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Abstract

The dynamic-systems approach to robot path planning defines a ÚÚdynam-

icsÛÛ of robot behavior in which task constraints contribute independently

to a nonlinear vector field that governs robot actions. We address prob-

lems that arise in scaling this approach to handle complex behavioral

requirements. We propose a dynamics that operates in the space of task

constraints, determining the relative contribution of each constraint to

the behavioral dynamics. Competition among task constraints is able to

deal with problems that arise when combining constraint contributions,

making it possible to specify tasks that are more complex than simple

navigation. To demonstrate the utility of this approach, we design a sys-

tem of two agents to perform a cooperative navigation task. We show

how competition among constraints enables agents to make decisions

regarding which behavior to execute in a given situation, resulting in the

execution of sequences of behaviors that satisfy task requirements. We

discuss the scalability of the competitive-dynamics approach to the de-

sign of more complex autonomous systems.

1. Introduction

Over the past 20 years or so, there has been a great deal of
research in the field of robot path planning and control. Much
of this work has focused on finding the best or most appropriate
space inwhich to represent a robotÛs actions during a navigation
task. In spite of this effort, however, the question, What is

the best space in which to represent robot behavior? remains
open. Geometric representations (e.g., Schwartz and Sharir
1983; Latombe 1991) model the geometry of the agent and
the external environment. The problem with this approach
is that it is too static. Configuration-space representations
(Lozano-P—rez and Wesley 1979; Murray, Li, and Sastry 1994)
include geometry and kinematics. The difficulty here is that
these spaces are extremely complex, and so only simple
configurations are computationally feasible. Potential-field
representations (Khatib 1986; Rimon and Koditschek 1993)
build upon configuration-space representations, defining a
state space over which a potential field can be defined. Yet
these representations too can be extremely complex.

The above approaches rely upon global representations of
the world in which the robot operates. Another possibility
is to define a local representation such as that described by
Lumelsky and Stepanov 1987 and/or a representation whose
dimensions correspond to robot behavior as in the work of
Brooks 1989. The so-called dynamical systems approach for
robot path planning and control uses such a local-behavior-
based representation (Schfiner and Dose 1992; Schfiner, Dose,
and Engels 1995). In this approach, a set of behavioral
variables defines a state space in which a ÚÚdynamicsÛÛ of
robot behavior is described. This approach has the following
features:

✓ The level of modeling is at the level of behaviors. The
dimensions of the state space correspond to behavioral
variables, such as heading direction and velocity.
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✓ The environment is also modeled at a behavioral level.
The environment provides task constraints, which
provide the system with behavioral information.

✓ Task constraints are modeled as component forces that
define attractors and repellors of a dynamical system.
The contributions are combined into a single vector field
by additive composition.

✓ Planning and control are governed by a dynamical
system that generates a time course of the behavioral
variables. The dynamics is specified by erecting a vector
field that governs the behavior of the system.

Our work, presented in this paper, has been motivated by
this approach because it is suitable for modeling the dynamics
of the robotÛs interaction with its environment in the naviga-
tion task. In our view, this approach has several advantages.
First, it does not make unreasonable assumptions, or place
unreasonable constraints on the environment inwhich the robot
navigates. Although it is a local approach, and therefore
is not applicable to optimal path planning (Desai, Wang,
Zefran, and Kumar 1996), it is appropriate for planning and
control in dynamically changing environments. In addition,
that a behavior is generated by a nonlinear dynamical system
means that we can make use of properties, such as stability,
bifurcation, and hysteresis, that enable planning decisions to
be made and carried out in a flexible, yet stable, way. Similar
modeling principles have been successfully applied to develop
theories of biological motion (Schfiner and Kelso 1988). Most
important, as we will show, the dynamical systems approach
is applicable to the production of behaviors that are more
complex than simple navigation, as long as one can express
the requisite behavior in terms of constraints in the space of
behavioral variables.

In spite of its potential advantages, the generation of
complex behaviors by nonlinear dynamical systems poses
certain problems. One fundamental difficulty with the simul-
taneous representation of multiple constraints in a nonlinear
vector field concerns the creation of spurious attractors.
Unless care is taken, as the number of constraints grows,
nonindependent contributions to the vector field can combine
in such a way that they give rise to attractors corresponding to
undesired behaviors. Spurious attractors may cause behaviors
such as running into obstacles, or getting stuck in an area and
never reaching a target location. In this paper, we investigate
situations in which nonindependent contributions to the vector
field can create spurious attractors and cause related problems.
We propose a solution that deals with multiple behavioral
requirements using weighting coefficients that determine the
relative contributions of different task constraints at any given
time. The resultant weighted combination of constraints is
similar in some respects to certain connectionist approaches
(Jacobs, Jordan, and Barto 1990; Jordan and Jacobs 1994), but
it is not learned; rather, it is computed dynamically in response
to the current environmental situation through a competitive
dynamics.

The competitive dynamics enforces competition among
task constraints (e.g., targets, obstacles, other agents, etc.)
based upon two factors: the applicability of a particular con-
straint in the current situation, which determines its com-
petitive advantage, and the degree to which the constraint is
consistent or inconsistent with other active contributions to the
vector field, captured as competitive interaction. These two
parameters are bound to the agentÛs current situation through
functions that are engineered by a designer to reflect the nature
of the task. Given appropriately chosen functions that tie these
parameters to the environment, this type of competition solves
spurious attractor problems for the case of two constraints,
(target and obstacles ), and scales to the design of more
complex systems. In this paper, a three-constraint system is
used to simulate decision making for a pair of cooperating
robots (cf. the work of Adams et al. 1995).Competition among
task constraints allows each agent to make simple decisions
about which behavior to execute in a given situation, resulting
in sequences of behavior that are generated opportunistically,
in response to specific environmental situations. Finally, we
propose a set of general design principles intended to serve
as guidelines for the synthesis of systems with more extensive
behavioral repertoires.

This paper is organized as follows. In Section 2, we
briefly review the most important concepts of the dynami-
cal systems approach to path planning and control. We then
discuss potential problems regarding the representation of
multiple behavioral requirements, including the development
of spurious attractors. In Section 3, we develop a competitive-
dynamics solution to the problem of spurious attractors for
the case of two task constraints. We propose a general design
methodology for engineering such competitive dynamics. We
show examples of the resultant system solving situations it
could not solve before by making decisions that generate
sequences of behaviors. In Section 4, we apply our design
methodology to a system of two cooperative agents, each
operating under three task constraints. We showmore complex
behavioral sequences generated by this system. In a final
section, we discuss the implications for scaling the dynamical
systems approach to the design of evenmore complex systems.

2. The Dynamical Systems Approach to Planning
and Control

In the dynamic approach, behavior is described in terms of a set
of variables that define behavioral dimensions. For the task of
autonomous robot navigation, one may represent the behavior
of the agent using heading direction, ! (⇤⌧ ⌫ ! ⌫ ⌧), and
velocity, y (Schfiner and Dose 1992). In this paper, we focus
on a single behavioral dimension: the heading direction. We
assume that velocity is controlled by a dynamics similar to that
described by Neven and Schfiner (1996).

Task constraints are expressed as points or parameterized
sets of points in the space spanned by the behavioral variables.
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Fig. 1. Task constraints and behavioral dynamics. An agent, a target, and the corresponding vector field are illustrated in (a). The
target constraint is expressed as a heading direction (zero corresponds to the current heading of the agent). The desired behavior
of heading toward the target is expressed as an attractor (negative slope) in the vector field that governs agent-heading direction.
An agent, an obstacle, and the corresponding vector field are shown in (b). The obstacle constraint is also expressed as a heading
direction; however, the undesired behavior of the heading toward the obstacle is expressed as a repellor (positive slope) in the
vector field. A more complex configuration is shown in (c). The target and obstacle constraints are additively combined into a
single vector field. The attractor corresponds to steering around the obstacle en route to the target location.

