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Chapter 7
Use of the Uncontrolled Manifold (UCM)
Approach to Understand Motor Variability,
Motor Equivalence, and Self-motion

John P. Scholz and Gregor Schöner

7.1 Characterizing Variability in Motor Performance1

Variability of motor output often has been considered a form of noise that interferes2

with reliable performance. This assumption, however, depends on the level of the3

motor system under consideration. For targeting tasks, variability of the end-effector4

position will affect the consistency of targeting, depending on the task requirements5

and the size of the target. Variability of coordination patterns used in artistic perfor-6

mance may impact the aesthetics of performance. However, variability at the level of7

the motor elements, including small variations in coordination patterns, often reflect8

task flexibility that is only possible when the motor system exhibits sufficient mo-9

tor abundance (Latash 2012). Consider, for example, performing cardiopulmonary10

resuscitation (CPR) on an infant, with the index and middle fingers exerting the11

necessary force to produce adequate chest compression. If fluctuation in the com-12

pression force of one finger leads to a tendency for higher total force output, then13

reduction in the forces exerted by the other fingers is necessary to compensate and14

maintain a consistent total compression force. This is only possible because there15

are two fingers contributing to a single total force output. Note that an alternative ap-16

proach would be to attempt to control precisely, to the extent possible, the variability17

of individual finger forces such that each finger generates approximately the same18

force on each repetition. The presence of compensatory finger forces, however, has19

been well documented (Latash et al. 2001, 2002a, 2002b), and is consistent with the20

notion of a functional synergy among the motor elements (Latash et al. 2007).21

Determining whether variability of motor output reflects motor noise or flexible22

motor patterns is not trivial, however. Bernstein observed that when blacksmiths hit23
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2 J. P. Scholz and G. Schöner

the chisel with the hammer there appeared to be more variability of the trajectories24

of individual joints than there was for the trajectory of the hammer (Bernstein 1967).25

This led him to conclude that a movement is never repeated in exactly the same26

manner. Although his intuition was correct, there was no way to clearly establish27

this fact. For one thing, the trajectory of the joints and the end effector (hammer) are28

measured in different units and the number of degrees of freedom of each is quite29

different. How does one compare variability of up to 10 joint motions (including30

scapular motion) measured in radians to the variability of three dimensions of end-31

effector motion measured in meters? Schöner and Scholz (Schöner 1995; Scholz and32

Schoner 1999) developed the uncontrolled manifold (UCM) approach to overcome33

this problem and to quantify statistically the extent to which variability of motor34

elements tends to lead to noise or error in performance versus reflecting the use of35

flexible patterns of coordination. In this approach, all analysis to answer this question36

is performed at the level of the motor components, e.g., joint motions, finger forces,37

and muscle modes.38

To accomplish this, the UCM approach requires a model that relates how changes39

in elemental variables affect the task level (e.g., hand position in space, total force40

output). This model can be obtained formally, as when relating joint motions to41

movement of the hand in space (e.g., !x = l1 cos θ1 + cos (θ1 + θ2) + · · · ) or via42

regression analysis when a formal model is not readily available or excessively com-43

plicated (Freitas and Scholz 2010). The null space of the equation relating the task44

space to the space of motor elements provides a linear estimate of all combinations45

of the motor elements that do not affect the value of the task variable at that point46

in a movement trajectory or in time (e.g., J (θmean) !θi = 0 where J is the Jaco-47

bian matrix of partial derivatives relating small changes in the elemental variables48

to changes in the task variable). The null space is computed around the mean value49

of the motor elements (θmean) at each point in the movement trajectory. Experimen-50

tally measured mean-free values of the motor elements (!θi = θi − θmean) for each51

movement repetition at a given point in the normalized movement are projected into52

the null space and its compliment, or range space (the subspace of motor elements53

in which different combinations of the motor elements lead to different values of54

the task variable of interest). This is done for each repetition and the variance of55

the projection lengths is then computed and normalized to the dimensions of the56

subspace to make the analysis more conservative. Greater variance in the null space57

or UCM subspace than in the range space suggests a control strategy in which the58

central nervous system provides stabilizing control signals that restrict variations of59

the motor elements when they affect the desired value of the task variable but allows60

for some degree of variability in combinations of those variables if they have no61

effect on the task variable (i.e., variations within the UCM).62

Studies of many different motor tasks have shown that variability at the level of63

motor elements is more consistent with the use of flexible combinations of those64

elements that preserve a stable state (e.g., posture) or produce a consistent trajectory65

