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CHAPTER 8

Dynamical Systems Thinking
From Metaphor to Neural Theory

Gregor Schöner

The Fundamental Tension in Development 
between Stability and Flexibility

As parents, we experience our children as unique individuals. When we have more 
than one child, we marvel at how each child is special from the very first day. On 
the other hand, our entire educational attitude is based on the assumption that chil-
dren’s experiences shape their development and that the environment to which they are 
exposed may make a difference in how they will develop.

As developmental scientists we have seen, time and again, how infants, toddlers, 
and children go through recognizable stages of development, formalized by develop-
mental milestones. These stages invite accounts in which development resembles a 
program from which competences unfold in a fixed sequence. Growth processes in 
developmental biology provide the metaphor for how molecular processes could lead 
to maturation of the nervous system that may drive behavioral and cognitive develop-
ment.

At the same time, there can be no doubt that the environment to which children 
are exposed matters and that their individual behavioral history influences the process 
of development. This observation invites accounts based on learning, in which the 
nervous system of the developing child is shaped by the activity induced by ongoing 
behavior and stimulation.

The Self-Organization Metaphor

One way developmental scientists have addressed this tension between the appar-
ent stability of the developmental process and its flexibility in response to variable 
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environments and experiential histories is by invoking the concept of self- organization. 
In a self- organizing system, the flexible and individual processes of development may 
emerge from the confluence of various forces, while the inherent organizational prin-
ciples would hold the developmental process on track. Exactly how that may work 
requires closer examination.

This ideas has been promoted as a metaphor for development that has inspired 
a research program into possible mechanisms of emergence, of how environmental 
factors contribute to development, how individual differences persist, and how the 
ensemble of these influences jointly control development (“soft causation”) (Elman 
et al., 1997; Spencer et al., 2006; Thelen & Smith, 1994). This chapter reviews this 
metaphor, criticizes it, and proposes a specific direction in which this metaphor can be 
transformed into an operational theory of the development of behavior and cognition.

The perspective of self- organization was developed, in part, in opposition to an 
apparent alternative; that is, to an account of development that is based on maturation 
and innateness. In such an account the molecular machinery of growth guarantees 
the reproducible patterns of development and also explains how individual differences 
arise from different starting conditions, largely determined by genetic factors, and 
remain stable over the course of development (Fodor, 1981; for critiques, see Mole-
naar, 1986; Quartz, 1993).

Interestingly, the self- organization metaphor connects to older theoretical ideas 
about growth processes. In fact, within developmental biology an analogous tension 
exists between two metaphors, one based on information processing and program-
ming, the other on self- organization and emergence. The fine- grained molecular 
machinery of growth engages gene expression, which may be thought of as the core 
driver of morphogenesis, which is the formation of macroscopic shape from micro-
scopic processes. At this molecular level, information- processing metaphors such as 
program, lock and key, and reading or writing of genetic information, etc., are com-
monly invoked. These metaphors have their own interesting conceptual history (Fox 
Keller, 2002). Molecular biologists resonated with these concepts as these seemed to 
fit to their experimental tools.

In an older view, morphogenesis had been thought of as a form of pattern forma-
tion. This older view dates back to Waddington’s famous epigenetic landscape (Wad-
dington, 1953; see also Ho, Chapter 5, and Newell & Liu, Chapter 12, this volume 
and Figure 8.1), often invoked but somewhat inconsequential to modern developmen-
tal biology. The metaphor suggests that “forces” shape the form of an organism, which 
then emerges from a process of equilibration of these forces. Over development, the 
landscape of forces and the associated equilibria become increasingly complex, leading 
to a more and more differentiated organism. This metaphor resonates with the famous 
mathematical model of pattern formation of Alan Turing (1952), in which the interac-
tion of diffusion and chemical reaction kinetics generates concentration patterns. The 
structure of these patterns is encoded in the parameters of the chemical and diffusion 
dynamics that are hypothesized to drive growth. That and similar models remained 
essentially metaphorical too, as they did not make contact with experimentally acces-
sible problems in development.
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190 NEURAL NET WORKS AND DEVELOPMENT  

This changed somewhat in the 1980s, when experimental evidence was obtained 
that the substrate of such pattern formation, promoters of the growth of cell mem-
branes, are at work in development. Mathematical models of pattern formation in 
morphogenesis (Gierer & Meinhardt, 1972; Murray, 2002) were based on the dif-
fusion and chemical reaction kinetics of an activator and inhibitor of growth. The 
formation of chemical concentration patterns then creates a skeleton for growth pro-
cesses. The theory was based on the mathematical framework of nonlinear dynamical 
systems, typically in the form of partial differential equations that undergo instabilities 
(Haken, 1983; Murray, 2002). The theory can account for features of morphogenesis, 
such as the qualitative form of misformation. For instance, an individual may have 
an extra finger, but the overall shape of the fingers and the hand is preserved. In the 
mathematical models, this is a property of the self- organization processes on which 
growth is based. The boundary conditions for a piece of tissue only allow for a discrete 
set of possible patterns. Among these, one typically emerges as the stable solution, but 
a perturbation or change of conditions may induce a neighboring pattern to “win” the 
competition (Murray, 2002). In fact, more generally, the study of malformations may 
provide provocative insight into development (Blumberg, 2010).

So, in a sense, in the domain of morphogenesis, the metaphor of Waddington has 
been shaped into mathematical models that have some traction empirically and are 
even, to some extent, reductionistic in nature. Is this the sort of transition from meta-
phor to theory at which we aim for an understanding of the development of behavior 
and cognition? Perhaps not. Even after the discovery of promoters, the mathematical 
theory of morphogenesis has had very little impact on the research program of devel-
opmental biologists, largely because the methods of molecular biology that have been 
most successful experimentally do not match the kinds of questions the theory pro-
motes (Fox Keller, 2002). (This may begin to change as computational biology brings 
the mathematics of dynamical self- organization to the molecular level, see Harrison, 
2011, for a survey).

Conversely, conceptually challenging and interesting questions that flow out of 
the metaphor of self- organization are not addressed by the mathematical theory. In 
particular, the metaphor of emergence suggests that growth processes are open to 
multiple forces that may literally help shape the organism. This idea has been at the 
core of the research program of developmental systems theory (Gottlieb, 2001; see 
also Griffiths & Gray, 2005, for a history of thought), which focuses on nonobvious 
interactions between the emerging function of a developing organism and the growth 
processes taking place through the environment, and modulating and mediating devel-
opmental processes.

Although the mathematics of self- organization may, in principle, be able to address 
such issues, models have not really played a critical role in this field. This is probably 
again due to a mismatch in levels of description, with the substrate of the mathemati-
cal theory being quite removed from the level of observation at which developmental 
systems theory seeks evidence for environmental influences.

From this history of ideas in developmental biology and morphogenesis, an 
important lesson can be derived for how the metaphor of self- organization can be 
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transformed into theory. Clearly, that transformation requires more than mere math-
ematization. Theoretical concepts must relate to the level of description at which devel-
opment is characterized experimentally and must be able to articulate the role of the 
various factors found to impact on developmental processes.

The Dynamical Systems Metaphor for the Development 
of Behavior and Cognition

The metaphor of pattern formation and the associated mathematical concepts of 
dynamical systems theory have been used to talk about how behavior and cognition 
may emerge from learning. Thelen and Smith (1994), for instance, interpreted Wad-
dington’s epigenetic landscape in terms of emergent behavioral and cognitive compe-
tences. At any particular stage of development, a landscape is a potential function, 
whose minima represent behaviors that can be realized at that particular stage of 
development (Figure 8.1). Because the minima are thought to arise from the different 
forces that shape the behavioral landscape, they are not fixed competences, but emerge 
as a function of environmental conditions and of an individual’s inner state; they are 
“soft- assembled” in the moment.