For example, in the navigation task, the heading direction
#wdu represents the direction to the target location, while
the direction #rev represents the direction to an obstacle, as
shown in Figure 1. Thus, desired behavioral states (such as
moving toward a target) and undesired behavioral states (such
as moving toward an obstacle) are represented in a way that is
invariant to changes in the frame of reference (Schfiner, Dose,
and Engels 1995).

2.1. Behavioral Dynamics

The behavior of the agent is modeled as a time course of
the behavioral variables generated by a behavioral dynamics
that incorporates both planning and control knowledge. For
our one-dimensional system, the dynamics take the following
form:

b! @ i+!,= (1)

Task constraints define contributions to the vector field, i+!,,
bymodeling desired behaviors as attractors (Fig. 1a) and to-be-

avoided behaviors as repellors (Fig. 1b) of the behavioral dy-
namics. Thus, task constraints affect the behavioral dynamics;
they do not directly specify behavioral patterns. Behavioral
patterns are generated by the behavioral dynamics.

A desired behavior is modeled as an attractor of the
behavioral dynamics (shown in Fig. 1a),

Iwdu @ ⇤d vlq+!⇤ #wdu ,> (2)

where ! is the agentÛs heading direction in world coordinates,
and #wdu is the direction toward the target location.

A to-be-avoided behavior is specified as a repellor (shown
in Fig. 1b):

Irevl @ Urevl ⇧Zrevl ⇧Grevl = (3)

The repellor corresponding to an individual obstacle (Fig. 1b)
is the product of three functions. One function sets up a generic
repellor in the direction of the obstacle,
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Fig. 2. Dependent and independent constraints: (a) two obstacles are configured so that there is not enough space between them
for the agent to pass through. These constraints are dependent, and superposition of their contributions to the vector field creates
a repellor at their average heading direction, effectively modeling a single obstacle; and (b) two obstacles configured so that there
is enough space for the agent to pass between them. These constraints are independent, and an attractor is formed in their average
direction, allowing the agent to steer between them.

Urevl @
+!⇤ #l ,

⌅#l

h4⇤m
!⇤#l
⌅#l

m> (4)

a second limits the angular range of the contribution,

Zrevl @
4

5
^wdqk+k4+frv+!⇤ # l ,

⇤ frv+5⌅#l . �,,, . 4`> (5)

and a third scales the strength of the contribution according to

the obstacleÛs distance from the agent:

Grevl @ h
⇤ ul ⇤Ul ⇤Udjhqw

g 3 = (6)

Here: ! is the heading direction of the agent; #l is the
direction to obstacle l;⌅#l is the angular range subtended by
the obstacle; Ul is the radius of the obstacle; Udjhqw is the
radius of the agent; and � is a safety margin. The constant
g3 represents the distance at which the agent begins to take
obstacles into account. Obstacles that are very far from the
agent do not affect the behavioral dynamics, whereas nearby

obstacles affect the dynamics quite strongly. Further details
regarding this approach can be found in Schfiner and DoseÛs
work (1992). Multiple obstacles are handled by summing the
contributions of individual obstacles:

Irev @
q
[

l@4

Irevl = (7)

Finally, the contributions of individual task constraints are
combined additively into a single vector field, specifying the
path-planning dynamics, as illustrated in Figure 1c:

b! @ Iwdu . Irev .
s

Te� +w, = (8)

Here,
s
Te� +w, represents a Gaussian noise term with zero

mean and variance Te. Because certain constraints are
modeled as repellors, the planning dynamics is augmented by
this stochastic term ensuring escape from unstable fixed points
(repellors).

An important feature of this approach is the concept of
asymptotic stability of behavior, brought about by generat-
ing behavior from a dynamics, rather than directly from the
task constraints. Qualitative change in behavior arises through
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change in the number, nature, or stability of attractors and
repellors. Such changes correspond to bifurcations in the vec-
tor field, which are brought about by movement of the agent
through the environment. Note, for example, the parameters to
Irevw . As the agent moves, the distance to the obstacle and the
angular range subtended by the obstacle vary. Changes to these
parameters cause bifurcations in the vector field that bring
about qualitative changes in the agentÛs behavior, modeling
path-planning decisions.

2.2. Superposition of Task Constraints and Spurious
Attractors

In the dynamic approach, avoidance of a single obstacle is
modeled by adding a range-limited repellor to the vector
field, while avoidance of multiple obstacles is modeled by
summing multiple range-limited repellor contributions. This
strategy works because linearly dependent contributions lead,
through superposition, to averaging among corresponding
constraints, while linearly independent contributions allow
for the expression of constraints that are incompatible, con-
tradictory, or independently valid. To understand what this
means, consider the two situations depicted in Figure 2. In
Figure 2a the agent faces a pair of obstacles that are positioned
too closely together for the agent to pass between them.
The constraints represented by the two obstacles lead to a
single repellor in the vector field at their average location:
behaviorally, a single obstacle. In Figure 2b, the agent again
faces two obstacles, but this time they are positioned far enough
apart for the agent to pass between them. These two constraints
are independently valid, and an attractor is formed in the vector
field, corresponding behaviorally to steering between the two
obstacles.

An important restriction on this approach to combining
obstacle constraints is that sensed obstacles with a high de-
gree of overlap cannot be allowed to contribute separately
to the vector field, because averaging of their contributions
can create spurious attractors. Schfiner and Dose (1992)
deal with this problem using a competitive interaction among
obstacles. Sensed obstacles that overlap are forced to compete
in such a way that only one ÚÚrepresentativeÛÛ obstacle is
allowed to contribute to the vector field. More recent work
has implemented competition among sensed obstacles using
a neural-field architecture (Amari 1977), with the general
purpose of cleaning up noisy perceptual information so
that separate contributions to the behavioral dynamics are
guaranteed to have the desired properties (Engels and Schfiner
1995; Schfiner, Dose, and Engels 1995). A second function of
the neural field is that it enables the system to store informa-
tion about its environment in the form of a cognitive map. As
the system explores its environment, it is able to add to its
knowledge. Through neural-field dynamics, sensed and re-
membered information is integrated into the vector field so that

the system can make use of environmental information even
when it is not being directly sensed.

2.3. Competition among Task Constraints

Our implementation of the dynamic approach has revealed that
competition among obstacle constraints does not completely
solve the spurious attractor problem. Situations can be
created in which the combination of the target contribution
withmultiple obstacle contributions creates spurious attractors.
Figure 3 shows two such situations. In Figure 3a, two obstacles
are situated in front of the agent in such a way that there
is almost, but not quite, enough space for the agent to pass
between them. If only the contribution of obstacles to the
vector field is considered, a repellor with a shallow slope is
created at their average location. If the target is placed behind
the obstacles, however, so that its attractor contribution to the
vector field collides with this repellor, an attractor is created
between the two obstacles. This attractor will cause the agent
to get stuck at this location.

Figure 3b shows another situation in which the agent has
moved down a hallway toward a target location and has reached
a dead end; it is thus prevented from making further progress
toward the target. Once again, if only the obstacles contribution
is considered, a repellor exists that would cause the agent to
turn around and leave the hallway. However, the repellor is
contradicted by the target contribution and the agent is stuck at
the dead end.

