Dynamic field theory (DFT)

Raul Grieben

behavioral attractor dynamics

generate time courses of behavioral variables to steer a system toward desired states while satisfying constraints

perception/cognition

need perception and cognition to autonomous generated behavior:

detect targets, obstacles

estimate direction to target etc.

select objects, recognize objects, etc

Perception = extract information about the world from sensory signals

cognition: plan actions, action sequences, motor goals, etc.

detection

- detection=decide if a particular signal/object etc is present
- examples:
 - target detection from radar signals
 - detection of communication signals from radio waves
- theoretical approaches:
 - signal detection theory, with varying amounts of prior information about signals and noise (models)
 - framework: statistical hypothesis testing

estimation

- estimation=determine the value of a continuously valued parameter from data, given the presence of a signal (which was detected)
- tracking: do some continuously in time, updating estimates...

examples:

- navigation: determine ego-position from distance sensors, maps, beacons
- control: estimate parameters of plant
- motion planning constraints: estimate pose and position of targets

estimation

theoretical approaches

- (optimal) estimation theory based on various amounts of a priori knowledge about the system
- Optimal filtering, Kalman filtering, particle filters

classification

classification=given that a signal has been detected, assign that signal to one class within a set of discrete classes

examples:

binary classification (target yes or no)

decoding in (digital) telecommunication

recognition: letters, speech, objects, ...

classification

theoretical approaches:

- statistical hypothesis testing within metrics of feature/code space to separate distributions (discrimination)
- (detection being a special case of classification)
- 🗖 neural networks, learning
- statistical learning theory: support vector machines
- Ink to coding: optimal code that maximize distances in code space between classes

The neural dynamics approach to perception and cognition: Dynamic Field Theory

dimensions

activation fields

field dynamics: peaks, instabilities

source
$$\swarrow$$
 source $_2$

Dimensions

- different categories of behavior and percepts each form continua, embedded in spaces
 - e.g., the space of possible reaching movements: spanned by the direction in space of the hands velocity
 - e.g., the spaces of possible shapes, colors, poses of a segmented visual object

Activation

activation: the notion of an "inner" state of a neural network that is used to mark what is significant about neural activity (=has impact)

membrane potential of neurons

spiking rate?

Image: Model of the second second

Activation

- activation: a real number that characterizes the inner state of a "neuron", and abstracts from biophysical details
 - Iow levels of activation: state of the "neuron" is not transmitted to other systems (e.g., to motor systems)
 - high levels of activation: state is transmitted to other systems
 - => sigmoidal threshold function

Activation fields

combine activation and dimensions

Activation fields

may represent different states of affairs:

Iocalized activation peak: a specific value along the dimension is specified and information about the dimension is thus available

had been detected/instantiated

and has been estimated/planned

flat, sub-threshold activation: no information is available, no value is specified

The dynamics activation fields

- field dynamics combines input
- with strong interaction:
 - Iocal excitation
 - global inhibition
- enerates stability of peaks

Amari equation

$$\tau \dot{u}(x,t) = -u(x,t) + h + S(x,t) + \int w(x-x')\sigma(u(x',t)) \, dx'$$

where

- time scale is τ
- resting level is h < 0
- input is S(x,t)
- interaction kernel is

$$w(x - x') = w_i + w_e \exp\left[-\frac{(x - x')^2}{2\sigma_i^2}\right]$$

• sigmoidal nonlinearity is

$$\sigma(u) = \frac{1}{1 + \exp[-\beta(u - u_0)]}$$

=> simulations

attractor states

input driven solution (sub-threshold)

self-stabilized solution (peak, supra-threshold)

instabilities

detection instability (from localize input or boost)

reverse detection instability

selection instability

memory instability

Vehicle

[from Bicho, Mallet, Schöner, Int J Rob Res,2000]

sensory surface

each microphone samples heading direction

and provides input to the field

detection instability on a phonotaxis robot

[from Bicho, Mallet, Schöner: Int. J. Rob. Res., 2000]

emergence of time-discrete events

the detection instability also explains how a time-continuous neuronal dynamics may create macroscopic, time-discrete events

the selection instability stabilizes selection decisions

target selection on phonotaxis vehicle

IR detectors

robust estimation

memory instability

monostable "off"
regime vs. bistable
regime in which
sustained activation
provides working
memory

memory & forgetting on phonotaxis vehicle

[from Bicho, Mallet, Schöner: Int J Rob Res 19:424(2000)]

a robotic demo of all of instabilities

motor dynamics

couple peak in direction field into dynamics of heading direction as an attractor

"Read-out" by generating attractor dynamics for motor system

peak specifies value for a dynamical variable that is congruent to the field dimension

treating sigmoided field as probability: need to normalize

=> problem when there is no peak: devide by zero!

 x_{peak} =

$$\frac{\int dx' \ \sigma(u(x',t))x'}{\int dx' \ \sigma(u(x',t))}$$

instead:

create attractor

solution: peak sets attractor

location of attractor: peak location

strength of attractor: summed supra-threshold activation

$$\begin{aligned} x_{\text{peak}} &= \frac{\int dx' \,\sigma(u(x',t))x'}{\int dx' \,\sigma(u(x',t))} \\ \dot{x} &= -\int dx' \,\sigma(u(x',t)) \,(x-x_{\text{peak}}) \\ &= -\left[\int dx' \,\sigma(u(x',t)) \,x - \int dx' \,\sigma(u(x',t)) \,x_{\text{peak}}\right] \\ &= -\left[\int dx' \,\sigma(u(x',t)) \,x - \int dx' \,\sigma(u(x',t)) \,x'\right] \\ &= -\int dx' \,\sigma(u(x',t)) \,(x-x') \end{aligned}$$