Over development, the landscape is postulated to evolve, becoming increasingly 
differentiated and complex to reflect the increasing number of adaptive behaviors that 

The Dynamical Systems Metaphor for the Development 
of Behavior and Cognition

FIGURE 8.1. The epigenetic landscape visualizes the emergence of behaviors within a dimen-
sion (horizontal) as a potential landscape (vertical) evolves over time (back to front). The system 
(black ball) moves to minima of the potential on the fast timescale of behavior (short arrow). 
These minima may change and new minima may appear on the slow timescale of development 
(long arrow).
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are the new competences acquired over development. In the metaphor, the behaviors 
expressed by the system contribute to the developmental processes. One way to visual-
ize this in the metaphor is to think of the system as moving within the landscape and 
carving out new minima. In this picture, individually different routes in development 
may emerge from the way ongoing behavior drives the developmental process.

This metaphor has important strengths. First, it promotes a process account of 
development by directing attention to how behavior unfolds in time under the influ-
ence of various factors. This perspective stands in contrast to the emphasis on descrip-
tion and normalization that a maturational account suggests by decoupling develop-
ment from the moment- to- moment experience of an individual. Process accounts are 
inherently stronger and more naturally open to intervention.

Along the same line, the metaphor emphasizes that environmental conditions 
must be taken into account to understand how competences emerge during develop-
ment. When environmental conditions are favorable, a child may be able to perform 
at a more mature level than when conditions are more difficult. Thus, during develop-
ment, the environmental constraints required for a child to display a particular com-
petence may relax. This is an important insight.

The metaphor draws attention to learning as the core process of development. 
How experience matters for development is the central research question that the 
metaphor proposes for developmental science. The shaping of development by experi-
ence amplifies the role of environmental conditions: Because the environment may 
support, to varying degrees, the emergence of skilled behavior, it influences what 
experiences are accessible to the child and thus impact on the developmental process. 
Scaffolding, in which caregivers structure the environment to facilitate the emergence 
of new skills, makes immediate sense in this perspective (Lipscomb, Swanson, & 
West, 2004). Educators and parents are effective by enabling a child to gather its own 
experience.

Finally, the metaphor emphasizes individual differences and views them not as 
fixed traits, but as the result of the developmental process. Because experience shapes 
development, differences in experience have long- lasting impact and may lead to indi-
vidual paths of development. This explains how individual differences may persist 
without attributing them necessarily to fixed structural differences. In fact, the meta-
phor suggests ways in which individual differences may emerge and then be amplified 
during development. Again, the implications for educators and parents are broad.

On a closer look, however, the dynamical systems metaphor is unclear and fuzzy 
in many ways. Consider the image of the epigenetic landscape again. Implicit in this 
image is a notion of a timescale: the slower timescale of development and the faster 
timescale of behavior. At a given moment during development, the different minima of 
the landscape represent the behavioral repertoire accessible at this time. How are these 
behaviors described? Are they embedded within a single space (illustrated along one 
dimension, but surely spanning multiple dimensions)? Are all behaviors equally acces-
sible or does the distance between them matter? What are the processes of selecting a 
particular behavior? The metaphor is quite fuzzy about how behavior unfolds at any 
given moment during development.
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The metaphor emphasizes that behavior is generated by an embodied and situ-
ated organism. However, how behavior is responsive to environmental conditions is 
obscured in the metaphor. Possible behaviors do not sit somewhere as minima, waiting 
for the state of the system to “fall” into the well. Instead, possible behaviors emerge 
“on the fly” in response to environmental conditions and the inner state of the sys-
tem. For example, looking emerges in response to interesting things to look at and is 
strongly cued by salient visual transients. Reaching emerges when there are attractive 
objects within reach. Previous reaches affect new reaches.

The metaphor derives strengths from the idea that behaviors are shaped by the 
joint action of forces, the very notion of dynamics, from which stable states emerge. 
The landscape illustrates this notion through the minima to which the system is 
attracted. The time needed to move to the nearest minimum is really the timescale 
of behavior (Newell, Liu, & Meyer-Kress, 2009). But how can we conceive of these 
forces? How does the influence of the environment and inner states impact on the sta-
bility of a behavior? Behaviors may vary in stability. When environmental conditions 
change, behaviors may lose stability (Schöner & Kelso, 1988). So clearly, the shape of 
the minima vary with context. The dependence of the stability of behaviors on many 
factors, including the environment, intention, and attention, is an important dimen-
sion of development that needs to be made more explicit.

Relatedly, selecting a particular behavior involves active choice or decision pro-
cesses. An infant may look, grasp, look away, or persist. This flexibility is not visual-
ized in the metaphor, and the underlying process of decision making is another dimen-
sion of behavior that has its own dynamics and timescale (Newell et al., 2009). This 
point is critical, because in many instances it is this very flexibility that develops. 
The A-not-B error is a signature of a lack of flexibility when the goal of a reaching 
act is changed. Developmentally, this flexibility is an achievement. Similarly, younger 
infants tend toward stereotypy— the inflexible persistence of behavioral patterns— 
and over development become increasingly flexible. Looking behavior is a well- studied 
example, in which very long fixations may occur early on, whereas gaze shifts become 
increasingly nimble over development (Colombo, 2001).

Finally, the metaphor is suggestive of overt motor behavior as the primary mark of 
competence, realized while the system is sitting in a minimum of the landscape. Cogni-
tion entails inner states that affect overt motor behavior. Through working memory, 
for instance, perceptual or motor processes at one point in time impact on decisions 
at a later time. This is one factor in explaining how older infants succeed in overcom-
ing perseveration in the A-not-B paradigm. Older infants are capable of stabilizing a 
motor intention to reach for the B location during the delay. In the simple form sug-
gested by the potential landscape, the dynamical systems metaphor does not provide 
a substrate for such inner states. Such inner states may have their own dynamics— for 
instance, in the process of memory formation— that live at an intermediate timescale, 
longer than behavior in the here and now, and shorter than the timescale over which 
development takes place.

So let us turn to the slower timescale of development on which the landscape itself 
evolves. The core hypothesis is that the developmental process is driven by experience, 
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that is, by the behaviors (and inner states) that are realized on the faster timescale of 
behavior. How this happens remains vague in the metaphor. This is the major frontier, 
of course, for a process account of development. Here are a few questions that illus-
trate how much remains to be explored.

• What is the substrate for learning and development? Inner states are not obvi-
ous in the simple form of the dynamical systems metaphor. Connectionism pro-
poses that change occurs in how the inner states are connected to the sensory 
and motor surfaces. But there may also be change in just the (recurrent) con-
nectivity internal to the neural networks that drive behavior.

• What information is used to drive the learning process?

• Is learning largely driven by the statistics of afferent input, to which unsuper-
vised learning rules are sensitive?

• Does it require a sensory feedback signal or reinforcement?

• Is the system open to learning in any of its subsystems, or is there an inherent 
organization of learning, in which one system is the focus of learning for some 
time and that focus is then shifted to the next system when a given level of per-
formance has been reached?

• How does the system maintain a coherent learning process across the different 
episodes of experiencing a particular aspect of behavior or of stimulation?

• How does it autonomously control its learning processes?

• How do the learning processes actually lead to differentiation?

• Why does learning a new skill not unlearn a former skill? Is there a need for 
relearning old skills to stabilize them?

Clearly, at this point the self- organization metaphor has only scratched the surface of 
what a true process account of learning and development must account for. By way of 
summary, here are the three main challenges for a transition from the self- organization 
metaphor to dynamical systems theory of development.

 • First, we need a much better, concrete account for what happens at the tim-
escale of behavior. This account would include a systematic method to characterize 
behavior as the performance of a competence. This method must address how the 
environment— how stimuli and perception— shapes behavior and how ongoing behav-
ior may be coupled with perception, but may also be conditioned by inner states, a 
particular mode of behavior that classically was called “task” and is all the more chal-
lenging to define for infants and children. And this method must characterize cogni-
tive processes as a form of behavior. Not every behavioral state leads to immediate and 
overt motor action.