(e.g., reaching) of a task-level variable (e.g., center of mass position, trajectory of66

the hand). In contrast, range space variability typically is shown to be significantly67

smaller (Scholz and Schoner 1999; Scholz et al. 2000; Latash et al. 2001; Scholz68
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7 Use of the Uncontrolled Manifold (UCM) . . . 3

et al. 2001, 2002; Krishnamoorthy et al. 2003, 2007; Latash et al. 2002a). UCM69

analysis also has been able to differentiate between movement synergies in persons70

with neurological dysfunction and healthy control subjects (Reisman and Scholz71

2006; Park et al. 2012, 2013). In addition, different hypothesized task variables72

can be evaluated with this approach to help determine what variables are of greatest73

importance to task performance (Scholz et al. 2000). The results are in agreement74

with the minimum intervention principle, which suggests that allowing variability75

in redundant (abundant) dimensions is the optimal control strategy in the face of76

uncertainty (Todorov and Jordan 2003), although a control structure more in line77

with the UCM hypothesis than optimal control has been shown to better account for78

detailed characteristics of movement trajectories (Martin et al. 2009).79

The dependence of the outcome of a UCM analysis of motor variability on the80

variables used to describe the effector system has recently been criticized (Sternad81

et al. 2010). For example, the authors suggest that movements may equally well be82

planned in joint or segment angle coordinates. They provide an example of a mini-83

mally redundant effector system in which the UCM method leads to quite different84

results when either of these sets of variables is used. This criticism is relevant and85

emphasizes that researchers must make considered choices of the variables used for86

analysis. Three clarifications are in order, however:87

1. A choice of variables fixes the space in which configurations of the effector are88

described. If we choose joint angles as variables, then we describe the effector89

in joint space. A point in that space represents one particular configuration of90

the effector. A metric must be fixed as well, which assesses the distance between91

any two points in that space, that is, between two configurations of the effector.92

Typically, the Euclidian metric is used, in which the squared distances along each93

of a set of orthogonal coordinate axes are summed and the square root is taken.94

The UCM approach is then actually invariant under any change of coordinate95

frame that leaves the metric invariant (Schöner and Scholz 2007). This includes,96

in particular, rotations of the coordinate frame. This invariance reflects the fact that97

the UCM analysis is based on a geometrical view of variance, in which the shape98

of the cloud of points in joint space is observed across trials at a particular point99

during a movement. If that shape is elongated along the direction of the null space,100

then the UCM hypothesis is confirmed. The shape of the cloud of points is invariant101

under any coordinate transform that preserves the metric of the space spanned102

by the chosen variables. This is useful in some cases, such as for the shoulder103

joint, for which there is no principled way to select a particular coordinate frame104

to represent the three degrees of freedom that reside in that joint. Any orthogonal105

set of coordinate axis is equally meaningful, so that invariance under rotation of106

a coordinate frame is desirable. The randomization method (Müller and Sternad107

2004), in contrast, is essentially a form of nonlinear, multivariate correlation. In108

that approach, the coordinate frames matter as they do for correlation. If the cloud109

of points is elongated along a coordinate axis, for instance, then that shape is not110

picked up as correlation but as inherent variability of that particular degree of111

freedom.112
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2. Transformations that do not leave the metric invariant matter in the analysis of113

variance and this is how the choices of variables that set up the configuration114

space come into play. For instance, representing joint configurations through115

segment angles or through joint angles does not lead to the same shape of the116

cloud of points. Mathematically, going from segment angles to joint angles is a117