The reason that spurious attractors are created in these
situations is that the relative strength of each contribution
(Iwdu and Irev ) to the vector field is determined solely by the
fixed time scale of the individual contributions to the planning
dynamics. To deal with situations such as these, we further
modify the strength of each contribution with a specific weight
that is assigned to each type of task constraint (target and
obstacles):

b! @ mzwdu mIwdu . mzrev mIrev .
s

Te� +w, = (9)

Weights are assigned through a competitive dynamics that
determines the strength of each contribution, depending upon
the current situation:

bzl @ � lzl +4⇤ z5
l ,⇤

[

m 9@l

⇣ m>l z
5
m zl .

s

Tw � +w, = (10)

The state space of this dynamical system corresponds to the
set of task constraints; the first system we will consider is
two dimensional, with state vector [zwdu > zrev ]. The terms
Tw � +w, represents Gaussian noise, with zero mean and

variance Tw . The parameters � l and ⇣ m>l are referred to as
the competitive advantage and the competitive interaction,
respectively.
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Fig. 3. Spurious attractors. Two obstacles dead ahead provide almost, but not quite, enough space for the agent to pass between
them (a). The obstacles contribution to the dynamics reveals a shallow attractor. Yet when the target also lies straight ahead, its
attractor contribution, combined additively with the repellor, creates a spurious attractor in the composite vector field. This will
cause the agent to get stuck at this location. A hallway trap is shown in (b). Once again, the obstacles constraint creates a shallow
repellor. However, because the target lies directly beyond, adding its contribution creates a spurious attractor in the composite
vector field. Once again the agent is stuck.

Competitive advantage, � l , describes the degree current to
which constraint l is appropriate to the agentÛs situation.
Competitive interaction, ⇣ m>l , is used to describe the extent to
which constraint m is consistent or inconsistent with constraint
l, given the current situation.

If we consider just the first term of the dynamic equation,
then � l is the only parameter, and this system resembles the
normal form for a pitchfork bifurcation (Guckenheimer and
Holmes 1983). When � l ? 3, zl has a stable fixed point at
0; when � l A 3, zl has stable fixed points at  4. The second
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term specifies competitive interaction from other constraints.
The dynamics in the case of multiple competing constraints is
more complex, and is investigated below for the cases of two
and three interacting constraints.

Equation (10) describes a competitive dynamics similar to
that proposed by Schfiner and Dose (1992) for implementing
competition among sensed obstacles. For the case of compe-
tition among obstacles, however, the difficulty in applying this
competitive scheme was that it meant equating each obstacle
with a dimension of the state space. This required deter-
mining, in each simulation cycle, a correspondence between
currently sensed obstacles and previously sensed obstacles,
a computationally difficult task (Schfiner and Dose 1992).
Implementing competition in an Amari field solved this
problem, but at the expense of simulating a two-dimensional
integrodifferential equation, which is a computationally inten-
sive proposition. Our use of competitive dynamics (i.e., eq.
(10)) will not be vulnerable to the correspondence problem,
however, because we use competition to determine the
weighting of a fixed set of behavioral constraints. Therefore,
it is not necessary to resort to more computationally expensive
means. In fact, we will see that this approach scales nicely to
the specification of more complex systems.

In the next section, we use competition to address the issue
of spurious attractors for the case of two task constraints. In
this process, we outline a set of design principles that will be
applicable to the specification of larger numbers of behavioral
requirements.We claim that this strategy of competitive inter-
action among task constraints is general enough to support sys-
tems in which the agent possesses a rich set of potential beha-
viors. In the following section, we demonstrate scalability,
using this methodology to design agents that perform a more
complex task.

3. Competition for the Case of Two Task Con-
straints

We first use competitive dynamics to address the spurious
attractor problem for the case of two task constraints. Our
development proceeds in three stages. First, we perform a
stability analysis that tells us how relative values of the para-
meters � l and ⇣ m>l determine the resultant weighting of task
constraints. In the second stage, we identify situations where
the two constraints, target and obstacles, are incompatible.
This leads to the design of functional forms that tie competitive
interactions, that is, the ⇣ m>l , to specific situations. In a final
stage, we determine which environmental situations call for
the activation of which behaviors. This leads to the design
of functional forms for the competitive advantage, � l , of each
constraint.

3.1. Stability Analysis
A linear stability analysis (Perko 1991) was performed on
the system described by eq. (10) for l 5 4> 5; that is, the

Table 1. Fixed Points and Stability Conditions for Two-
Constraint Competition

$wdu $rev Stability
0 0 Stable � wdu > � rev ? 3
0  1 Stable ⇣ rev>wdu A � wdu

 1 0 Stable ⇣ wdu>rev A � rev

 Dwdu>rev  Drev>wdu Stable � rev A ⇣ wdu>rev

and � wdu A ⇣ rev>wdu

case of two behavioral constraints, assuming ⇣ m>l A 3. The
analysis reveals the qualitative behavior of the competitive
dynamics by enumerating the set of equilibrium points for
the two-dimensional system and classifying each equilibrium
point according to its stability; that is, it determines whether
the fixed point is an attractor or repellor of the competitive
dynamics. Because the stability of each equilibrium point
changes depending upon the values of the parameters � l and
⇣ m>l , we also computed a set of stability conditions, relative
values of the parameters that determine the conditions under
which each fixed point is stable.

The results of our analysis are shown in Table 1. There are
nine equilibrium points, because each nonzero point has both
a positive and a negative value. The positive and negative
values have the same stability conditions, and in addition,
the absolute magnitude of each weight is used to determine
the contribution of the corresponding behavioral constraint.
Thus, due to symmetry, these nine points reduce to four unique
equilibrium points.

Each equilibrium point corresponds to a different behavior,
because each unique equilibrium point yields a qualitatively
different composition of task constraints, a different vector
field governing behavior. The first point, (0, 0), corresponds
to both constraints, target and obstacle being effectively turned
off. This point is stable (an attractor of the competitive
dynamics) as long as � wdu > � rev ? 3.

The point +zwdu > zrev , @ +3> 4, corresponds to the activa-
tion of obstacles, and the deactivation target. It is stable as long
as ⇣ rev>wdu A� wdu . In other words, this point is an attractor of
the competitive dynamics whenever inhibition from obstacles
is greater than the competitive advantage of target. The resul-
tant behavioral composition is appropriate in situations such
as those depicted in Figure 2a, in which the superposition of
these two constraints would lead to the creation of a spurious
attractor in the vector field.

The point +zwdu > zrev , @ +4> 3, corresponds to the activa-
tion of target, and deactivation of obstacles. It is stable as
long as ⇣ wdu>rev A � rev . In other words, this point is an at-
tractor of the competitive dynamics whenever the competitive
interaction from target is greater than the competitive advan-
tage of obstacles. This behavior is appropriate in situations
where there are no obstacles near the agent.

Note that the above stability conditions are not mutually
exclusive. When both conditions are satisfied, we have bi-
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stability, and hysteresis will determine the outcome of the
competition: the behavior that is selected by the competition
will depend upon the previous history of the system. Although
we will not see an example of hysteresis in our two-constraint
system, this type of solution is appropriate, in general, when
the environmental situation is ambiguous.

Finally, the point +zwdu >zrev , @ +Dwdu >Drev , corresponds
to the activation of both constraints. It is stable whenever
� wdu A ⇣ rev>wdu and � rev A ⇣ wdu>rev . This so-called averag-
ing solution (Schfiner and Dose 1992) is an attractor of the
competitive dynamics whenever the competitive advantages of
both constraints outweigh the competitive interactions between
them. This solution yields a behavior in which both constraints
are combined by superposition in the vector field.