 • Second, we need to account for flexibility and cognition that includes a sys-
tematic process understanding of how decisions are made in the here and now, and 
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how those decisions are linked to sensory information and may generate motor con-
sequences. This also requires a substrate for representations and an account of the 
processes through which sensory and motor processes interface with representations 
and create, update, or remove memories.

• Third, we need a much more profound approach toward the processes of 
learning that are hypothesized to take place during development. Connectionism and 
dynamical systems thinking have only given first hints at the autonomous learning pro-
cesses in which infants, toddlers, children, and even adults are permanently engaged.

From the Dynamical Systems Metaphor 
to Dynamic Field Theory as a Theoretical Framework 

for Understanding Development

What does the transition from metaphor to theory entail? This section provides a 
rough sketch and introduces the main concepts of dynamic field theory (DFT; for 
reviews, see Schöner, 2008). In the next section, we consider the same ideas at a more 
pedestrian pace by using two worked examples to make things concrete and simple.

We begin with the issue of how to characterize behavior in a way that is open to 
sensory and motor processes, but may also reach into cognition. The answer, perhaps 
not surprisingly, comes from the neural level of description.We know that neuronal 
activity in the central nervous system is determined in part by the pattern of con-
nectivity from the sensory surfaces to the neurons in question. Their tuning curves to 
parameters of sensory stimulation delineate the extent of this influence. In this sense, 
a neuron “stands for” the stimulus condition to which it is sensitive. Conversely, at the 
output level the forward connectivity from a neuron to the motor surface determines 
the motor “meaning” of that neuron’s activity. Tuning to movement parameters esti-
mates the extent of the motoric specificity of neural activation.

We also know that tuning curves throughout the higher nervous system, in the 
cortex, but also in such subcortical structures as the colliculus or the lateral geniculate 
nucleus, are relatively broad, so that when any single stimulus is presented or any indi-
vidual motor act prepared, a considerable portion of the relevant neural populations 
is activated. Evidence for such population coding of perceptual and motor parameters 
comes from various sources that include the broad tuning curves of cortical neurons to 
behavioral parameters (Georgopoulos, Schwartz, & Kettner, 1986; Young & Yamane, 
1992), the contribution that all activated neurons make to behavioral decisions (e.g., 
Groh, Bron, & Newsome, 1997; Lee, Rohrer, & Sparks, 1988), and the patterns of 
correlation between neurons and behavior (see contributions to Kriegeskorte & Kre-
ima, 2012).

These facts support the proposal that DFT makes for the substrate of behavior 
and cognition: The activation of neuronal populations stands for particular perceptual 
states or motoric outcomes. These activation patterns need not be traced back to how 
they are distributed within the neural networks of the brain. Instead, we can think 

From the Dynamical Systems Metaphor 
to Dynamic Field Theory as a Theoretical Framework 

for Understanding Development
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of these patterns as being defined directly in terms of the sensory and motor states 
to which the populations are sensitive. Thus, for instance, a distribution of activation 
may be defined over retinal visual space, over color space, or over the space of move-
ment direction of visual objects. Similarly, a distribution of activation may be defined 
over the space of possible movement directions, movement extent, or amount of force 
generated. These distributions are the activation fields on which DFT is based.

Peaks of activation are then instances of a perceptual or motor state (see Figure 
8.2). Generating such a peak amounts to falling into one of the minima of the potential 
landscape (see Figure 8.1). Note, however, that the peaks are not all standing there and 
waiting to be selected. In fact, typically a single peak or a small number of peaks may 
be activated. And peaks are tunable: They can be localized at different positions along 
the behavioral dimensions for which they stand, representing different perceptual or 
motor outcomes. Peaks can directly drive motor behaviors, or they can drive other 
representations to build other peaks. The processes of peak formation, peak updating, 
and peak deletion are the neural dynamics of neuronal populations. Input plays an 
important role in these processes. Environmental condition may impact on activation 
fields by generating patterns of input that come through the sensory surfaces.

How the forward connectivity determines input patterns is the central topic of 
connectionist modeling, and DFT shares this principle with connectionism. In connec-
tionism, cascades of layered input stages may lead to increasing abstraction in sensory 
representations. The motor side is much less well understood, in large part because it 
is not well described by the feedforward conception. In DFT, even perceptual events 
are not purely input driven. Peaks of activation are postulated to be stable states, 
attractors of the neural dynamics, so that they can be continuously coupled to sen-
sory information. Recurrent connectivity within the neural population stabilizes such 
peaks against decay and against competing inputs. This is based on the principle of 
local excitation, according to which similarly tuned neurons are exciting each other, 
and global inhibition, according to which differently tuned neurons are effectively 
inhibiting each other (through interneurons).

A consequence of this principle of the stabilization of activation peaks is that such 
peaks are separated from nonpeak patterns of activation by an instability, in which 
input- driven patterns of activation reach a critical level of activation, at which the detec-
tion decision is made. The instability comes from the nonlinear properties of neural 

FIGURE 8.2. An activation field defined over a perceptual or motor dimension has a peak 
whose location specifies a particular value along that dimension.
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dynamics, in which only sufficiently activated neurons in a population contribute to 
neural interaction, as described by a sigmoidal function. The concept of self- stabilized 
peaks of activation, sustained by neural interaction, is a central tenet of DFT, in which 
it departs from standard connectionist thinking (although there are connectionist mod-
els that entail the same kind of instabilities, e.g., Usher & McCelland, 2001). We con-
sider the detection instability again in the next section (see Figure 8.5).

Activation peaks are units of representation in DFT. In whichever way a peak 
was induced, it resists change and impacts on whatever downstream neural networks 
or motor systems it projects. When a peak is induced by a single localized input, the 
decision to detect this input resists change: It persists even if the input is weakened or 
noisy. When multiple localized inputs are presented, an activation field may make a 
selection decision by generating a single peak located over the input that arose first or 
was strongest. That selection decision resists change (up to a point) when, for instance, 
distractor inputs impinge on the system. In fact, under appropriate dynamic condi-
tions for the activation dynamics, a peak may persist after all localized input has been 
removed. That persistence provides an account for working memory of metric infor-
mation, represented by the location of the peak in the activation field.

The stability of activation peaks has important consequences for learning pro-
cesses. The detection instability may, essentially, amplify small inhomogeneities in a 
neural population into a macroscopic decision represented by a peak. It may be suf-
ficient, for instance, to just push global activation into a field, without any specific 
information about the location to activate; that is, no specific information about the 
desired state or behavior. As soon as a field location creates enough activation so that 
the activation engages the sigmoidal function and interaction sets in, an entire peak 
is generated, essentially pulling itself up through its own excitatory interaction. The 
locations at which this is possible are dictated by inhomogeneities— that is, by small, 
competitive advantages for field locations through prior activation or strengthened 
synaptic connections to any input structures.

Learning Processes Are Also a Form of Neural Dynamics 
in DFT

The concept of self- stabilized peaks lowers demands on learning process. In conven-
tional, largely feedforward neural networks, learning must shape synaptic connectiv-
ity sufficiently to make a difference at the output level, for instance, to generate a new 
“winner.” In DFT, even small biases may be sufficient to lead to the formation of new 
peaks. As result, even very simple learning mechanisms, such as a memory trace of 
prior patterns of activation, may have a significant impact on a neural dynamics.

Such memory traces are, in a sense, a zeroth order learning mechanism because 
they are sensitive only to the history of activation, not to correlations between patterns 
of input and patterns of output. Hebbian learning, which is sensitive to such correla-
tions, may, of course, also shape the field and determine which activation patterns are 
most easily induced.