transformation that does not leave distances invariant: It is not a metric preserv-118

ing transformation, unlike the rigid rotations that may be used to link different119

orthogonal axes for joint angles anchored in the shoulder. This dependence on120

the embedding space is shared, of course, by all approaches to the analysis of121

multidimensional variance (e.g., Müller and Sternad 2004; Cusumano and Cesari122

2006).123

3. Fortunately, the choice of embedding space can be guided by what we know124

about physiology. Specifically, the choice of joint over segment angles is not125

arbitrary. Known sensory receptors provide information to the nervous system126

about changes in joint angles (Grigg 1994). There are no known sensory receptors127

signaling orientation of a limb segment in external space, although transformation128

of sensory receptor information can be used to estimate limb orientation (Poppele129

et al. 2001). Segment angles are inherently dependent on each other. For example,130

a flexion of the ankle brought about by a signal sent to muscles that act on the131

ankle joint leads to changes of all segment angles along the kinematic chain of the132

upright body, including joints not linked to the ankle by any muscle. Similarly,133

changing the segment angle that the humerus forms with an external reference134

frame also changes the segment angles of the forearm and hand, without any135

activity by muscles acting on these more distal joints. Thus, distal segment motion136

in an open kinematic chain is not independent of proximal segment motion. This137

is not the case with joint angles. Changing one joint angle does not necessarily138

affect another joint angle, unless there are particular mechanisms that bring about139

such dependence like multi-articular muscles or coordinated neural signals.140

Thus, it seems to us that the best of two worlds is achieved by combining the ge-141

ometrical view of the UCM approach, which is conceptually attractive, with the142

analytical power of the correlational approach. This is now routinely done by re-143

searchers who select a set of variables and a particular coordinate frame based on144

substantive hypotheses. They can then use the surrogate data procedure of the cor-145

relational approach to verify if the shape of the variance in the UCM analysis truly146

comes from covariation among the variables identified as meaningful rather than147

from inherent differences in variance among the different degrees of freedom (see,148

for example, Yen and Chang 2009; Verrel et al. 2010).149

7.2 Quantifying Motor Equivalence150

More recently, the geometrical perspective of the UCM approach has been used151

to address additional issues in motor control, namely, motor equivalence and self-152

motion. The term motor equivalence has been used in a variety of ways, but is defined153

A
ut

ho
r's

 P
ro

of



Un
co

rre
ct

ed
Pr

oo
f

Book ID: 311495_1_En ChapterID: 7 Dispatch Date: 16-07-2014 Proof No: 1

7 Use of the Uncontrolled Manifold (UCM) . . . 5

here as a change in the configuration of motor elements after a perturbation that tends154

to preserve the outcome of a task or the stability of a task-relevant variable. Kelso155

and colleagues (Kelso et al. 1984) performed a seminal study of motor equivalence156

in the context of the control of speech utterances. They found that adjustments in157

the articulators were task-specific, dependent on the nonsense syllable that subjects158

spoke when a perturbation was delivered to depress the jaw. Further evidence was159

provided when naı̈ve subjects were unable to distinguish utterances performed during160

perturbed and nonperturbed trials. However, in many cases, distinguishing between161

adjustments of motor coordination that lead to disturbance of the task versus being162

a reflection of motor equivalent adjustments to preserve the task is not trivial. For163

example, when reaching to a target, a transient perturbation of a joint will lead to at164

least some effect on the motion of the end effector. If the end effector still reaches165

the target, this suggests that motor equivalence must be present. What if the hand,166

however, hits the target but deviates from its position on nonperturbed trials or what167

effect does the perturbation have on the path of the hand itself? Presuming that168

there are readjustments in the joint configuration or muscle firing patterns due to the169

perturbation, how can one determine the extent to which the adjustments account for170

observed deviations in the hand path or whether more of the adjustments tend to act171

to preserve the hand path? A modification of the UCM approach allows this question172