The averaging solution is given by

Dl> m @

v

� l� m ⇤ � m ⇣ m>l

� l� m ⇤ ⇣ l> m ⇣ m>l

= (11)

If there is no competition between constraints ⇣ l> m @ 3 ; l> m,
both constraints are activated at full strength. In this case, the
resulting behavioral dynamics is equivalent to that described
by Schfiner and Dose (1992). If there is some competition,
both are still active, but at reduced levels. This behavior is
appropriate when the two constraints are both in play, and are
not in conflict with one another.

In summary, the stability analysis reveals two important
facts about the competitive dynamics. First, it tells us that
in a system of two behavioral constraints (namely, target and
obstacles), four behaviors are possible: doing nothing, seeking
a target, avoiding obstacles, and navigation (target seeking
plus obstacle avoidance, arising from the averaging solution).
We design our system so that as the environmental situation
changes, parameters to the competitive dynamics will also
change, causing bifurcations in the competitive dynamics.
These bifurcations allow the system to decide which of these
behaviors is appropriate in any given situation. Second, this
analysis describes how different values of the competition
parameters select categories of behavior. In the next two
sections, we complete our design by choosing functions that
bind the values of these parameters to specific situations in the
environment.

3.2. Competitive Interaction

In this section, we determine the situations in which target
is incompatible with obstacles, with the goal of preventing
the creation of spurious attractors. Our strategy is based on
the observation that whenever an attractor and a repellor col-
lide (see Fig. 3), unwanted consequences may result, be-
cause the two contributions are (1) nonindependent, and (2)
contradictory. We design ÚÚfixed-point detectorsÛÛ that cap-
ture the location and stability of the fixed points for each

Fig. 4. Competitive interaction between obstacles and target
for the spurious attractor example shown in Figure 3a.

contribution to the behavioral dynamics. We then use these
functions to define competitive interaction between the two
task constraints.

Our first task is to design functions that identify attractors
and repellors for the individual contributions to the behavioral
dynamics. For the target contribution, we use

Swdu @ vjq+
gIwdu

g!
, h⇤f4mIwdum = (12)

This function has two factors. The first calculates the sign
of the slope of the vector-field contribution. This determines
whether a fixed point is an attractor (negative slope) or a
repellor (positive slope). The second finds fixed points using
a function that has a value of one when the vector-field
contribution is equal to zero, and falls to zero as the magnitude
of the contribution grows. The constant f4 determines the rate
of falloff, allowing the specification of a safety margin around
the attractors and repellors if necessary. At a repellor, Swdu has
a value of one; at an attractor, minus one; and elsewhere, values
approach zero. Thus, it describes the location and stability
of the fixed points of the target contribution to the behavioral
dynamics.

We use a similar equation for obstacles. However, because
individual obstacle contributions are range limited, that is,
have values near zero outside an obstacleÛs range, eq. (12)
will identify these areas as fixed points. Thus, we sum the
range-limiting functions for the obstacles given in eq. (5) (i.e.,
Zrev @

Sq
l@4 Zrevl ), and use this as a multiplicative factor:

Srev @ Zrev vjq+
gIrev

g!
, hf4mIrevm = (13)
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As above, this function has a value of one at a repellor, minus
one at an attractor, and values approaching zero elsewhere.
Thus, it describes the location and stability of the fixed points
of the obstacles contribution to the behavioral dynamics.

Next we design the competitive-interaction function itself.
We use Swdu and Srev to construct a function that describes the
competitive interaction between obstacles and target as

⇣ rev>wdu @
h⇤f5Swdu Srev

hf5
= (14)

The graph of eq. (14) is shown in Figure 4, corresponding to the
situation depicted in Figure 3a. It is strongly peaked at the point
of attractor-repellor collision, and constant f5 determines the
rate of drop-off around the collision. Note that it also provides a
certain level of background competition that wewill later use to
help determine the appropriate level of competitive advantage,
� wdu , for target.

Finally, we choose the competitive interaction between
target and obstacles. For the current navigation task, it is
never appropriate for target to deactivate obstacles. Thus,
we simply choose a small constant value, such as ⇣ wdu>rev @
3=38, allowing obstacles to be activated whenever the agent
approaches an obstacle.

3.3. Competitive Advantage

In the previous section, we designed functions that capture
situations in which target and obstacles should compete; that
is, when attractor and repellor contributions would ÚÚcollide.ÛÛ
From the stability analysis, we know how to pick relative
values of � l and ⇣ m>l in such a way that we can specify the
type of behavior that we would like in any specific situation.
In this section, we complete the design, choosing values for
the competitive advantages so that, in situations where the
two behaviors compete we can determine the outcome of the
competition.

First, we note that the target constraint should be turned on
whenever possible. For example, we can choose a constant
value of � wdu @ dwdu such that whenever obstacles actively
compete with target, ⇣ rev>wdu A dwdu and target will lose the
competition. On the other hand, as long as dwdu exceeds the
background level of competition created by eq.(14) (shown in
Fig. 4), target will be activated.

Next, we must decide how to set the competitive advantage
for the obstacle contribution. Intuitively, we observe that ob-
stacles should have a high competitive advantage when they
are nearby and/or when there are many of them around the
agent. We have already encountered a function that grows
exponentially fast as we approach an obstacle, Grevl (eq. (6)),
which is a component of the function Irevl . To count the num-
ber of obstacles around the agent, we sum the Grevl . We then
limit the maximum value of the � rev, resulting in the following
function for competitive advantage:

Fig. 5. An autonomous robot used to test the dynamical sys-
tems controller.

� rev @ wdqk
q
[

l@4

Grevl = (15)

This completes our design.

3.4. Examples

In Section 2.3, we saw two situations in which spurious
attractors were created by superposition of nonindependent,
contradictory contributions in the vector field. In this section,
we demonstrate how competition deals with these situations.

The dynamical decision-making and path-planning system
has been implemented as a controller for the mobile platforms
in our laboratory. One of these robots is shown in Figure 5. Two
separate CCD camera rigs provide the dynamical controller
with the necessary information about targets and obstacles
in its environment. The robots identify and track targets
using a single turntable-mounted camera and a landmark-
detection algorithm (Venetianer, Large, and Bajcsy 1997).
They identify obstacles using a separate stereo pair and an
inverse-perspective algorithm (Mallot, B‰lthoff, Little, and
Bohrer 1991). Each of the examples in this and the following
sections has been tested and verified on the mobile platforms.
For presentation clarity, the examples presented in this paper
have been generated as the dynamical system controller was
run in simulation mode.