Learning Processes Are Also a Form of Neural Dynamics 
in DFT
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Both the laying down of memory traces and the strengthening of connections 
according to a Hebbian rule can be understood as a form of dynamics at a slower tim-
escale (Erlhagen & Schöner, 2002; Schöner, 2008). These dynamics converge toward 
the learned state, which is a stable state of the learning rules. The learning dynamics 
are driven by the ongoing activation in the system. This is how experience matters and 
shapes the future network.

Understanding the dynamics of learning deeply is the theoretical frontier in our 
understanding of development. In spite of much work by connectionist modelers and 
the demonstration of the power of the memory trace within DFT, most of the fun-
damental questions about learning as a process have not been addressed. One big 
question is how learning is organized autonomously, so that a reproducible sequence 
of learning phases emerges from the experience of infants and children. How is consis-
tency created across the varying experiences over the course of a day or of weeks, with 
continuing progress on a particular front at a particular stage of development? What 
role does reward play, and what are intrinsic rewards?

Worked Examples of DFT

Neural Grounding of Fields and Neural Dynamics

DFT is based on the hypothesis that neural processes control behavior through the 
activity of populations of neurons. To be specific, consider the preparation of a move-
ment of the hand toward an object or location. Recording from the motor and premo-
tor cortical areas of macaque monkeys, researchers have found populations of neurons 
whose firing is modulated in time, reflecting the movement task (Georgopoulos et al., 
1986). These neurons begin to fire as the movement is prepared, and then stop firing 
at some point early in the actual hand movement. Moreover, the firing rate of the 
neurons depends on the spatial direction of the hand movement. That dependence is 
captured by the tuning curve, depicted schematically in Figure 8.3, which represents 
the neural firing rate as a function of movement direction. The tuning curves of most 
cortical neurons are single- humped and broad and can be approximated by a cosine 
function centered on a “preferred movement direction” of each neuron. The cosine 
function is the broadest smooth period function of direction, so tuning is broad in 
an objective sense. By implication, whenever a single movement direction is specified, 
a large ensemble of neurons fires—all those whose preferred direction lies within a 
range of about 180 degrees from the specified direction. Approximately half of the 
entire population of neurons tuned to movement direction is active when any specific 
movement is being prepared. Similarly broad patterns of activation have been observed 
in many other cortical and subcortical areas.

The activation of a population of neurons that is tuned to a task can be visual-
ized as the formation of a peak in a field of neural activation. In some cortical areas 
such as the visual and other primary sensory cortices, neighboring neurons tend to 
have similar tuning curves. In such cases, neurons activated in the task will tend to be 

Worked Examples of DFT
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neighbors. The peak of activation can be thought of as sitting on the cortical surface, 
over which the neural population is distributed. In other areas, such as the motor and 
premotor cortex, neighboring neurons may have quite different tuning curves. The 
neurons activated in a task may be broadly distributed over the cortical area. We can 
still visualize the activation pattern as the formation of a peak, however, if we reorder 
the neurons in a virtual (or functional) space, in which neurons are put next to each 
other if they have similar tuning curves. The concept of a distribution of population 
activation (DPA) does this job. Each neuron contributes its entire tuning curve to a 
distribution of activation defined over the task space (Figure 8.3). In the example, the 
activation is thought of as distributed over the space of movement directions of the 
hand. When a specific movement is prepared, a peak in this activation field is posi-
tioned over that movement direction, which is currently specified (Figure 8.4).

As a movement is prepared, a peak arises in response to inputs that specify the 
upcoming motor act. In the laboratory, visual cues to the movement target may be pro-
vided at some point, but a participant may also anticipate and preactivate movements 
that have been frequently elicited in given task setting (Erlhagen & Schöner, 2002). 
Such prior activation can be induced by the layout of the environment, in which a few 
graspable or reachable objects may be visible in the work space. It may also arise out 
of learned motor habits, in which previous reaching acts leave memory traces near the 
movement directions of those previous reaches. In each individual reaching incident, 
one particular movement direction must be selected from among the preactivated loca-
tions in the field.
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FIGURE 8.3. From tuning curves (schematically shown as dotted lines) of neurons in motor 
and premotor cortex to the direction of a hand movement, the distribution of population acti-
vation (DPA; schematically shown as a solid line) can be constructed by weighting the tuning 
curves with the firing rate currently observed (dashed line). In the illustration, the movement 
indicated by the arrow was prepared, leading to a current firing pattern in which neurons tuned 
to directions close to that value, firing more and thus weighing more than neurons tuned to 
other directions. As a result, the DPA develops a single peak centered on the currently prepared 
movement direction. Redrawn from Bastian, Schöner, and Riehle (2003).
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Selection decisions require competition within the neural population. All move-
ment directions cannot become activated at the same time. Inhibition within the 
population is a neural mechanism that may bring about such competition. Inhibition 
is generic, of course, within cortical and subcortical neuronal networks. Excitatory 
coupling may also exist, and there is a typical gradient in which neurons with similar 
tuning curves tend to have net excitatory coupling, whereas neurons with dissimilar 
tuning curves tend to have net inhibitory coupling. In the network dynamics of neu-
ral populations this pattern of interaction stabilizes localized patterns of activation— 
peaks or blobs or bubbles depending on how many dimensions we envisage. The 
excitatory interaction among similarly tuned neurons stabilizes a localized pattern of 
activity against decay, as the neurons contributing to the localized patterns push each 
other up toward higher activation. The inhibitory interaction among more dissimilarly 
tuned neurons counterbalances this excitatory influence, which would tend to activate 
the neighborhood of a localized patterns of activation, leading to activation spread-
ing away from the localized pattern. Inhibition thus stabilizes peaks against diffusive 
decay. Localized peaks of activation are thus the stable states, or attractors, of the 
neural dynamics that may emerge under appropriate circumstances.
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FIGURE 8.4. The DPA is obtained as a function of time by using the current firing rate from 
about 100 neurons in the motor cortex when a movement direction is first cued at “PS” and 
then the “go” signal is given at “RS.” Data from Bastian, Schöner, and Riehle (2003). An opti-
mal linear estimator was used to smooth the representation, as described in Erlhagen, Bastian, 
Jancke, Riehle, and Schöner (1999).
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In DFT we abstract from the details of neural population activity and tuning 
curves. We think of distributions of neural activation defined directly over the func-
tionally relevant spaces, here, the space that consists of all possible directions in space 
of hand movement. Patterns of localized activation are then peaks that are localized 
in these functional spaces, and that location specifies values along these dimensions. 
A movement that has been prepared is thus a peak of activation positioned at the 
direction in which the movement will be made. Connectivity downstream from the 
neural population captured by the dynamic field brings about that movement. That 
is how the tuning curves of the neurons that contribute to the field come about. For 
sensory representations, analogously, connectivity from the sensory surface to the 
neurons that contribute to the dynamic field brings about the sensory event encoded 
by a localized peak of activation, again, as captured by the tuning curves of the con-
tributing neurons.

The A-not-B Paradigm

We have seen how neural dynamics are grounded in the population activity of the 
brain. How do we use the concepts of DFT to understand how behavior and cogni-
tion unfold in the here and now? To answer this question in the concrete, let us have 
a look at what happens when an infant is induced to reach toward objects in Piaget’s 
A-not-B paradigm (Figure 8.5). The infant would be seated in an infant chair and you, 
the experimenter, would interact with the baby.

At some point you retrieve an attractive toy from somewhere and show it to the 
infant by bringing into his or her field of view. Even very young infants will direct their 
gaze to the toy. Infants around 5–6 months of age have learned to reach. Such infants 
will often initiate a reach for the toy when you move the toy close enough so that it is 
reachable. How would we think of such a reaching act within DFT (Thelen, Schöner, 
Scheier, & Smith, 2001)? A reach is initiated when a peak of activation arises in a 
dynamic field that represents prepared movements. Because the location of the peak 
determines the orientation of the reach, the peak should be positioned over the move-
ment direction in which the object lies.

