral embedding. Trans.

Sys. Man Cyber. Part B, 40(6):1438–1446, 2010.

Yi, D., Lei, Z., and Li, S. Age estimation by multi-scale convolutional network.

In Computer Vision – ACCV 2014, volume 9005 of Lecture Notes in Computer

Science, pages 144–158. 2015.

Zeiler, M. D. and Fergus, R. Visualizing and understanding convolutional net-

works. In Computer vision–ECCV 2014, pages 818–833. Springer, 2014.

Zhang, D., Zhou, Z.-H., and Chen, S. Semi-supervised dimensionality reduction.

In Proc. of the 7th SIAM International Conference on Data Mining, 2007.

Zhang, T., Tao, D., Li, X., and Yang, J. Patch alignment for dimensionality

reduction. IEEE Transactions on Knowledge and Data Engineering, 21(9):

1299–1313, 2009.

Zhang, Z. and Tao, D. Slow feature analysis for human action recognition. IEEE

Transactions on Pattern Analysis and Machine Intelligence, 34(3):436 –450,

2012.

Zito, T., Wilbert, N., Wiskott, L., and Berkes, P. Modular toolkit for data

processing (MDP): a python data processing framework. Frontiers in Neu-

roinformatics, 2(8), 2009.

Appendix A

Cuicuilco: A Framework for
Hierarchical Processing

Several experiments that use SFA or its extensions have been carried out for this

research. Such experiments were necessary to validate the proposed extensions

and measure their accuracy and running time. The focus of this appendix is

not on such experiments or their results (this has already been described in the

main body of this thesis), but on the software framework that enabled me to

design and execute the experiments, which is called Cuicuilco.

The Cuicuilco framework was implemented by me from scratch in Python for

the purposes of this dissertation. It encompasses all experiments described in

this dissertation, including all datasets and hierarchical networks. The pronun-

ciation of Cuicuilco is available from http://es.forvo.com/word/cuicuilco/

and sounds similar to ‘ku:i-ku:il-ko’. This name has been chosen in honor of the

Cuicuilco pyramid (800 B.C. to 250 A.D.) located in the south of Mexico City.

This pyramid is divided in a few stages, resembling hierarchical SFA networks

to some extent, as shown in Figure A.1.

The Python language was used because it allows fast prototyping, includes

several open-source libraries, has been optimized for scientific computing, and

has low or no cost. Another reason for using Python is continuity, since it is the

primary programming language in the group of Prof. Dr. Wiskott.

Cuicuilco extensively uses the Modular Toolkit for Data Processing (MDP)

(Zito et al., 2009). MDP is a machine learning library that provides imple-

mentations of several algorithms, as well as components useful to coordinate

the interaction of these algorithms and construct hierarchical networks. Two

well known algorithms included in MDP are PCA and SFA. These algorithms

are available through the PCANode and SFANode classes, respectively. The word

‘node’ is used in the context of MDP to denote a class name of a particular algo-

rithm or—depending on the context—an instance of it (all learning algorithms

are derived from the Node class). Typewriter fonts are used in this appendix to

denote class names, objects, functions, and environment variables.

Certain nodes do not implement any learning algorithm but are useful

155

http://es.forvo.com/word/cuicuilco/

156 APPENDIX A. CUICUILCO FRAMEWORK

Figure A.1: Cuicuilco pyramid in Mexico City. Image copyrighted by TJ De-
Groat under the Creative Commons Attribution 2.0 Generic licence (CC BY
2.0). The image has been cropped and digitally processed for display purposes
(saturation and color level adjustments).

to create hierarchical networks: Switchboards (mdp.hinet.Switchboard) are

useful to rearrange and duplicate input dimensions. Layers encapsulate the

idea of arranging various nodes in parallel, where each node has access to

a contiguous subset of the input dimensions. There are two types of layers

(Layer and CloneLayer). A CloneLayer clones the node given to the layer,

an operation that is equivalent to weight sharing. A particular subclass of

mdp.hinet.Switchboard is mdp.hinet.Rectangular2dSwitchboard, which al-

lows the user of the framework to connect a layer to its input, where the nodes

of the layer have rectangular receptive fields. Another way to organize nodes

is to put them in series, one after the other. Flow objects implement this idea

and provide a practical way of handling sequences of nodes, where the data is

propagated in a feed-forward manner.

An SFA hierarchical network can be represented in MDP as a Flow composed

of several switchboard and Layer objects. A single (abstract) SFA layer is then

represented by one or more Layer objects of SFA/PCA/etc. nodes. In order to

train the network, one can call the train method of the Flow object or train

each layer/node separately.

The Cuicuilco framework is relatively large: over 30,000 lines of code and 17

files1. Thus, the code is not reproduced here but is available upon request, and

I plan to also publish it online soon. This appendix describes only important

high-level aspects of the framework and is a first step to a detailed understanding

of it, which should be followed by reading the code and its documentation.

1This does not include 15,000+ lines of code and 50+ files used in small experiments and
plots created for this research but independent of the framework.

https://www.flickr.com/photos/tjdegroat/18800899800/
https://creativecommons.org/licenses/by/2.0/
https://creativecommons.org/licenses/by/2.0/

A.1. A SINGLE RUN OF CUICUILCO 157

The remainder of the appendix describes the steps performed by Cuicuilco

upon execution and the command line options. Then, the organization of layers

and networks in Cuicuilco is described and a few examples are given. Finally,

the modules comprised by the framework are described.