In Figure 3a, a spurious attractor arose when a repellor,
created by two obstacles, was combined with an attractor
from the target contribution. Figure 6 shows four snapshots
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Fig. 6. Competition avoids the creation of a spurious attractor. Each panel shows a current configuration (bottom), and the
corresponding vector field (top left). Heading direction is plotted so that ! = 0 corresponds to the agentÛs current heading direction.
The current competitive situation is also given (top right): competitive advantage, � l (dashed lines), and the current weighting,
$l (solid lines), are shown for each constraint. Competitive interaction is not shown. The agent approaches two obstacles that
it cannot pass between (a). This situation could create a spurious attractor (b) (compare with Figure 3a), but it does not because
competition deactivates target; competitive interaction for this situation is shown in Figure 4. Once the agent has turned away
from the obstacles, target is reactivated (c). The agent then rounds the leftmost obstacle, steering toward the target location (d).
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from an episode in which the agent, using competition among
behavioral constraints, successfully navigates this situation.
Figure 6a shows the agent en route toward the target. It is far
enough from the obstacles that it has not yet seen them, thus
zwdu @ 4, zrev @ 3, and the vector field consists only of the
attractor contribution. Figure 6b shows the situation shortly
after the agent has detected both obstacles. The reader should
compare this situation with that of Figure 3a. Unlike in Figure
3a, however, in Figure 6b the vector field consists solely of the
obstacles contribution. This is because competitive interaction
increased, as shown in Figure 4, ⇣ rev>wdu A � wdu , and target is
deactivated, while � rev A ⇣ wdu>rev , and obstacles is activated.
Figure 6c shows the situation a few time steps later, when the
agent has turned away from the target. Competitive interaction
has dropped, so that � wdu A ⇣ rev>wdu and target is turned on,
while it is still the case that � rev A ⇣ wdu>rev , so obstacles is
active as well. This is the ÚÚaveragingÛÛ solution, resulting in a
composite behavior that combines the two constraints. Finally,
Figure 6d shows the agent as it rounds the leftmost obstacle,
successfully approaching the target. It is the combination of
task constraints that causes the agent to round the obstacle,
rather than to simply steer away from the obstacle. Note
also that the agent has produced a sequence of behaviors: a
seek behavior, followed by an avoid behavior, followed by a
composite behavior. This simple sequence demonstrates each
nontrivial behavior that arises from the competitive dynamics
in the case of two task constraints.

Next, we turn to a more complex situation in which the
agent is trapped in an enclosure that is preventing it from
reaching the target location. In this situation, depicted in
Figure 3b, target is deactivated by competition (see Fig. 4)
only so long as the agent is pointed more-or-less directly
toward the target location. When the agent turns away, the
competitive interaction (⇣ rev>wdu ) drops, and the influence of
target once again causes the agent to turn toward the target.
The problem here is not simply that target and obstacles are
contradictory. Rather, in this context, target is not a useful
constraint. The agent is trapped in an enclosure from which
it must escape before the target -constraint becomes useful. In
other words, the agent must establish the intermediate goal of
escaping from the enclosure.

In this case, it is appropriate to temporarily disable target,
until the agent has escaped from the enclosure. We can char-
acterize this general type of situation heuristically by observ-
ing that the agent (1) is surrounded by obstacles, and (2) has no
line-of-sight path to the goal. Thus, we rewrite the expression
for competitive advantage of the target as

� wdu @ dwdu ⇤ +4⇤ Ywdu ,dwdu � rev = (16)

Here, dwdu is the competitive advantage for target, as
described above. The competitive advantage of obstacles is
� rev , which increases as obstacles get close and/or increase in

number, and Ywdu takes on a value of 0 when there is no line-
of-sight path to the target location:

Ywdu @

�

3 if obstacle between agent and goal>
4 otherwise=

(17)

Thus, the second term of eq. (16) implements a heuristic
enclosure detector, and � wdu

�@ 3 when the agent is trapped.
This is an example of a situation in which the behavioral
situation itself, rather than the contradictory nature of be-
havioral constraints, temporarily rules out a particular be-
havioral contribution. For the examples below we choose
dwdu @ 3=7.

Figure 7 shows an example of the agent successfully
negotiating the hallway trap using the competitive advantage
described by eq. (16). In Figure 7a, it travels to the end of the
hallway. Both the constraints are active, because the agent is
avoiding the walls, thus the contribution of obstacles forms an
attractor dead ahead, consistent with the direction to the target.
In Figure 7b, the agent has encountered the dead end and begins
to turn away. If the collision of an attractor and repellor were
the only factor in deactivating target, the agent would quickly
turn back toward the target. However, because � wdu falls be-
low the background level of competition, target is turned off.
Next, Figure 7c shows an interesting, and less obvious, case in
which an attractor and a repellor collide: when the attractor is
supplied by obstacles, and the repellor is contributed by target.
Here the agent must move directly away from the target to
escape from an enclosure, and make further progress toward
the target. Note that � wdu A 3 (the agent no longer senses the
obstacles between itself and the target), yet zwdu @ 3; this
is again due to increased competition from the collision of an
attractor with a repellor. Finally, Figure 7d shows the agent
successfully making its way out of the enclosure and toward
the target. This behavioral sequence arises due to competition
among behavioral constraints, which allows the agent to decide
which behavior is appropriate, depending upon the situation.
This example also demonstrates a case in which the behavioral
situation itself, rather than the contradictory nature of task
constraints, temporarily rules out a particular contribution.

In summary, we have described a method of weighting
behaviors that precludes the creation of spurious attractors
in the vector field through competition among individual
contributions. The basic idea is that the competition equations
detect situations in which nonindependent contributions to the
vector field are contradictory, and sets the parameters of the
competition in such a way that one of the contributions is
turned off. We have shown that this method works well in
the case of the simple two-constraint system. Additionally, in
the process of constructing the above system, we outlined a
design methodology: stability analysis, design of competitive
interaction, and design of competitive advantage. In the next
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Fig. 7. The agent successfully negotiating the hallway trap. Each panel shows the current configuration (bottom), and the
corresponding vector field (top left). Heading direction is plotted so that ! = 0 corresponds to the agentÛs current heading direction.
The current competitive situation is also shown (top right): competitive advantage, � l (dashed lines), and the current weighting,
$l (solid lines), are shown for each constraint. Competitive interaction is not shown. The agent moves down the hallway toward
the target (a). The agent faces the spurious attractor situation shown in Figure 3b. Competitive advantage, � wdu , drops below the
background level of competition created by eq. (14), allowing the agent to turn away from the dead end (b). The agent moves
out of the hallway, due to active competition between obstacles and target (c), and successfully leaves the trap (d).
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section, we construct a system of three task constraints to
demonstrate how this approach scales when task requirements
are more complex.

4. Cooperation through Competition

In this section, we consider the case of a more elaborate
system. We have two agents, and we define an extension of
the navigation task as follows. First, both agents must obey
the same constraints as in the above system; that is, they must
perform the navigation task. Second, we impose the constraint
that the two agents must remain near one another as they make
their way toward the target location. Thus, each agent must
respect a third behavioral requirement, which we call other.

We begin by making some simplifying assumptions. First,
we wish to build upon our previous design. Target seeking
and obstacle avoidance are to operate as in a single-agent case,
described above. Second, agents are to avoid collision with
one another in the same way as they would avoid stationary
obstacles. Thus another agent is, among other things, an ob-
stacle to be avoided. Finally, there is no centralized control.
The behavior of each individual agent is governed by the same
dynamic equations, but generated independently, each by the
time course of its own behavioral variables. The two agents do
not communicate with one another about their plans; however,
we assume that they know one anotherÛs position.