Sensory information about this object comes from the visual system. Extracting 
from the visual system information about the direction of a reach to a visible object 
actually requires a whole sequence of neural events, which are not modeled in any 
detail in this simplest description. For instance, neural mechanisms generate a shift 
of attention to the visual location of salient stimuli, usually accompanied by a shift 
of gaze to foveate the object. This entails a perceptual process of figure– ground seg-
mentation in which the visual system focuses on the object. Extracting movement 
parameters from visual information about the object further requires transforming 
from visual, head- centered coordinates to body- centered coordinates and taking the 
initial position of the hand into account. All this is summarized in a simplest DFT 
description of a reach by assuming that a localized pattern of input is provided by the 
visual system to the dynamic field representing the movement direction of a prepared 
hand movement.
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So before the infant’s attention has been captured by the object, no localized input 
is provided to the movement direction field. When the infant attends to the object, such 
localized input is present and promotes the building of an activation peak localized over 
the movement direction in which the object lies. In DFT, the decision to reach amounts 
to the building of an activation peak in the relevant dynamic field. As the peak is built, 
could other visual objects, shifts of attention, or other movement intentions weaken the 
input and prevent the peak from remaining stable? Yes, in principle, this could happen. 
In DFT the peak is stabilized, however, to some extent. It is stabilized against building 
competing peaks at other locations, in which other distractor objects lie, by inhibitory 
interaction. It is stabilized against decay by local excitatory interaction, so a wavering 
of attention will not necessarily lead to a decay of the peak. A decision to reach is sta-
bilized in the sense that the sensory input required to keep a peak of activation stable is 
less than the sensory information required to first bring about a peak.

In DFT models the induction of a peak by localized input involves the detection of 
instability, in which a peak-less pattern of activation becomes unstable, and the system 
switches to a peaked pattern of activation that is stable. This is illustrated in Figure 
8.5. What happens is that below a threshold (conventionally defined as “zero” activa-
tion), neurons in the population do not interact. This reflects that only sufficiently 
activated (i.e., spiking) neurons impact on their postsynaptic targets. So excitatory 
and inhibitory interaction do not come into play until activation somewhere in the 
field exceeds that threshold. When that happens, local excitatory interaction drives up 

FIGURE 8.5. Left: An infant reaching to one of two cued locations, “A” or “B,” at which lids 
are placed on a box. On an “A” trial, the experimenter attracts the attention of the infant to 
the “A” location, for instance, by waving a lid in front of the infant and then setting that lid 
down on the “A” location. Right: An activation field defined over the movement parameter 
“direction” accounts for the motor plans that the infant is generating. The waving action leads 
to localized (“specific”) input to the field at the “A” location. The lid visible at the “B” location 
receives smaller input. Sufficiently strong, specific input at “A” induces a suprathreshold peak 
of activation. Local excitatory interaction leads to higher levels of activation within the peak 
than dictated by input. Global inhibitory interaction suppresses activation below resting level 
elsewhere in the field.
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activation around the location where the threshold was first pierced. A suprathreshold 
peak grows. At the same time, inhibitory projections from that same region of the 
field begin to affect other regions, suppressing the field at other, alternative reaching 
directions. Once a peak has been generated, it is stabilized by the excitatory interac-
tion within the peak region and inhibitory projection from the peak onto the rest of 
the field. Even when input is weakened, the peak may resist because it is, in a sense, 
self- stabilized by excitatory interaction.

Not every object in the visual array will automatically generate a reach. Infants 
are not little reaching machines that reach no matter what. For one thing, even as an 
infant attends to the object, he or she will often initiate a reach only when the object 
is pushed close enough to be in reaching space. Thus, other factors than the localized 
input that specifies the movement direction may influence whether or not a peak is 
generated. These factors can be captured as nonlocalized or as constant inputs to the 
field. For instance, seeing that the object is reachable, an encouragement by the parent 
to take the object or an endogenous intention to reach may provide a global boost to 
the dynamic field of movement direction. Such global input may push the activation 
field through the threshold somewhere, most likely where localized input is already 
present but was not sufficient by itself to induce a peak. In DFT we call this the boost- 
driven detection instability, and it is illustrated in Figure 8.6.

Another factor that may support initiating a reach is learning— that is, building 
the habit to reach. If we play a little game with the infant, presenting an object several 
times in a row, the infant often willingly reaches for the object. The infant may now 
need less of a cue to initiate a reach. This is exploited by experimenters, who often use 
an initial training regimen in which they push an object closer to the infant on the first 
few trials. In fact, in Piaget’s A-not-B experiment, the lid on the “A” trough is often left 
a bit off kilter, closer to the infant on the first few “A” trials to encourage the infant to 
reach toward the “A” location. I explain this experiment a little better below.

FIGURE 8.6. Pushing the box with the two lids into the reaching space of the infant is mod-
eled by applying a homogeneous excitatory input, a boost, to the entire field. This boost may 
push activation at the “A” or the “B” location through the detection instability and induce a 
peak there. The field is preactivated at these locations due to residual activation from a peak 
that decayed during the delay, due to the memory trace of earlier reaches to a location, or due 
to the visual structure of the scene with lids visible at the two locations.
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A habit to reach toward a specific location can be described in DFT as coming 
from an additional source of localized input that does not originate from the visual 
array, but from a memory trace of past reaches. Classically, habits have been viewed 
as powerful ways to reduce the amount of sensory specification required to bring 
about an action. William James (1890) famously speculated about the pervasiveness 
and power of habits, which he described as “ease of action” and considered the most 
common and basic form of learning. The neural mechanisms underlying habit forma-
tion are well studied in biological psychology (Yin & Knowlton, 2006), but little is 
known about how human infants acquire habits. In any case, in the A-not-B paradigm, 
a very small number of reaches is sufficient to induce a reaching habit, so this is a fast 
and robust form of learning. It is, perhaps, unclear at this time if the emergence of a 
memory trace of previous reaches over a few trials is truly akin to the formation of 
behavioral habits, as observed in paradigms of instrumental conditioning.

How about a hidden object? This is already quite a complex scenario. Presumably, 
the infant “knows” about the hidden object because earlier he or she saw the object, 
until it was hidden in a trough in a box, say, as in the typical A-not-B experiment. 
The trough was then covered with a lid, so the toy is hidden under the lid. When the 
object was shown, did the infant prepare a movement to reach for it? Perhaps not if the 
project was outside its reaching range. But there was some localized input that induced 
some localized activation, which is now decaying because the input is no longer avail-
able. How do we elicit the reach to the hidden toy? By moving the hiding location into 
the reach space of the infant. The lid is an object, so the reach may be induced just 
by that—by the visual stimulus of a reachable object. The hidden toy is discovered, 
becomes visible, and may elicit further object- oriented action. So it isn’t necessarily the 
case that reaching for a hidden toy requires a true memory of the toy.

In the A-not-B experiment (Piaget, 1954; Wellman, Cross, & Bartsch, 1986) there 
are two locations, typically a box with two troughs, each covered with a lid. When 
the toy is first hidden under the “A” lid, the infant does select the “A” lid for his or 
her reach in most cases. This means that the previous action of attracting attention to 
the “A” location— of hiding an attractive toy there and putting down the lid over that 
location— left some activation trace that biases the competition among the two reach-
ing locations, the two lids, toward the “A” location.

In many A-not-B experiments, the two lids are not equally spaced on the first 
few training trials: as noted previously, the “A” lid is left closer to the infant than the 
“B” lid, inviting a reach toward “A.” This may bias the decision independently of any 
remaining activation from previous events.