A.1 A Single Run of Cuicuilco

In rough terms, each run of Cuicuilco includes the following steps:

1. File experimental datasets.py is imported and a list of all available

datasets is extracted from it.

2. File hierarchical networks.py is imported and a list of all available

network descriptions is extracted from it.

3. A particular network description and experimental dataset are selected.

4. If ELL is activated, an ELL graph is computed.

5. The training data of the selected dataset is loaded from disk.

6. The network description is used to construct a concrete network (an MDP

flow object).

7. The network is trained using a special purpose training method. Such a

method has linear complexity w.r.t. the number of nodes in the network,

provides the nodes with the training-graph information, and uses a node

cache to reuse previously trained nodes.

8. Network post-processing operations take place (the sign of the top-node

weights are adjusted, a final whitening node may be appended to the flow).

9. The supervised data is loaded from disk.

10. Features are extracted from the training data and supervised data using

the trained network.

11. All enabled supervised steps are trained using the supervised data (the

features extracted by the network and ground truth labels and classes).

12. The test data is loaded from disk.

13. Features are extracted from test data using the trained network.

14. Label and class estimations are computed for the training, supervised, and

test data.

15. Error measures are computed (e.g., RMSE, MAE, classification rates).

16. If the graphical display is enabled, several plots are created to visualize

the datasets and results.

To evaluate an algorithm, usually several runs of Cuicuilco (i.e., trials of the

experiment) should be executed to ensure statistical significance (most experi-

ments have a random component). To simplify such a time consuming task, one

158 APPENDIX A. CUICUILCO FRAMEWORK

can automate the runs using external scripts (e.g., written in bash or Python)

that execute Cuicuilco. One can change the behavior of the code without mod-

ifying it by exploiting environment variables and command line options, which

are the topics of the next section.

A.2 Environment Variables and Command Line Op-

tions

Three integer environment variables must be specified before Cuicuilco is exe-

cuted: (1) CUICUILCO TUNING PARAMETER is a tuning parameter that is typically

used during the construction of the experimental datasets, for example, to indi-

cate how strongly the images are distorted, (2) CUICUILCO EXPERIMENT SEED is

the main random seed used to create the datasets and train the network, and

(3) CUICUILCO IMAGE LOADING NUM PROC indicates the number of threads used

to load the images of the training, supervised, and test data. One can execute

different runs of an experiment after changing the seed value and/or the tuning

parameter externally.

Cuicuilco accepts several command line options. One can specify them in

bash as follows: python cuicuilco run.py [OPTION1] [OPTION2].... The

most useful options are described as follows.

Basic Command Line Options. These options are frequently used and

specify important information.

--EnableDisplay={1/0} Enables the graphical interface.

--ExperimentalDataset={ParamsRAgeFunc/ParamsRTransXYScaleFunc/
ParamsMNISTFunc/...} Selects a particular dataset by name.

--HierarchicalNetwork={IEVMLRecNetworkU11L Overlap6x6L0 1Label/

voidNetwork1L/PCANetwork1L/u08expoNetworkU11L/...} Selects a partic-

ular network by name.

--NumFeaturesSup=N Specifies the number of output features N used in the

supervised step.

--SleepM=M Specifies a delay before Cuicuilco starts loading the dataset. This

is useful to prevent memory and processor clogging when several instances of

Cuicuilco have been started. If M > 0, the current Cuicuilco process is paused

for M minutes; if M = 0, there is no delay (default); and if M < 0, the program

joins a waiting list, sleeps until its turn is reached, and deletes itself from the

list after the labels/classes have been estimated. Such a waiting list is specified

by a lock file named queue cuicuilco.txt.

Cache Command Line Options. Cuicuilco includes various caches to

speed up similar experiments: A network cache stores trained networks and a

node cache stores trained nodes.

--CacheAvailable={1/0} Specifies whether any type of cache is available. If

they are not available, the following cache options are ignored.

A.2. ENVIRONMENT VARS. AND COMMAND LINE OPTIONS 159

--LoadNetworkNumber=M Loads the Mth trained network stored in cache, so

that training is skipped. However, if M < 0 a new network is constructed and

trained from the beginning.

--AskNetworkLoading={1/0} If this option is enabled, Cuicuilco requests the

user by means of the console to enter (via stdin) the number of the network to

be loaded. This option has preference over the LoadNetworkNumber option.

--NetworkCacheReadDir=directory Specifies the directory used to load previ-

ously trained networks.

--NetworkCacheWriteDir=directory Specifies the directory used to save

trained networks.

--NodeCacheReadDir=directory Specifies the directory used to search for nodes

that might have been trained previously on the same data and parameters (this

option can significantly speed up network training).

--NodeCacheWriteDir=directory Specifies the directory where trained nodes

are saved.

Feature Extraction/Processing Options.

--FeatureCutOffLevel=f Trims the feature values to the real-valued interval

[−f, f].

--AddNoiseToSeenid={1/0} Adds noise to the data used to train the supervised

step. The noise amplitude is hard-coded and minuscule.

Supervised Step Options. Cuicuilco executes various supervised learning

algorithms on top of the features extracted by the network. Each supervised

algorithm is executed independently of the others.

--EnableLR={1/0} Enables linear regression as a supervised step (ordinary

least squares implemented as a pseudo-inverse).

--EnableKNN{1/0} Enables k-nearest neighbors (kNN) as a supervised step.

--kNN k=k Sets the value of k, if kNN is enabled.

--EnableNCC={1/0} Enables a nearest centroid classifier as a supervised step.