Let us consider the additional constraint of staying near the
companion agent. Similarly to target seeking, we can model
this constraint as an attractor:

Irwk @ ⇤d vlq+#rwk ,= (18)

The contribution of other is weighted and added to the
composite vector field:

b! @ mzwdu mIwdu . mzrev mIrev . mzrwk mIrwk .
s

Te�= (19)

The potential problem with combining these three con-
straints lies in the composition of target and other, as depicted
in Figure 8. In Figures 8a and 8b, we see a situation in which
two agents are headed toward the target, yet one is considerably
ahead of the other. In Figure 8a, we look at the situation from
the point of view of Agent 1 (bottom). The composition of
the target and other contributions sum in such a way that
the agent is to move straight ahead. This is acceptable for
Agent 1, since both the target and the other agent lie in the
same direction. In Figure 8b, we see the situation from the
point of view of Agent 2 (middle). The target and the other
agent lie in opposite directions, and the composition of these
two contributions cancel one another entirely. This is clearly
not acceptable. A different situation is depicted in Figure 8c,
shown from the point of view of Agent 1 (bottom). The tar-
get is to the right, and the other agent is to the left. The

two contributions sum such that a single attractor lies in their
average direction. This situation may also be unacceptable.
Thus, the problem with the composition of target and other is
that summing these nonindependent contributions averages the
corresponding constraints. In some cases (Fig. 8a), this yields
appropriate behavior; in other cases (Figs. 8b and 8c), is does
not.

Our task is to design the competitive dynamics so that
both agents will behave in a sensible manner when these
three constraints are combined. We proceed according to the
design methodology outlined in Section 3. First, we per-
form a stability analysis to determine the equilibrium points
of the competitive dynamics and their associated stability
conditions. Second, we decide when the behaviors are con-
sistent/inconsistent, to determine appropriate competitive in-
teraction functions. Finally, a behavioral analysis determines
which constraints are appropriate in which situations, yielding
the competitive advantages.

4.1. Stability Analysis
As in the case of two constraints, we performed a stability
analysis to determine the unique equilibrium points of eq. (10)
for three behaviors. As above, we assumed ⇣ m>l A 3. The
results of the analysis are shown in Table 2, revealing eight
unique equilibrium points. The stability analysis also reveals
distinct classes of solutions. Thus, rather than describe each
behavior individually, we describe each class of stable fixed
points. This makes the job of understanding the competitive
dynamics easier. It also illustrates important features regarding
the scalability of this approach.

The first class of solutions corresponds to deactivating all
constraints. This solution is stable whenever all competitive
advantages are less than zero. The second class of solutions
corresponds to one constraint being activated, and the others
deactivated. Let us refer to the active behavior as behavior l.
This solution is stable so long as ⇣ l> m A � m > ; m 9@ l. In
other words, behavior l is the sole winner of the competition
whenever it is active, and simultaneously inhibits all other
behaviors.

The third class of solutions corresponds to two constraints
being activated and the third deactivated. Let l and m be the
activated constraints, and n be the deactivated constraint. Then
this solution is stable whenever � l A ⇣ m>l and � m A ⇣ l> m .
Additionally, it must be the case that ⇣ l>n A � n or ⇣ m>n A � n .
The latter condition says at least one of the active constraints
must be inhibiting behavior n. The former condition is
equivalent to the condition of the averaging solution for the
case of two behaviors. Furthermore, the averaging solution
itself is the same as it would be in the two-constraint case; that
is, it is given by eq. (11).

Note that, similarly to the two-dimensional case, the above
stability conditions are not all mutually exclusive. In cases
of bistability, equilibrium points are determined by hysteresis;
thus the resultant behavior of the agent is determined by its
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Fig. 8. Nonindependent constraints: when constraints are dependent, additive composition results in constraint averaging. From
the point of view of Agent 1 (bottom), the target and the other agent are in the same direction, so constraint averaging is acceptable
(a). From the point of view of Agent 2 (middle), the target and the other agent are in opposite directions, so constraint averaging
is clearly unacceptable (b). From the point of view of Agent 1 (bottom), the target and the other agent lie in different directions.
Averaging may be unacceptable, although this judgment depends somewhat on the task specification (c).
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Table 2. Fixed Points and Stability Conditions for Three-Constraint Competition

$wdu $rev $rwk Stability
0 0 0 Stable � wdu > � rev > � rwk ? 3

 1 0 0 Stable ⇣ wdu> m A � m > ; m 9@ wdu
0  1 0 Stable ⇣ rev> m A � m > ; m 9@ rev
0 0  1 Stable ⇣ rwk> m A � m > ; m 9@ rwk

 Dwdu>rev  Drev>wdu 0 Stable � wdu A ⇣ rev>wdu

and � rev A ⇣ wdu>rev

and ⇣ l>rwk A � rwk > l 5 iwdu> revj
 Dwdu>rwk 0  Drwk>wdu Stable � wdu A ⇣ rwk>wdu

and � rwk A ⇣ wdu>rwk

and ⇣ l>rev A � rev > l 5 iwdu> rwkj
0  Drev>rwk  Drwk>rev Stable � rev A ⇣ rwk>rev

and � rwk A ⇣ rev>rwk

and ⇣ l>wdu A � wdu > l 5 irev> rwkj

 Dwdu>rev>rwk  Drev>wdu>rwk  Drwk>wdu>rev Stable � wdu A ⇣ l>wdu > ; m 9@ wdu
and � rev A ⇣ l>rev > ; m 9@ rev
and � rwk A ⇣ l>rwk > ; m 9@ rwk

past history. As we shall see below, this provides a type of
behavioral stability that is useful in ambiguous situations.

The final class of solutions consists of a ÚÚthree-constraint
averagingÛÛ solution, where all three contributions are active.
This point is stable so long as � l A ⇣ m>l for all m 9@ l. While
it is possible to write down a closed form for this solution, it is
not particularly informative, so it is not included here.

This analysis points up some interesting properties of the
competitive dynamics that have implications for scaling this
competitive strategy to systems composed of larger numbers
of constraints. First, note the stability conditions for each
class of behaviors. Summarized, these conditions tell us that a
constraint is deactivated when it is inconsistent with any single
active constraint; conversely, it is activated only when it is
consistent with all other active constraints. Thus, a complex
conspiracy of competitive interactions is not required to
activate or deactivate a constraint. The important implication
of this observation is that we can design the competitive
dynamics simply by considering pairs of behaviorsÒit is not
necessary to consider more complex interactions. This is not
obvious simply by inspection of eq. (10), but it is revealed by
the stability analysis.

Second, the above observations regarding the bifurcation
structure of the competition dynamics generalize to systems
with any number of constraints. Therefore, the stability
analysis need not be performed explicitly for larger systems;
fixed points and stability conditions can be written down
directly. Thus, we can count the number of unique behaviors
that arise in a system of q constraints. It is simply the number
of ways to choose zero active constraints, plus the number of

ways to choose one active constraint, and so on. In other words,
the number of behaviors generated in such a system is

Q @

�

q
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�
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�

q

4

�

. ⌅ ⌅ ⌅.
�

q

q
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@
q
[

l@4

�

q

l

�

@ 5q = (20)

This count, Q , includes only qualitatively different compo-
sitions; it does not consider the continuously many-graded
compositions that arise from the averaging solutions as unique.

Third, given an existing +q ⇤ 4,-constraint system, one
adds the qwk constraint simply by considering interactions
with each of the existing q ⇤ 4 constraints. The existing
system functions as previously designed, without unwanted
interactions caused by the introduction of the new constraint.
Thus, the stability analysis has also revealed how to design
the competition parameters for our three-constraint system:
we need only specify the competitive advantage for the new
constraint, other, and the competitive interactions between
the new constraint and the existing constraints, target, and
obstacles.