Once the reach to “A” has been elicited several times over a few “A” trials, a mem-
ory trace solidly biases the motor decision toward the “A” location each time the box 
is pushed into the infant’s reaching space. By the time the hiding location is switched 
to the “B” location, the bias toward “A” from the memory trace may be strong enough 
to overcome any remaining activation trace from the stimulation at “B” when the toy 
is hidden. The A-not-B perseverative error ensues.

The hallmark of the A-not-B error is the critical role of the delay. When the box 
is pushed toward the infant right after the toy is hidden at “B,” the infant is likely 
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to reach correctly toward “B.” Young infants make the error even at short delays, 
whereas older infants tolerate increasingly longer delays. The delay directly controls 
the tradeoff between the decaying activation induced by the stimulus at “B” when the 
toy is hidden there and the bias to “A” that the motor habit, the memory trace at “B,” 
imposes.

Presumably, the decay of activation at “B” is slower in older infants because they 
may engage neural interaction more easily, better stabilizing the activation at “B” 
against decay. (The possibility that older infants may sustain a peak at “B” over long 
delays as a form of working memory for a planned action requires an account for why 
they still reach only when the box is pushed into their reaching space. It is likely that 
understanding the initiation of reaching requires a more refined account, in any case.)

Clearly, the A-not-B paradigm does not probe reaching to hidden objects per se. 
Rather, it probes how flexible infants are in switching to a new pattern of activation 
that must be stabilized against decay. The memory trace is a slow and inflexible form 
of stabilization of motor behavior, whereas the neural interaction within a neural field 
is a faster form of stabilization that may thus flexibly respond to changed demands.

Is the toy then actually needed? A toyless variant of the paradigm demonstrates 
that perseverative reaching emerges even in a purely sensory– motor version of the task 
(Smith, Thelen, Titzer, & McLin, 1999). So this is at heart a sensory– motor decision 
task in which different factors that bias the selection decision are varied. The develop-
mental trajectory is one in which increasingly, the system is less dependent on current 
sensory input to bring about the selection decision.

Are the lids really needed? In a lidless version of the task (Spencer, Smith, & 
Thelen, 2001), the toys are hidden in sand, leaving no visible trace of the hiding loca-
tion. Perseverative errors now show up as metric errors in which the searching location 
is biased metrically toward the “A” location. This can be understood in a different 
picture, in which a peak is sustained during the delay, but drifts under the influence 
of the memory trace. This metric bias occurs in much older children. Toddlers of 4 
years, for instance, show a strong metric bias consistent with perseveration. The local-
ized perceptual input at the locations marked by the lids in the conventional A-not-B 
paradigm locks peaks of activation in place. The absence of such visible perceptual 
markers makes the field more sensitive to other inputs or to internal inhomogeneities. 
This is how the memory trace of past reaches may have observable consequences in 
4-year-olds in the sandbox, whereas infants older than about a year no longer show 
perseveration in the conventional A-not-B paradigm.

The sandbox reaches into spatial working memory (Schutte & Spencer, 2009). 
The hiding location must be remembered as just that, a location along a metric con-
tinuum. In DFT, working memory for metric dimensions arises from the capacity of 
neural interaction to sustain peaks of activation once the inducing localized input has 
been removed. This is the most common neural account for working memory and is 
consistent with the observation of sustained firing of neurons in many cortical struc-
tures (Fuster, 1995). Excitatory and inhibitory connectivity within a neural population 
is critical to enable self- sustaining neural activation patterns. Input from the sensory 
surface alone is not sufficient. The stronger such intrapopulation connectivity, the 
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stabler the sustained activation patterns. Stable patterns of sustained activation may 
resist distractor inputs more effectively and are less easily biased by such inputs.

Across a broad set of experimental paradigms, the developmental trajectory has 
been found to shift from the dominant role of feedforward sensory inputs into neu-
ral representations toward a dominant role of intrapopulation recurrent connectivity 
(Schutte & Spencer, 2009; Schutte, Spencer, & Schöner, 2003; Simmering, Schutte, & 
Spencer, 2008). Activation patterns in the brains of younger infants seem to be more 
strongly dictated by inputs from the sensory surfaces and by fixed habits (modeled 
as inputs from memory traces). During development, activation patterns are increas-
ingly controlled by input from within the neural population, whereas the role of exter-
nal inputs is reduced. This developmental trend has been called the spatial precision 
hypothesis (Schutte, Spencer, & Schöner, 2003) because it manifests in increasing pre-
cision with which spatial (or other metric) information can be retained and processed. 
This same tradeoff between the influence of inputs, including a form of memory 
(latent memory implicit in connections), and the influence of recurrent connectivity 
(active memory) is at the core of a connectionist account of perseverative reaching 
(Munakata, McClelland, Johnson, & Siegler, 1997) that is largely equivalent to DFT.

The Habituation Paradigm

How about perception? The neural concepts at work are the same as for the motor 
domain: The space of possible percepts is spanned by feature values such as retinal 
location, visual orientation, movement direction, or color (see Figure 8.7 for an exam-
ple). Cortical neurons are sensitive to such feature dimensions as indicated by their 
tuning curves. Any given stimulus evokes a distribution of population activation that 
may be construed as a peak localized within the feature spaces. Such a peak is then the 
neural representation of a percept, whose location represents an estimate of the feature 
value while the amplitude may reflect other stimulus properties such as contrast.

Perceptual peaks arise as a sensory stimulus impinges on the sensory surface. The 
forward connectivity from the sensory surface to the neural representation is largely 
responsible for the feature extraction, which determines where a peak is induced. The 
peak itself is a stable state of the perceptual field, stabilized by interaction. The detec-
tion instability, at which the peak arises, separates the preperceptual from the per-
ceptual state. Typically, when the sensory array is sufficiently complex, a perceptual 
detection decision entails at the same time a selection decision in which one particular 
perceptual object or one particular perceptual dimension is brought into the fore-
ground. Featural salience influences which object is thus selected. Infants are particu-
larly sensitive to movement, for instance. In DFT, this selection decision amounts to 
generating a peak localized over one stimulated location, while inhibiting activation 
over other stimulated locations within a feature dimension.

This is a simple picture, in which percepts are attentional blobs in feature space, 
with a small number of estimated feature values. Even this simple- minded picture 
may account for much of what is known about infant perception and its develop-
ment. In particular, the metrics along the feature dimensions matter for the perceptual 
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experience of infants: Metric differences along feature dimensions separate familiar 
from novel stimuli, and development manifests in the metric differences required to 
shift from familiar to novel.

Perception is much harder to observe in infants than overt motor action, of course. 
The tools of modern psychophysics are not readily applied. One common way of indi-
rectly assessing the state of visual perceptual representations is to register patterns 
of looking (Cohen, 1972). This method is based, of course, on the well- documented 
principles of perceptual habituation, in which the probability of continuing to fixate 
on an unchanged stimulus decreases as a function of the total looking time (Colombo 
& Mitchell, 2009). This more indirect assessment of the state of the perceptual system 
requires some extra machinery in DFT to link activation peaks in feature spaces to 
looking behavior.

Does decreased looking reflect a decrease or an increase in perceptual activation? 
Any dependence of “dwell time” on prior perceptual experience is used as an index 
of perceptual processing (Colombo, 2001). Familiarity preference is the tendency to 
look more at a similar or identical stimulus to the one previously looked at; novelty 
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FIGURE 8.7. A perceptual activation field defined over a feature dimension, in this case, the 
direction of visual motion. An object moving in different directions is represented by a peak 
localized over the corresponding location in the field (top: solid line for diagonal motion, 
dashed line for horizontal motion). The luminance and complexity of the stimulus are reflected 
in the amplitude of the induced activation peak, higher for a bright stimulus with inner struc-
ture (bottom: dashed line) than for a plain stimulus (bottom: solid line).
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preference is the tendency to look more at a dissimilar stimulus. An account for how 
perceptual activation is linked to looking within DFT (Schöner & Thelen, 2006) is 
illustrated in Figure 8.8. A first assumption is that fixation is strengthened by percep-
tual activation. Thus, whenever a visual stimulus is perceived, the induced activation 
keeps the infant fixating on it. Perceptual activation thus promotes continued looking, 
accounting for the familiarity preference early during looking (Roder, Bushnell, & 
Sasseville, 2000). The excitatory link from visual activation to fixation is consistent 
with prolonged saccadic response times when a visual stimulus continues to be visible 
at fixation (overlap) than when it is removed (gap) in adults (Kopecz, 1985).