--EnableGC={1/0} Enables a Gaussian classifier as a supervised step.

--EnableSVM={1/0} Enables a multi-class (one against one) support vector

machine as a supervised step (requires libsvm).

--SVM gamma=γ Sets the value of γ, if SVM is enabled (this parameter is used

by the radial basis function (RBF) kernel).

--SVM C=C Sets the value of C, if SVM is enabled.

Result-Saving Options. Cuicuilco allows saving some information. This is

useful to use the output features in other software, to visualize the images after

all pre-processing steps have been applied, and to observe images providing best

and worst label-estimation errors.

--SaveSubimagesTraining={1/0} Saves (a fraction of) the training images to

disk (after data distortions and other operations).

--SaveAverageSubimageTraining={1/0} Saves the average training image to

160 APPENDIX A. CUICUILCO FRAMEWORK

disk (after data distortion and other operations).

--SaveSorted AE GaussNewid={1/0} Saves (a fraction of) the training images

to disk ordered by the absolute error of the label estimation.

--ExportDataToLibsvm={1/0} Saves the output features and labels in the for-

mat used by libsvm.

Explained Variance Options. Explained variance is defined in Cuicuilco as

ev
def
= 1− re, where re

def
= var(ŷ − y)/var(y) is a normalized reconstruction error

and var() denotes variance. Thus, ev ∈ (−∞, 1], where chance level reconstruc-

tion ŷ = ȳ has ev = 0, and perfect reconstruction ŷ = y has ev = 1. Three

different reconstruction methods are supported in Cuicuilco: (1) a global linear

model, (2) kNN (k nearest neighbors), and (3) the network inverse, which uses

the inverse or pseudo-inverse methods of each node. The following options allow

the user to compute explained variances using each method.

--EstimateExplainedVarWithInverse={1/0} Reconstructions are computed

using flow.inverse().

--EstimateExplainedVarWithKNN k=k If k > 0, reconstructions are given by

the average of the k nearest neighbors.

--EstimateExplainedVarLinGlobal N=N Reconstructions are given by a lin-

ear model trained with N samples chosen randomly from the training data. If

N = −1, all training samples are used to build the model.

Label Estimation Options. These options affect the label computation.

--MapDaysToYears={1/0} Divides the ground-truth labels and label estima-

tions by 365.242 (useful to change the label units from days to years).

--IntegerLabelEstimation={1/0} Truncates all label estimations to integer

values.

--CumulativeScores={1/0} Computes cumulative scores for test data. See

page 119 for a definition of cumulative scores.

--ConfusionMatrix={1/0} Computes the confusion matrix for test data.

Exact-Label-Learning Options.

--GraphExactLabelLearning={1/0} Computes an ELL graph based on the

available labels. If GSFA is used (including HiGSFA and HGSFA), the resulting

graph is given to the nodes during training.

--NumberTargetLabels=N Defines the number of target labels per original

label: if N > 1, N − 1 auxiliary labels are created for each original label using

Equation (127) on page 77.

--OutputInsteadOfSVM2={1/0} This is a hack useful to test the accuracy of

the ELL method without using a supervised step. If this option is enabled, the

first output of the network replaces the label estimation of the method called

‘SVM2’ (thus, the first output skips the supervised step and is evaluated as a

label estimation that appears in the entry where usually the ‘SVM2’ results

A.3. NETWORK STRUCTURE IN CUICUILCO 161

appear).

A complete list of options can be obtained by using the --help option.

A.3 Network Structure in Cuicuilco

In Cuicuilco, a hierarchical network is described abstractly by a ParamsNetwork

object. Such a ParamsNetwork object is transformed later by Cuicuilco into an

MDP flow object by means of the CreateNetwork() function defined in the

network builder module. After this function has been executed, the resulting

flow object can be trained as usual in MDP and data can be propagated through

it. See Figure A.2 for a list of all modules of Cuicuilco and Section A.7 for their

description.

Figure A.2: Modules of Cuicuilco and their dependencies. The main module
and program entry point is cuicuilco run.

A ParamsNetwork object is quite simple; it consists mainly of a list of layers

of nodes, which are accessible through the ParamsNetwork.layers field. Let net

denote an object of type ParamsNetwork. The k-th layer is thus net.layers[k],

where len(net.layers) ≥ 1. For simplicity, one can also access the first 11

layers as net.L0, net.L1, . . . , net.L10.

During network construction (i.e., execution of CreateNetwork()), each ab-

stract layer of nodes may be transformed into several components: a switchboard

and one or more objects of type MDP Layer or CloneLayer. Thus, the number

of nodes in the resulting MDP flow is typically much larger than the number of

abstract layers in Cuicuilco’s network description. The structure of each layer

is now addressed.

162 APPENDIX A. CUICUILCO FRAMEWORK

A.4 Structure of a Layer in Cuicuilco

A Cuicuilco layer is either of type ParamsSFALayer or ParamsSFASuperNode.

Both types of layers are abstract (that is, they do not contain actual MDP

nodes, but only a description of them). Objects of type ParamsSFALayer

define at least one layer of nodes and at most six different layers of nodes. In

contrast, objects of type ParamsSFASuperNode define from one to six different

nodes. The classes of the MDP nodes used in these layers can be chosen at

will. The reason for providing two different classes is that two types of layers

are supported: hierarchical layers (specified by a ParamsSFALayer object) and

non-hierarchical ‘layers’ (specified by a ParamsSFASuperNode object). As usual,

these system classes are defined in system parameters.py.