In summary, the stability analysis reveals important facts
about the scalability of this approach. In an q-constraint sys-
tem, competition provides 5q unique behaviors. However,
designing the system requires at most q5 design decisions:
q5⇤q competitive interactions, plus q competitive advantages.
Furthermore, the analysis revealed that such systems implicitly
obey a modularity principle. A new task constraint can be
added to the existing system without disturbing the previous
design in any way. We will use these facts in the design of our
three-constraint system.
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Fig. 9. Competitive interaction between target and other,
⇣ wdu>rwk = ⇣ rwk>wdu , for e4 = 0.25, e5 = 4.0, and e6 = 3.0.
Competition is maximum except when the target and the other
agent lie in approximately the same direction, that is, when
#wdu ⇤ #rwk is near zero.

4.2. Competitive Interaction

First, we use the results of the stability analysis to design
competitive interactions. Our first goal is to build upon the
previous design. We wish to have each agent behave as
in the previous system with respect to target and obstacles.
As discovered above, we can accomplish this goal by sim-
ply leaving the competitive advantages and competitive inter-
actions for these two constraints the same as in the previous
design. Our new constraint will not interfere with the existing
system of constraints. Therefore, in this section, we design the
competitive interaction between our new constraint and the two
existing constraints.

The new constraint is that of staying near the other agent.
As described above, this behavior is modeled as a global
attractor centered in the direction of the other agent. The po-
tential difficulty lies in the composition of target and other as
shown in Figure 8. Because both constraints are modeled as
global attractors, their respective contributions will always be
nonindependent, thus simply summing the contributions to the
vector field will cause averaging between the corresponding
constraints. In most situations, the resulting behavior will not
be appropriate, and we will want to enforce strong competition
between the target and other so that the agent must decide to go
in one direction or the other. However, there will also be some
situations when moving in the average direction does represent
the appropriate behavior. When the target and the other agent
are in opposite directions, wewish to force a decision, but when

Fig. 10. The competitive advantage of other, for drwk = 0.6,
g4 = 3, and Yrwk = 1. As distance to the other agent increases
beyond g4, competitive advantage, � rwk , increases beyond
competitive interaction from target (see Fig. 8).

they lie in the same direction, both constraints can be satisfied
simultaneously. In general, we can say that when the two goals
lie in approximately the same direction, we allow the averaging
solution. When they are in very different directions, we must
force a decision. We can accomplish this type of competitive
interaction using the following function:

⇣ wdu>rwk @ ⇣ rwk>wdu

@ e4+wdqk+⇤e5 frv+#wdu ⇤ #rwk , . e6, . 4,= (21)

Equation (21) is graphed in Figure 9. Note that competi-
tion is high except for a certain region around an angular
difference of zero. The size of this region can be adjusted using
the constant e6, while the slope of the boundary is adjusted
using e5. The parameter e4 determines the maximum level of
competitive interaction.

4.3. Competitive Advantage

Next we consider the competitive advantage of other. The
constraint other is similar to that of target, but because we
simply want the agents to remain near one another, we
deactivate other when the agents are close enough. Thus we
choose

� rwk @ drwk wdqk
hurwk

hg4
⇤ +4⇤ Yrwk ,drwk � rev = (22)
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Here, urwk is the distance to the other agent, and the constant g4
determines how close we wish the agents to be (Fig. 10.). For
simplicity, we choose g4 @ g3 .4, where g3 is the distance at
which the agents begin to consider one another as obstacles to
be avoided (see eq. (6)). Thus, the agents will try to maintain
a maximum distance of g4 between one another. If they get
farther away than g4, they will activate the other constraint;
if they get closer than g3, they will activate obstacles. The
constant, drwk , determines the maximum level of advantage
for other. The second term of the equation implements an
enclosure detector similar to that defined for target in eq. (16).

4.4. Examples

In this section, we examine two examples of the cooperative
behavior. First, we look at the situation depicted in Figures
8a and 8b, in which two agents approach a target, but with
one far in front of the other. We look at the situation both
from the perspective of Agent 2 (above in the configuration;
Figs.8a8c) and Agent 1 (below in the configuration; Figs.8d
8f ). Notice that initially, Agent 2 must decide whether to move
toward the target or toward Agent 1. In Figure 11a, Agent 2
begins to come about because other wins the competition with
target. Below, Agent 1Ûs other and target constraints are both
activated, because these two constraints are consistent with one
another, according to eq. (21), and thus they do not compete.
In Figure 11b, we see that the agents have moved close to
one another. Agent 2 is deactivating its other constraint, while
obstacles has become activated, and the agent begins to veer
away from collision with Agent 1. Agent 1 has activated all
constraints, because there is some competition among all three,
yet all competitive advantages are stronger than all competitive
interactions. Finally, in Figure 11c, Agent 2 has reversed
course yet again, this time accompanying Agent 1 to the target.
The two agents are close, so other is deactivated for both,
whereas obstacles is still active, as they avoid collision with
one another en route to the target.

This episode illustrates two agents navigating cooperatively
without centralized control and with no communication, save
that they know one anotherÛs position. Each agent generates
a different behavioral sequence using identical dynamical
equations, because each is able to make independent decisions.
Different decisions arise because the individual agents face
different situations from moment to moment, and these si-
tuations are reflected in the parameters of the competition
dynamics for each agent. The agents navigate cooperatively
because the functions that tie the competition parameters to
specific situations select behaviors that satisfy an appropriate
set of behavioral requirements. Note that these two cooperative
sequences displayed an example of each nontrivial class
of behavior that was identified in the stability analysis of
Section 4.1.

Next, we look at a new situation. In Figure 12a, two agents
aremoving together (Agent 1, right; Agent 2, left) as they come

upon a wedge-shaped configuration of obstacles designed to
drive them apart. The behavioral dynamics and competition
are displayed for Agent 1 only, due to the symmetry of the
situation. In Figure 12a, as they move forward both target
and obstacles are active; other is not active, because the
agents are near one another. In Figure 12b, the agents separate.
Notice in Figure 12b that the agents are quite far apart, and
the competitive advantage of other is strong; stronger, in fact,
than that of target. Yet target is active, while other is not.
This is a hysteresis effect. Both competitive advantages are less
than the competitive interaction between these two constraints,
and target wins the competition because it was previously
active. In this situation, the previous history of the system
determines its behavior. In Figure 12c, the two agents round
the wedge, and the competitive advantage of other increases
above the level of competitive interaction from target (i.e.,
� rwk A ⇣ wdu>rwk ), thus it acquires enough strength to deactivate
target, and the agents move toward one another. Figure 12d
shows the situation after the agents have come together and
resumed their original course.

This sequence displays some interesting properties
dynamical decision making. First, it displays the flexibil-
ity of this approach to cooperative navigation. Initially, the
agents navigate toward the target location together, but the un-
known environment forces them apart. The agents are able
to make decisions such that they flexibly respond to the de-
mands of a new and unforeseen situation, coming together
once again when the environment allows. Second, in this
situation, hysteresis allows for a special kind of behavioral
stability. In Figure 12b, the two agents are far from one another,
but there is was no line-of-sight path toward one another. This
is an ambiguous situation: it is not clear whether they should
continue toward the target, or give up that goal and try to find
one another. In this situation, the agents continue to do what
they had been doing previously: moving toward the target.
This behavior is due to hysteresis, a simple kind ofmemory that
determines system performance according to its past history.