A second assumption is that perceptual activation drives the buildup of inhibi-
tion that is represented in a separate field in the model. Increasing inhibition, in turn, 
weakens perceptual activation and thus promotes looking away, accounting for nov-
elty preference later during looking. Such inhibition is a well-known form adult visual 
perception, wherein it is observed as an increase in perceptual threshold after pro-
longed experience of a particular percept, a phenomenon known as selective adapta-
tion (see Hock, Schöner, & Hochstein, 1996, for the subtle issue of whether conscious 
perception is required to induce selective adaptation).

Together, the two assumptions lead to an account of the typical pattern of look-
ing in infants exposed to a visual stimulus— an early increase followed by a decrease 
in looking time that is referred to as visual habituation (Colombo, Frick, & Gorman, 
1997). The early increase is not always observed for reasons that can be understood. 
The DFT model also predicts how habituation is modulated by stimulus strength and 
prior levels of activation, which account for the difference between “fast” and “slow” 
habituators (Schöner & Thelen, 2006).

The DFT model also explains the pattern of dishabituation routinely used to 
assess infants’ visual perception and cognition (Kaplan & Werner, 1986). Figure 8.8 
illustrates a typical paradigm. In a first phase the infant is exposed repeatedly to a 
habituation stimulus, here a figure moving either horizontally or diagonally, until the 
infant has habituated, that is, until the time the infant looks at the stimulus has fallen 
from the initial level to a criterion level. In the following test phase, the infant is pre-
sented with new stimuli that differ in some way from the habituation stimulus. In the 
example the motion direction may change or the moving object may change color and 
have an additional smiley face added to it. If the change in stimulus induces renewed 
looking, called dishabituation, then this is evidence that the infant detected the change 
of stimulus and thus discriminated the test from the habituation stimulus.

The stimuli shown in Figure 8.9 were used in an unpublished experiment per-
formed in Esther Thelen’s lab by Connie Jing Feng, Melissa Clearfield, and myself. 
Overall, ninety- six 16-month-old infants participated, 24 in each of the four stimulus 
conditions shown. The typical stimulus- controlled procedure was used, in which an 
attention- grabbing stimulus (chime with a concentric moving pattern) attracted the 
infant’s gaze to the display, which was then switched to the current stimulus until the 
child looked away for more than 2 seconds or the trial lasted more than 120 seconds. 
The habituation phase lasted at least 4 trials and a maximum of 20 trials. It was 
aborted when the mean looking time for three consecutive trials fell below 50% of the 
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looking time during the first three trials. Figure 8.10 shows the mean looking times 
across conditions together with error bars and simulation results.

The pattern of looking in these experiments shows dishabituation when the move-
ment direction changes from diagonal to horizontal (e.g., in condition 1A for the first 
test stimulus) or from horizontal to diagonal (e.g, in condition 2A for the first test 
stimulus). In the DFT model, such dishabituation arises when the test stimulus differs 
sufficiently along the perceptual dimension from the habituation stimulus such that it 
activates a different location in the perceptual field. That new location is not yet inhib-
ited by previous perceptual experience and may therefore build up a strong activation 

FIGURE 8.8. Left: In a model of visual habituation (Schöner & Thelen, 2006), an activation 
field (middle) defined over a relevant feature dimension (here, the direction of visual motion) 
receives input from the sensory surface (stimulus on top). The activation field drives an inhibi-
tory field (bottom), which conversely inhibits the activation field. Levels of activation above a 
looking threshold promote fixation on the stimulus. Right: The neural dynamics of the acti-
vation and inhibition fields are simulated at two locations along the feature dimensions cor-
responding to diagonal (index 1) and horizontal motion (index 2). The moving objects are 
shown repeatedly (illustrated by the boxcar stimulus trace for S1 and S2). Whenever a matching 
stimulus is presented, activation at the corresponding location is driven up. For instance, while 
a diagonally moving object is presented (habituation phase), activation at location 1 (top panel) 
is driven up, leading to looking at the moving object (bottom panel). Activation decays when 
the stimulus is removed. Across stimulus presentations, inhibition increases whenever there is 
sufficient activation, leading to a reduction of activation and looking time during the habitua-
tion phase. In the test phase, dishabituation occurs when a new stimulus (horizontal motion, 
second from right) is shown or when the stimulus receives added strength (diagonal motion 
with brighter and more complex object, far right).
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peak that supports renewed looking. This account for dishabituation is symmetrical: 
Either direction of change along the perceptual dimension leads to dishabituation as 
long as the distance along that dimension is sufficiently large. This symmetrical form 
of dishabituation is thus truly a signature of discrimination.

The results also show dishabituation that is asymmetrical. A change from the 
simple to the bright and complex object moving in the same direction leads to renewed 
looking (e.g., in condition 1B, first test). The reverse change from a bright, complex to 
the simple object (e.g., in condition 4B, first test) does not lead to dishabituation. In 
the DFT model, such asymmetrical dishabituation reflects a change in input strength 
that leads to renewed looking through higher perceptual activation only when input 
strength is increased, not when it is decreased. In fact, the DFT model predicts shorter 
looking time than during habituation— the only mismatch between the model and 
this experiment (on condition 4). (In the experiment such a negative difference is not 
possible, because the attention- grabbing stimulus is presented until the infant looks, 
so looking times cannot fall below a lower bound. The attention- grabbing stimulus is 
not modeled).

Condition Habituation Test 1 Test 2

1A

2A

3A

1B

2B

3B

4A

4B

FIGURE 8.9. Stimuli used in a habituation experiment. The stimuli involved a moving sche-
matic figure that differed between the habituation and test phases by movement direction (either 
horizontal or vertical) and complexity (either plain blue or bright yellow with a smiley face).

Molenaar_HbkDvlpmntlSysThryMthdlgy.indb   210 9/18/2013   5:24:20 PM



 Dynamical Systems Thinking 211

Over development, perceptual discrimination generally improves (Kaplan & Wer-
ner, 1986). In DFT this improvement is consistent with a generalization of the spatial 
precision hypothesis, according to which activation peaks become sharper and stabler 
over development. As result, they will overlap less. Shorter displacements of the test 
stimulus along the feature dimension are required to induce new activation peaks that 
do not share inhibition with the habituation stimulus.

A variant of the habituation paradigm has been extensively used to study infant 
cognition. In this variant, hypotheses are formed about infant “knowledge.” For 
instance, in the visual drawbridge paradigm (Baillargeon, 1987a), the hypothesis is 
tested that infants “know” that solid bodies cannot occupy the same location in space. 
Infants are habituated to a visual stimulus in which a wooden panel (the “drawbridge”) 
rotates from horizontal back to horizontal 180 degrees toward and away from the 
infant (Figure 8.11). Then one out of two new stimuli is presented. One is “novel”: It 
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FIGURE 8.10. Mean looking time during the test phase for the four experimental conditions 
shown in Figure 8.9. Experimental results are shown on top (a). Significant dishabituation is 
marked by an asterisk (*). Results from model simulations are show on bottom (b).
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differs from the habituation stimulus more than the other new stimulus. In the novel 
condition, a wooden block is visible to the infant, and the drawbridge is lifted until 
it occludes and touches that block, which leads to less rotation, about 120 degrees. 
This stimulus “respects” the infant’s knowledge that solids cannot move through each 
other, because the drawbridge’s motion is stopped by the block, or so it appears. It 
is the “possible” stimulus in light of the infant’s hypothesized knowledge. The other 
“familiar” condition is similar to the habituation stimulus, in that the drawbridge 
makes the same 180 degree rotation away and toward the infant. This condition is 
“impossible,” because it violates the infant’s knowledge about solids: Initially, a block 
is visible that must lie in the path of the drawbridge, but the drawbridge continues 
motion through the block (in reality, the block is dropped down through an opening 
in the table).