Figure A.3: Components of an abstract composite node in Cuicuilco (middle).
These components provide great flexibility: Only a few of the available fields are
usually necessary to represent the nodes of an arbitrary hierarchical network.
A Cuicuilco Layer is composed of one or more of these abstract nodes. The
figure also illustrates a typical GSFA node used by HGSFA (left) and a typical
node used by Franzius et al. (2011). The arrows indicate which components of
a Cuicuilco’s node would be used to create such specific nodes.

The difference between these types of layers is that ParamsSFALayer layers

are composed of one or more layers of MDP nodes and include information useful

to create a switchboard needed to connect the nodes of the previous layer to

the nodes of this layer, see Figure A.4. In contrast, ParamsSFASuperNode layers

lack switchboard information and define at most six nodes connected in series.

The first node processes all input dimensions, and the input to node k+ 1 is the

output of node k. Thus, non-hierarchical layers are more similar to a simple list

of nodes.

More concretely, hierarchical layers (ParamsSFALayer) define the configu-

ration of the following elements: 1) a pseudo-invertible switchboard of type

PInvSwitchboard, 2) a ‘pca node’, 3) an ‘ord node’ (an ordering node), 4) a

GeneralExpansionNode, 5) a ‘red node’ (a dimensionality reduction node), 6)

a clipping function, and 7) an ‘sfa node’.

Only the switchboard and the ‘sfa node’ are obligatory, the remaining nodes

A.4. STRUCTURE OF A LAYER IN CUICUILCO 163

class ParamsSFALayer(object):

def __init__(self):

self.name = "SFA Layer"

#Switchboard data

self.x_field_channels = 3

self.y_field_channels = 3

self.x_field_spacing = 3

self.y_field_spacing = 3

self.nx_value = None

self.ny_value = None

self.in_channel_dim = 1

#PCA node

self.pca_node_class = None

self.pca_out_dim = 0.99999

self.pca_args = {}

#Ordering node

self.ord_node_class = None

self.ord_args = {}

#General expansion node

self.exp_funcs = None

self.inv_use_hint = True

self.inv_max_steady_factor=0.35

self.inv_delta_factor = 0.6

self.inv_min_delta = 0.0001

#Dimensionality red. node

self.red_node_class = None

self.red_out_dim = 0.99999

self.red_args = {}

#Clip node

self.clip_func = None

self.clip_inv_func = None

#SFA node

self.sfa_node_class = None

self.sfa_out_dim = 15

self.sfa_args = {}

#Other fields

self.cloneLayer = True

self.node_list = None

self.layer_number = None

Figure A.4: Definition of the ParamsSFALayer class.

and functions can be omitted. The ‘sfa node’ is assumed to carry out the main

operation of the layer. Although their names might be misleading, ‘pca node’,

‘ord node’, ‘red node’, and ‘sfa node’ are placeholders and represent nodes

of arbitrary classes. The concrete types of nodes used are defined through

the following members of ParamsSFALayer: pca node class, ord node class,

red node class, and sfa node class. Therefore, the ‘sfa node’ is of type

sfa node class, which could be set to mdp.SFANode, but it may also be set

to mdp.PCANode, GSFANode, etc. If one desires to omit a node, one can set the

corresponding class to None, e.g., pca node class = None. Furthermore, one

can activate or deactivate weight sharing though the Boolean cloneLayer field,

and one can set the output dimension of some nodes using the pca out dim,

red out dim, and sfa out dim fields.

Non-hierarchical networks are defined mostly in the same way as hierarchical

networks, except that they lack the fields related to the switchboard.

164 APPENDIX A. CUICUILCO FRAMEWORK

A.5 Examples of Network Definitions

This section shows some fragments of simplified code to exemplify the creation

of two simple hierarchical networks using Cuicuilco. The construction of more

complex networks works in the same way.

A.5.1 A Network that Implements the Identity Function

This section shows how to define a “network” that only has one non-hierarchical

layer and implements the identity function. That is, this minimal network pre-

serves the input unchanged. Strictly speaking it should not be called a network

(since it only has one element), but it is included by extension. The layer can

be defined as follows:

pVoidLayer = system_parameters.ParamsSFASuperNode()

pVoidLayer.pca_node_class = None

pVoidLayer.exp_funcs = [identity,]

pVoidLayer.sfa_node_class = mdp.nodes.IdentityNode

pVoidLayer.sfa_args = {}

pVoidLayer.sfa_out_dim = None

The definition of pVoidLayer does not specify any special value for the

entries related to the clipping node, dim. reduction node, and ordering node,

see Figure A.3. Default values ensure that these unspecified nodes are omitted.

The network can then be defined in just three lines:

voidNetwork1L = system_parameters.ParamsNetwork()

voidNetwork1L.name = "Void 1 Layer Network"

voidNetwork1L.layers = [pVoidLayer]

Clearly, this minimal network is not too interesting, but one

could easily activate a nonlinear expansion function (e.g., by setting

pVoidLayer.exp funcs = [identity, QE]), limit the output dimension (e.g.,

by setting pVoidLayer.sfa out dim = 20), and change the class of the ‘sfa

node’ (e.g., by setting pVoidLayer.sfa node class = mdp.nodes.SFANode, so

that the main algorithm of the layer is SFA). Making these small changes would

result in a node for nonlinear direct SFA.