In summary, these two examples have demonstrated
how flexibility, arising from bifurcations in the competitive
dynamics, allows a system to generate simple and complex
sequences of behaviors that enable a pair of autonomous
agents to satisfy the behavioral requirements of a cooperative
navigation task. Behavioral complexity arises from two
sources, the number of individual behaviors available for each
agent to satisfy requirements, and the existence of two agents
working together, generating different sequences, to satisfy the
constraints. Thus, these examples serve to demonstrate that
the addition of a competitive dynamics, operating in the space
of task constraints, allows us to scale the dynamic systems
approach to planning and control beyond simple navigation
to cooperative navigation. Furthermore, our analysis of the
competitive dynamics indicates that even more elaborate sys-
tems are possible.
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Fig. 12. A second example of cooperative navigation. Each panel shows the current configuration (bottom), and the corre-
sponding vector field (top left). Heading direction is plotted so that ! =0 corresponds to the agentÛs current heading direction.
The current competitive situation is also shown (top right): competitive advantage, � l (dashed lines), and the current weighting,
zl (solid lines), are shown for each constraint. Competitive interaction is not shown. Vector field and competition are shown for
Agent 1 (right). The two agents navigate toward the target together (a); they are driven apart by obstacles, but continue toward
the goal (b). The agents pass the obstacles, and move toward one another (c), and continue toward the target together (d).
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5. Discussion

We set out to examine the issues of representation for the
interaction of an agent with its environment in navigation-
like tasks. We have taken care to separate the physical and
geometrical models of the agent, its environment, and its
overt behavior, from the task-oriented and context-dependent
constraints that determine which action is appropriate in any
specific situation. Yet we have adopted a physics-based model,
that is, the so-called dynamical systems approach (Schfiner and
Dose 1992; Schfiner, Dose, and Engels 1995), at both levels
of description. At the level of overt action, a dynamics of
behavior is defined over a space of behavioral variables. Task
constraints contribute to shape a vector field that governs robot
actions. At the level of decision making, a dynamics is defined
over a space of task constraints. Task constraints compete
for representation at the behavioral level, modeling decisions
about which actions to perform, based on the current context.
Our contribution has been to show how complex combinations
of task constraints can be dealt with by adding a dynamic layer
that is capable of managing task complexity at the behavioral
level.

Our main concern has been to investigate scaling of the
dynamical systems approach when behavioral requirements
extend beyond simple navigation. However, it is also impor-
tant to understand the relationship of this approach to other
approaches for navigation-like tasks. Most relevant is the
so-called potential field approach to robotic navigation. The
mathematical concepts underlying the potential field approach
link it closely with the dynamical systems approach. The main
difference between the two is the state space over which the
system dynamics is defined. According to the potential field
approach, the state space is taken to be the configuration space,
whereas in the dynamical systems approach, the state space
is the space of robot behaviors. The important implication
of this difference is that the dynamical systems approach
models desired behaviors as stable fixed points of a dynamical
system, whereas the potential field approach models the target
location as a fixed point, and robot behavior corresponds
to a transient of the associated dynamical system. This has
important consequences for many aspects of system behavior.

Nevertheless, both the potential field and the dynamical
systems approach intelligently blend multiple sources of
information about the environment into a nonlinear dynamical
system that generates smooth trajectories for an autonomous
agent. As such, the dynamical approach to decision making
investigated in the paper is potentially applicable to scaling
of either method as the number of task constraints grows.
The basic idea is to allow the behavior-generating system
to intelligently blend information from multiple sources into
task-appropriate behavior when possible, and to arbitrate
between and sequence behaviors when blending is not possible.
The details of the design will change, depending upon the
nature of the system that generates overt behavior, because

different dynamic approaches to behavior generation have
different limitations and constraints. However, the underlying
methodology of system design that we have proposed should
remain unchanged.

The current approach has three major implications for
the dynamic systems approach to path planning and control.
First, competitive interaction among task constraints is able to
deal with problems such as spurious attractors and constraint
averaging that arise when nonindependent contributions to
the vector-field dynamics are combined by superposition.
Our competitive dynamics enforces competition among task
constraints (e.g., targets, obstacles, other agents, etc.) when
their respective vector-field contributions are inconsistent with
one another. The winners of the competition are determined
based uponwhich constraints are most applicable in the current
situation. Thus, competitive interaction is determined by
functions designed to detect when individual contributions
are inconsistent, while competitive advantage is tied to the
environment through functions that implement heuristic judg-
ments about when particular constraints are more or less
critical.

Second, the competitive dynamics makes it is possible to
specify tasks that are more complex than simple navigation.
This ability arises from the ability to determine which con-
straints should contribute to the behavioral dynamics, that is,
to decide which behavior is appropriate, in any given situation.
Each behavior arises as an asymptotically stable fixed point
of the competitive dynamics, specifying a qualitatively unique
combination of task constraints. This provides a number of
interesting properties. First, the agent is able to flexibly de-
termine which behavior is appropriate at any given time. This
property arises due to bifurcations in the competitive dynamics:
as new situations arise, parameters change, old fixed points
disappear, and new fixed points appear. Second, each behavior
is stable in the sense that it is robust to the presence of noise
in the system. This property arises from the stability of the
fixed points that generate the behaviors. Third, each behavior
is stable in the sense that it is robust to ambiguity in the envi-
ronment. This property arises due to hysteresisÒwhen more
than one fixed point is stable, the past history of the system
determines performance.

As we have seen, in attempting to satisfy a complex set
of behavioral requirements, each agent executes a sequence
of behaviors. Here the sequences are not programmed ex-
plicitly; rather, they arise as the competitive dynamics arbi-
trates between different behaviors. The decision to execute a
new behavior is modeled as a bifurcation in the competitive
dynamics, which arises as the competition parameters
adapt to the surroundings; thus sequences are generated
opportunistically. However, it is also possible to program
behavioral sequences explicitly. In a closely related approach,
Steinhage and Schfiner (1998) use a similar type of dynamic
competition to program complex sequences similar to those
that can be expressed as finite-state machines. It seems likely
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that it will prove useful to include both types of sequence
generation in autonomous systems, as task and environmental
complexity grows.

Finally, the competitive-dynamics solution scales nicely to
the design of complex systems. We have shown that to design
such a system, one must make q5 design decisions, designing
competitive- advantage functions for each individual behavior,
and designing competitive-interaction functions between each
pair of behaviors. However, the same analysis reveals that an
q-constraint system gives rise to 5q unique behaviors. The
analysis also implies a unique type of modularity. One does
not design the system hierarchically, yet one can add task
constraints without disturbing the operation of the previously
designed system. To do this, the designer considers how a
new task constraint will interact with each of the existing
constraints, but need not reconsider the structure of the
previous system. In this paper, three task constraints sufficed
to construct a cooperative navigation system, one in which
two robots navigate independently, yet cooperatively, through
an environment. In ongoing research, we are designing more
elaborate systems with larger numbers of task constraints for
each agent.

While the theoretical relationship between discrete
automata (traditionally used to model decision making) and
dynamical systems (traditionally used for control) has been
studied by others (such as Brockett 1994), we have investigated
the plausibility of developing a design methodology for
robotic planning systems using dynamical systems in a
way that scales to the modeling of complex systems of
behavioral requirements. We have shown that, for a single
robot or a pair of cooperative robots, decision making,
path planning, and control can be modeled entirely using
continuous nonlinear differential equations. We hope to
combine the advantages of the dynamical system approach
(stability, flexibility, robustness, etc.) with the ability to make
decisions and carry out complex sequences of behavior to
achieve well-defined goals. We have seen that the dynamical
decision-making approach to managing task complexity offers
a number of advantages in this regard, including scalability.
The primary input from the designer is to set the priorities
between competing behaviors. This is not too surprising, con-
sidering that these priorities depend on the task, the situation,
and the context. Thus, both the physical aspects of control, and
the ability to make discrete decisions about switching control
strategies, can be successfully captured within the framework
of continuous differential equations.
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