The logic of these types of paradigms is this: Infants are expected to dishabituate 
more to the novel than to the familiar stimulus. If they look longer at the familiar but 
impossible stimulus, then this is evidence that there is something surprising about that 
stimulus— the violation of infant expectation derived from their knowledge. Looking 
longer at impossible than at possible stimuli is thus considered evidence in support of 
the hypothesis regarding infant knowledge that the impossible stimulus challenges.

DFT suggests that the pattern of looking in this kind of paradigm can be accounted 
for without any reference to knowledge or violated expectation. In DFT, the metrics 
of perceptual experience alone can account for the pattern of results. To illustrate the 
idea, we analyzed the metrics of the drawbridge stimulus (see Figure 8.11). In this 
paradigm, the block is a new element that appears in both test stimuli, but not in the 
habituation stimulus. So the presence of the block alone leads to some dishabituation 
through increased input strength. Now the spatial structure of the stimulus is changed 
by the block: The drawbridge moves through space covering a particular area that 
overlaps with the block. This overlap is more extensive when the drawbridge moves 
through the spatial location occupied by the block than when the drawbridge stops 
short of that location. That difference accounts for why there is stronger perceptual 
input for the “impossible” stimulus, leading to more looking.

Similar analyses can be made for many of the classical habituation scenarios 
that are hypothesized to probe infant knowledge. The DFT model also makes spe-
cific predictions that support the account (Schöner & Thelen, 2006). In particular, 
the temporal order in which test stimuli are presented is shown to matter: When the 
familiar– impossible is presented first on the test, its stronger overlap with the habitu-
ation stimulus makes that activation start from a higher level of activation, leading 
to more dishabituation than when the novel– possible stimulus is presented first. In 
experiments, this interaction between the order of presentation and the preference for 
the impossible is routinely observed. In fact, in the original experiment (Baillargeon, 
1987a), the looking advantage of the impossible stimulus comes entirely from this 
order of presentation.

Similarly, individual differences are understood in the DFT account (Schöner & 
Thelen, 2006). Infants with a higher initial level of activation will have a long initial 
look, leading to faster and deeper habituation and a larger difference between the two 
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test stimuli. Again, in the original experiment, the difference between the two test 
stimuli came entirely, statistically speaking, from the fast habituators (Baillargeon, 
1987a).

This DFT account is only a first sketch of all that is entailed in understanding 
infant perception and visual habituation. More recently, Perone and Spencer (2013) 
have substantially extended this account into a comprehensive theory of visual habitu-
ation and visual cognition. In their model, the control that infants exert over their own 
visual stimulation is modeled in more depth than was done in Schöner and Thelen 
(2006) by adding a dynamic fixation system constrained by what is understood from 
work on adult visual fixation (Kopecz, 1995). More importantly, this work links the 
familiarity- to- novelty transition to the emergence of working memory. The (spatial) 
precision hypothesis, shown in earlier work to account for the increase in the capacity 
of working memory in infancy (Perone, Simmering, & Spencer, 2011) is thus being 
confirmed as a pervasive principle of development.

Conclusion

The two worked examples have underscored how far we have moved from the self- 
organization metaphor that was based on analogies with physics to neurally mecha-
nistic accounts of infants’ and childrens’ behavior and cognition. The strong neural 
emphasis in this transition from metaphor to theory may have come as a surprise 
to some readers. But it is consistent with the need to ground the concepts of self- 
organization in empirically valid mechanisms: that is, the patterns of neural interac-
tion. The critical question is if this neural grounding preserves key features of the 

Conclusion

habituation stimulus

“impossible” test stimulus “possible” test stimulus

FIGURE 8.11. The stimuli used in the drawbridge experiment illustrated by seeing the 
arrangement from the side. The infant sees a wooden panel (“drawbridge”) shown here at three 
moments in time (dashed and solid straight lines). The rectangle illustrates a wooden block that 
sits in the path of the drawbridge for the test stimuli.
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metaphor. Does the neural theory address the notion of the emergence of cognitive 
and motor competences under favorable environmental conditions? Does the theory 
articulate how these competences may emerge from experience and account for indi-
vidual routes of development?

Emergence is, in fact, an inherent property of DFT. Cognitive competences, such 
as the ability to stabilize decisions and keep them in working memory, are captured 
by attractor states of the neural dynamics: stable peaks of activation within neural 
populations. The stability of these states emerges from the confluence of different 
contributions. For instance, the neural dynamics of an older infant may stabilize a 
peak that keeps a reaching goal in working memory just based on its more strongly 
developed neural interaction. A younger infant may achieve the same with weaker 
neural interaction if he or she receives additional broad input, for instance, from an 
environment with rich perceptual structure (Schöner & Dineva, 2007). Thus, whether 
a hidden object is “out of sight, out of mind” for an infant depends not just on age, 
but on environmental conditions. The neural dynamics of younger infants make stron-
ger demands on the environment to achieve the cognitive capacity that older infants 
achieve more easily. Perone and colleagues (2011) have provided a similar analysis of 
how the capacity of visual working memory emerges depending on the task settings. 
The conceptual implications are lucidly discussed in Simmering and Perone (2013), 
who review 50 studies of visual working memory, highlighting how the confluence of 
different factors impacts on how infants perform in different circumstances.

Individual differences are captured through differences in the neural dynamics 
formalized as different parameter values. This accounts for covariation of behavioral 
signatures of the dynamics. For instance, in the DFT account of infant habituation 
(Schöner & Thelen, 2006), looking patterns during the habituation phase are predic-
tive of the amount of dishabituation on test. Perone and Spencer (2013) have pushed 
the account of DFT for individual differences to a new level. They show how indi-
vidual differences may emerge from learning processes. In simulations of long looking 
episodes in a visual habituation task, fluctuations in the looking behavior early during 
a trial may lead the system to build visual memories more efficiently, leading to char-
acteristic signatures of a more mature memory system.

This chapter has illustrated the transition from metaphor to neural theory based 
on elementary forms of cognition, close to cognition’s sensory– motor origin. Social 
interaction is, of course, central to development. Can the neural theory be put to work 
on language and social interaction? The answer is yes, although moving to higher 
cognition is one of the frontiers of dynamical systems thinking. In a trailblazing study, 
Samuelson, Smith, Perry, and Spencer (2011) show how the reference problem that is 
key to how children learn words while interacting with parents may be solved by acti-
vation fields over visual space. Their DFT model accounts for experimental data on 
word learning and leads to new, tested predictions, suggesting that the neural theory 
is as productive as the metaphor was.

The neural grounding of cognitive development is a strategy that dynamical sys-
tems thinking shares with connectionist and neuroconstructivist approaches to devel-
opment. The convergence of these currents of theoretical thinking was the topic of a 

Molenaar_HbkDvlpmntlSysThryMthdlgy.indb   214 9/18/2013   5:24:21 PM



 Dynamical Systems Thinking 215

conference and book (Spencer, Thomas, & McClelland, 2009). The joint frontier of 
these approaches was clearly recognized as the problem of understanding autonomous 
development. How do infants and children shape their own behavior to provide the 
stimulation and experience through which they learn and develop? And how may the 
reproducible pattern of development emerge through autonomous learning?
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