A.5.2 A Simple 4-Layer HiGSFA Network

The following network is a simple HiGSFA network with 4 layers that can pro-

cess 24×24 grayscale sub-images from the MNIST database (the original image

resolution is 28×28-pixels, therefore, the usually black border of the images is

ignored). The layers of this network are called pSFALayerL0, . . . , pSFALayerL3

and are defined as follows. Notice the use of copy.deepcopy() to reuse previ-

ously defined objects and keep the code compact:

A.5. EXAMPLES OF NETWORK DEFINITIONS 165

##################### First layer #############################

pSFALayerL0 = system_parameters.ParamsSFALayer()

pSFALayerL0.x_field_channels=3

pSFALayerL0.y_field_channels=3

pSFALayerL0.x_field_spacing=3

pSFALayerL0.y_field_spacing=3

pSFALayerL0.pca_node_class = mdp.nodes.PCANode

pSFALayerL0.pca_out_dim = 9

pSFALayerL0.pca_args = {}

pSFALayerL0.sfa_node_class = mdp.nodes.iGSFANode

pSFALayerL0.sfa_out_dim = 14

pSFALayerL0.sfa_args = {"pre_expansion_node_class":None,

"expansion_funcs":[identity, unsigned_08expo], "max_comp":10,

"max_num_samples_for_ev":None, "max_test_samples_for_ev":None,

"offsetting_mode":"sensitivity_based_pure",

"max_preserved_sfa":1.99}

pSFALayerL0.cloneLayer = False

##################### Second layer ###########################

pSFALayerL1 = copy.deepcopy(pSFALayer0)

pSFALayerL1.x_field_channels=2

pSFALayerL1.y_field_channels=2

pSFALayerL1.x_field_spacing=2

pSFALayerL1.y_field_spacing=2

pSFALayerL1.sfa_out_dim = 40

##################### Third layer ############################

pSFALayerL2 = copy.deepcopy(pSFALayer1) #Third layer

pSFALayerL2.sfa_out_dim = 60

##################### Fourth layer ###########################

pSFALayerL3 = copy.deepcopy(pSFALayer1) #Fourth layer

pSFALayerL3.sfa_out_dim = 75

The 4-layer network can then be defined as follows:

MNISTNetwork_24x24_4L = system_parameters.ParamsNetwork()

MNISTNetwork_24x24_4L.name = "MNIST Network 4L 24x24"

MNISTNetwork_24x24_4L.layers = [pSFALayerL0,pSFALayerL1,

pSFALayerL2,pSFALayerL3]

After a network has been defined, one can easily use it in Cuicuilco

by means of the HierarchicalNetwork command-line option (e.g., python

cuicuilco run.py --HierarchicalNetwork=MNISTNetwork 24x24 4L --Ex-

perimentalDataset=ParamsMNISTFunc --EnableDisplay=1). This example

166 APPENDIX A. CUICUILCO FRAMEWORK

shows that Cuicuilco allows the user to create networks consisting of many

layers and having a specialized structure (if needed) in a convenient way.

A.6 Definition of Experimental Datasets

The module experimental datasets contains the definitions of datasets that

can be loaded to perform experiments. An experimental dataset has class

ParamsSystem. Each of them defines three datasets (training, supervised,

and test), where each of these datasets is defined by two objects of classes

ParamsInput and ParamsDataLoading, respectively, see Figure A.5. The

ParamsInput object contains a high-level representation of the data and the

configuration parameters that might be used to generate it, as well as ground-

truth labels and classes. The ParamsDataLoading object contains the specific

parameters needed to load the data as a numpy array. Thus, these parameters

include file names, image resolution, patch size, patch position, and number of

channels (e.g., 3 for RGB).

Figure A.5: Diagram of an experimental dataset described by a ParamsSystem

object and the three datasets comprised by it. Class types are indicated in
parenthesis.

The most important component of ParamsDataLoading objects is the

load data() function that is responsible for loading the data from disk and con-

verting all the information encoded in the object into a numpy array. The details

on how to implement this function are left free to the developer, but it is conve-

nient to use the default implementation (i.e., imageLoader.load image data())

when the data samples are images.

Examples of experimental dataset objects are provided in the

experimental datasets module, including all definitions of the experi-

ments carried out in this thesis. To select a particular dataset one can use the

ExperimentalDataset command-line option.

A.7. MODULES 167

A.7 Modules

This section is intended for future developers of the framework and describes

the main source files (modules) comprised by Cuicuilco, including their main

classes and methods. Figure A.2 shows the modules and their dependencies.

Each module corresponds to a file with the same name and extension “.py”.

The modules are summarized in order of importance, as follows.

1) cuicuilco run is the main file and entry point of the Cuicuilco frame-

work. It implements the program flow described in Section A.1. Therefore,

this module initiates the actual data loading, network training, computa-

tion of the results, and visualization.

2) system parameters defines the fundamental classes of the framework:

ParamsNetwork, ParamsSFALayer, and ParamsSFASuperNode, which are

used to define hierarchical networks and their layers, and ParamsSystem,

ParamsInput, and ParamsDataLoading, which are used to define exper-

imental datasets. All network and dataset descriptions must instantiate

the classes above.

3) experimental datasets contains high-level descriptions of all exper-

imental datasets. It can be modified by the user to define new exper-

imental datasets. Experimental datasets are represented by an object

of class ParamsSystem (see system parameters module). ParamsSystem

contains three separated datasets: one is used to train the network (train-

ing dataset), another is used to train the supervised steps (supervised

dataset), and a third one is used for testing the whole system (test dataset),

see Figure A.5. The data of all datasets is actually propagated through

the network and the supervised steps. These datasets do not need to be

different or disjoint, but they typically are.

Each dataset is specified by two objects of classes ParamsDataLoading and

ParamsInput, respectively. ParamsDataLoading objects specify the low-

level parameters needed to load the data (e.g., image filenames, patch/sub-

image sizes and their location within the image, image distortions, and the

function that should be called for actually loading the data). ParamsInput

objects contain abstract information about the data (e.g., the label and

class information, as well as configuration parameters).

Examples of experimental datasets currently available are:

• ParamsAge, ParamsAngle, ParamsGender, and ParamsIdentity.

These artificial datasets contain face images useful to learn age, ver-

tical head angle, gender, and subject identity, respectively.

• ParamsREyeTransX and ParamsREyeTransY. Image patches of eyes

taken from frontal face photographs useful to learn the horizontal

and vertical position of the eye.

168 APPENDIX A. CUICUILCO FRAMEWORK

• ParamsRTransXYScaleFunc. Frontal face photographs extracted

from several databases useful to learn x-pos, y-pos, and scale.

• ParamsRAgeFunc. Face photographs useful to learn age, gender and

race from the MORPH-II and/or FG-Net image databases.

• ParamsMNISTFunc. Hand-written digits of the MNIST database.

4) hierarchical networks contains high-level definitions of hierarchical

networks as objects of type ParamsNetwork. ParamsNetwork objects have

fields that specify the number of layers comprised by the network, what

kind of nodes are used, what parameters are provided to the nodes during

training, their output dimensionalities, nonlinearities used, etc. Examples

of networks are:

• voidNetwork1L. A network that contains a single IdentityNode,

thus, it implements the identity function.

• linearPCANetworkU11L. An 11-layer network that implements PCA

hierarchically with excellent computational and memory efficiency.

• u08expoNetworkU11L 5x5L0. An 11-layer GSFA network, where the

layers use the 0.8Exp expansion, and the receptive fields in the first

layer are non-overlapping 5× 5-pixel patches.

• IEVMLRecNetworkU11L Overlap6x6L0 1Label. An 11 layer HiGSFA

network optimized for age estimation with receptive fields of 6 × 6-

pixels in the first layer, receptive field overlap, and specific optimized

expansions in all layers.

5) gsfa node defines the GSFANode (and related methods/classes). It

allows efficient training of GSFA using several pre-defined graphs. The

GSFANode uses a special class called CovDCovMatrix that allows the joint

and optimized computation of covariance and second-moment matrices

(C and Ċ) when pre-defined graphs are used. The module also supports

parallel training of the GSFANode whenever a scheduler is available (and

provided as a training argument).

6) igsfa node defines the iGSFANode. This node also implements the

iSFA algorithm; one only needs to set the training mode parameter to

‘regular’.

7) more nodes defines many nodes useful to perform general purpose

experiments. Examples are:

• HeadNode. Selects the first k dimensions of the data.

• PointwiseFunctionNode. Useful to implement clipping and other

transformations that are applied to each input dimension equally.

• RandomizedMaskNode. Removes specific dimensions of the data or

replaces them by Gaussian noise.

A.7. MODULES 169

• RandomPermutationNode. Randomly but consistently permutes the

input dimensions.

• SFAPCANode. An extension to SFA inferior to iGSFA.

• GeneralExpansionNode. Implements general nonlinear expansions

and is already included in MDP.

• PInvSwitchboard. A pseudo-invertible switchboard that supports

receptive fields of arbitrary shape, as given by a mask, and centered

at the points of a lattice).

Additionally, the module contains functions to estimate reconstruction

errors using: (a) an inverse (for invertible nodes), (b) an approximated

inverse using k-nearest neighbors, or (c) a linear model. Moreover, it

provides functions to show a text description of the nodes comprised by a

network, including their eigenvalues.

8) nonlinear expansion implements over 500 different nonlinear trans-

formations that can be used as expansion functions or to construct them.

These transformations include the 0.8Exp expansion (unsigned 08expo),

polynomial expansions, including the quadratic and cubic expansions (QE

and CE), and different normalizations of polynomial expansions. Such

normalized polynomial expansions may be more robust to outliers, and

include the expansions Q AN exp, Q N exp, Q AE exp, and Q E exp, where

‘A’ stands for asymmetric normalization, ‘N’ for standard normalization,

and ‘E’ for exponential normalization:

Q AN exp(x)
def
= QE(xAN) , where xAN

i
def
= xi/(1 + |xi|0.6) , (148)

Q N exp(x)
def
= QE(xN) , where xN def

= x/(1 + ||x||0.62) , (149)

Q AE exp(x)
def
= QE(xAE) , where xAE

i
def
= xi/(1 + e0.6|xi|) , and (150)

Q E exp(x)
def
= QE(xE) , where xE def

= x/(1 + e0.6||x||2) . (151)

9) exact label learning allows two tasks: (1) The computation of an

ELL graph given the target labels, including methods useful to normalize

and decorrelate the target labels and eliminate negative edges weights of a

given graph. (2) The computation of optimal free responses of an arbitrary

training graph. Additionally, various helper functions are provided, for

example, to compute the values of R and Q, to explicitly compute the

edge-weight matrices of pre-defined training graphs, and to test if a graph

is consistent.

10) image loader contains functions useful to load the input data from

disk and pre-process them, mostly grayscale and RGB images. The main

data loading function is load image data, which loads the images in par-

allel (multi-threading) and applies common image distortions to them

170 APPENDIX A. CUICUILCO FRAMEWORK

(translations, rotations, scalings, basic contrast enhancement, and additive

noise). The number of threads must be specified through the environment

variable CUICUILCO IMAGE LOADING NUM PROC. Any dataset can provide

its own function to load data (by overriding the load data method), but

if the data samples are images, using the provided load image data()

function can be convenient.

11) patch mdp does all low level operations needed to extend MDP and

make it compatible with the new features introduced by Cuicuilco. It

injects the Cuicuilco nodes into MDP at run time, adds a local inverse

method to selected nodes (from a given output vector and an input vector,

this function approximates an inverse to the output vector that is close in

input space to the input vector and close in feature space to the output

vector), and adds a field list training params to those nodes that allow

parameters during training. The layer nodes (Layer and CloneLayer) are

modified to propagate training parameters. The Flow class is improved, for

example by providing a function special train cache scheduler sets

that replaces the basic train function by supporting training parameters,

per node parallelism through an explicit scheduler, and a cache mechanism

at the node level to eliminate the training procedure whenever a node has

been previously trained using the same data and parameters.

12) network builder translates a high-level network description pro-

vided by a ParamsNetwork object (such as the networks declared in

hierarchical networks.py), into an MDP flow object.

13) classifiers regressions contains functions useful to work with a

Gaussian classifier (GaussianClassifier), such as the computation of

soft labels (see Section 3.4.5) and helper functions to compute classifica-

tion rates and a mean average error.

14) sfa libs declares various basic helper functions, such as cutoff (a

cutoff function for matrices), cartesian product (computes the Cartesian

product of two sets), select rows from matrix (an operation used mostly

by the switchboards), remove Nones (eliminates entries equal to None from

a list), and functions useful to compute ∆ values.

15) object cache defines a Cache class useful for saving objects (e.g.,

numpy arrays and MDP flows) to disk and restoring them. Arrays are split

into several physical files if they are too large (which may otherwise result

in problems in some systems). It also provides functions for computing

hash values of objects (e.g., numpy arrays) in a fast and reliable way (but

not collision resistant, as understood in cryptography). This module is

based on code generously shared by Dr. Niko Wilbert.

16) lattice contains functions to compute the points of a lattice on the

plane. This module is used by a pseudo-invertible switchboard called

PInvSwitchboard defined in more nodes.

About the Author

Author information as of January 2017.

Personal Data

Name Alberto Nicolás Escalante Bañuelos

Place of birth Durango Dgo., Mexico

Email alberto.escalante@ini.rub.de,

alberto.nicolas.escalante@gmail.com

Education and Professional Experience

4/2009– Research assistant/PhD candidate

Institut für Neuroinformatik

Ruhr-University Bochum, Germany

10/2004–5/2008 M.Sc. in Computer Science, grade 1.1

Computer Science Department

University of Saarland, Saarbrücken, Germany

11/2005–5/2008 Visiting student (master thesis)

Chair of System Security

Fakultät für Elektrotechnik und Informationstechnik

Ruhr-University Bochum, Germany

9/2003–9/2004 University lecturer. Subject ‘discrete structures’

School of Engineering

National Autonomous Univ. of Mexico (UNAM), Mexico

7/2001–1/2002 Internship (programmer and assistant)

Applied Mathematics and Systems Research Institute

(IIMAS), UNAM, Mexico

9/1997–8/2003 B.E. in Computer Engineering with honors, grade 9.8/10.0

School of Engineering, UNAM, Mexico

171

alberto.escalante@ini.rub.de
alberto.nicolas.escalante@gmail.com

Publications

Journal Publications

Escalante-B., A. N. and Wiskott, L. Theoretical analysis of the optimal

free responses of graph-based SFA for the design of training graphs. Journal of

Machine Learning Research, 17(157):1–36, 8 2016b

Escalante-B., A. N. and Wiskott, L. How to solve classification and regression

problems on high-dimensional data with a supervised extension of Slow Feature

Analysis. Journal of Machine Learning Research, 14:3683–3719, December 2013

Escalante-B., A. N. and Wiskott, L. Slow Feature Analysis: Perspectives for

technical applications of a versatile learning algorithm. Künstliche Intelligenz

[Artificial Intelligence], 26(4):341–348, 2012

Work in Progress

Escalante-B., A. N. and Wiskott, L. Improved graph-based SFA: Information

preservation complements the slowness principle. e-print arXiv:1601.03945, 1

2016a

Conference Publications

Escalante-B., A. N. and Wiskott, L. Heuristic evaluation of expansions for

Non-Linear Hierarchical Slow Feature Analysis. In Proc. of the 10th Interna-

tional Conference on Machine Learning and Applications, Honolulu, Hawaii,

USA, pages 133–138. IEEE Computer Society, 2011

Escalante-B., A. N. and Wiskott, L. Gender and age estimation from

synthetic face images with Hierarchical Slow Feature Analysis. In Interna-

tional Conference on Information Processing and Management of Uncertainty

in Knowledge-Based Systems, Dortmund, Germany, pages 240–249, 2010

Previous Publications

Armknecht, F., Escalante B., A. N., Löhr, H., Manulis, M., and Sadeghi, A.-

R. Secure multi-coupons for federated environments: Privacy-preserving and

customer-friendly. In Information Security Practice and Experience: 4th Inter-

national Conference, Sydney, Australia, pages 29–44, 2008

Escalante-B., A. N., Löhr, H., and Sadeghi, A.-R. A non-sequential unsplit-

table privacy-protecting multi-coupon scheme. In INFORMATIK 2007: Infor-

matik trifft Logistik. Band 2. Beiträge der 37. Jahrestagung der Gesellschaft

für Informatik e.V. (GI), pages 184–188, Bremen, Germany, 2007

172

173

Chen, L., Escalante-B., A. N., Löhr, H., Manulis, M., and Sadeghi, A.-

R. A privacy-protecting multi-coupon scheme with stronger protection against

splitting. In Financial Cryptography and Data Security: 11th International

Conference, FC 2007, Scarborough, Trinidad and Tobago, pages 29–44, 2007

Previous Theses

Escalante-B., A. N. Privacy-protecting multi-coupon schemes with stronger

protection against splitting. Master’s thesis, Computer Science Department,

University of Saarland, Saarbrücken, Germany, 2007

Escalante-B., A. N. The AES encryption algorithm: Its low level implemen-

tation and optimization to improve the security mechanisms of a smart card

(in Spanish). Bachelor’s thesis, School of Engineering, National Autonomous

University of Mexico (UNAM), 2003

	Abstract
	Kurzfassung der Dissertation
	Dedication
	Acknowledgements
	Introduction
	Principled Supervised Learning with SFA
	General Objective
	Questions Addressed
	Hypotheses
	Scope and Limitations
	Methods
	Contributions
	Graph-Based SFA (GSFA)
	Exact Label Learning (ELL)
	Hierarchical Information-Preserving GSFA (HiGSFA)

	Thesis Structure

	Standard SFA
	The Slowness Principle and SFA
	Standard SFA Optimization Problem
	Standard Linear SFA Algorithm
	Hierarchical SFA (HSFA)
	Previous Work on HSFA and Terminology

	SFA for Supervised Learning
	Technical Applications of SFA
	General-Purpose Feature Extraction
	Applications of SFA for Dimensionality Reduction
	Applications of SFA for Classification
	Applications of SFA for Regression

	Discussion of SFA and its Applications

	Graph-Based SFA
	Introduction
	Connection of GSFA with Other Algorithms
	General Approach behind GSFA

	Training Graphs and Graph-Based SFA
	Organization of the Training Samples in a Graph
	GSFA Optimization Problem
	Linear Graph-Based SFA Algorithm (Linear GSFA)
	Correctness of the Graph-Based SFA Algorithm
	Probabilistic Interpretation of Training Graphs
	Construction of Training Graphs

	Classification with GSFA
	Clustered Training Graph
	Efficient Learning Using the Clustered Graph
	Supervised Step for Classification Problems

	Regression with SFA and GSFA
	Sample Reordering
	Sliding Window Training Graph
	Serial Training Graph
	Mixed Training Graph
	Supervised Step for Regression Problems

	Experimental Evaluation of the Graphs
	Classification
	Regression

	Discussion of GSFA
	Related Optimization Problems
	Conversions Between GSFA and Similar Algorithms
	Remarks on Classification with GSFA
	Remarks on Regression with GSFA
	Other Considerations

	ELL and the Design of Training Graphs
	Introduction
	GSFA Optimization Problem in Matrix Notation
	Explicit Label Learning for Regression Problems
	Optimal Free Responses of GSFA
	Design of a Training Graph for Learning One or Multiple Labels
	Elimination of Negative Edge Weights
	Auxiliary Labels for Boosting Estimation Accuracy
	Computational Complexity of the ELL Method

	Applications of Explicit Label Learning
	Explicit Estimation of Gender with GSFA
	Analysis of Pre-Defined Training Graphs
	Compact Discriminative Features for Classification

	Discussion of Exact Label Learning
	Multiple and Auxiliary Labels
	Application of the ELL Method
	Classification with ELL
	Efficiency of ELL
	Extensions of ELL

	HiGSFA= HGSFA + Information Preservation
	Introduction
	Related work
	Advantages and Limitations of HSFA and HGSFA
	Advantages of HSFA and HGSFA Networks
	Complexity of a Quadratic HSFA Network
	Limitations of HSFA and HGSFA Networks

	Hierarchical Information-Preserving GSFA (HiGSFA)
	Algorithm Overview (iSFA)
	Algorithm Description (Training Phase of iSFA)
	Feature Extraction by iSFA
	Mixing and Scaling of Slow Features
	Input Reconstruction for iSFA
	Some Remarks on iSFA, iGSFA, and HiGSFA

	Experimental Evaluation of HiGSFA
	Age Estimation and Previous Work on this Problem
	Image Database and Image Pre-Processing
	Efficient Training Graphs for Learning Multiple-Labels
	Evaluated Algorithms
	Experimental Results

	Discussion of HiGSFA
	The Approach
	Network Parameters
	Age, Gender and Race Estimation
	Reconstruction from Slow Features
	Final Words

	Discussion
	Proposed Extensions
	Graph-Based SFA (GSFA)
	Exact Label Learning (ELL)
	Hierarchical Information-Preserving GSFA

	Supervised Learning via the Slowness Principle
	Analysis of Information for Algorithm Design
	Implications of this Work
	Negative Results
	Recommendations for Future Research
	Face Detection
	Face Recognition

	Conclusion

	Bibliography
	Cuicuilco Framework
	A Single Run of Cuicuilco
	Environment Vars. and Command Line Options
	Network Structure in Cuicuilco
	Structure of a Layer in Cuicuilco
	Examples of Network Definitions
	A Network that Implements the Identity Function
	A Simple 4-Layer HiGSFA Network

	Definition of Experimental Datasets
	Modules

	About the Author
	Publications