to be addressed quantitatively. If one takes a set of nonperturbed trials, the null space173

of the Jacobian matrix relating small changes in the motor elements to changes in a174

hypothesized task variable (e.g., the hand position) can be computed using the mean175

value of the motor elements across trials. This null space corresponds, as in UCM176

variance analysis, to a linear estimation of all combinations of joint configurations177

that lead to the same value of the task variable. Again, this analysis is performed at178

each point in the normalized (to 100 %) movement.179

One can then obtain the vector of the configuration of motor elements from a180

perturbed (pert) trial, subtract it from the mean of the nonperturbed (nonpert) trials181 (
θpert − θ̄non-pert

)
, and project this difference vector into the null space (UCM) and182

range space of the nonperturbed trials. If the null space projection is significantly183

larger than the range space projection, then this suggests that more of the adjustment184

in the joint configuration due to the perturbation is motor equivalent, tending to pre-185

serve the nonperturbed value of the relevant task variable. This approach, therefore,186

provides a statistical method for determining the extent to which motor equivalence187

is present.188

In a collaborative study with Fay Horak and John Jeka, motor equivalence relative189

to the position of the center of mass of the body was measured in persons standing190

on a moveable force platform that was perturbed by different amplitudes, keeping191

the velocity of perturbation constant (Scholz et al. 2007). An example of the results192

obtained immediately after the transient perturbation are presented in Fig. 7.1. Note193

that the projection into the UCM subspace or null space was larger, and significantly194

so, than the projection into the range space, both computed based on the nonperturbed195

trials. This difference increased with greater amplitudes of perturbation. Thus, most196

of the change in the joint configuration as a result of the perturbation was motor197

equivalent, tending to preserve the pre-perturbation position of the center of mass of198

the body.199
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6 J. P. Scholz and G. Schöner

Fig. 7.1 Left: Participants stood upright when the support platform was abruptly moved by a
varied amount (perturbation amplitude). Right: Six degrees of freedom were included in a motor
equivalence analysis. The difference vector between joint configurations in perturbed trials from the
mean configuration in unperturbed trials was projected into the UCM subspace (solid line) and the
range spaced (dashed line). The plot shows the average length of these differences vectors across
perturbation trials per degree of freedom together with the SME (error bars) as functions of the
perturbation amplitude. The data are from Scholz et al. 2007 (Fig. 4 there)

7.2.1 Quantifying Self-Motion200

UCM variance analysis indicates how fluctuations of the motor elements across201

repetitions or, in the case of relatively steady state behavior, across time are structured.202

For example, in upright posture, to what extent do joint fluctuations over time lead to203

postural sway of the center of mass versus being coordinated to flexibly stabilize the204

center of mass location? Nonetheless, fluctuations of the motor elements could be205

relatively small or large, depending on the task. The amount of self-motion provides206

an estimate of the magnitude of changes in the motor elements that lie in the UCM207

subspace and, therefore, do not affect the value of a task variable and those that208

change the value of the task variable. The concept of self-motion comes from the209

robotics of redundant effectors and, in that context, refers to the magnitude of the210

vector of time-dependent changes (e.g., velocity) in the motor elements that lies211

in the null space or UCM subspace. In contrast, range space motion refers to that212

component of this vector that lies in the range space, or actually moves the task213

variable with reference to which the analysis is applied.214

Consider reaching to a target with the hand. One might suspect that the most215

efficient movement of the hand would occur if the joints were coordinated such that216

their velocities were directed primarily toward that goal. If so, then the range space217

velocity component of the joints, which actually moves the hand in space, would be218

expected to be substantially larger than the self-motion or UCM component. Self-219

motion might be advantageous in some circumstances, however. For example, when220

carrying a relatively full glass of Guinness stout, if a fly lands on your elbow, you221
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7 Use of the Uncontrolled Manifold (UCM) . . . 7

Fig. 7.2 Reaching with ten degrees of freedom to a target was analyzed with respect to self-motion,
using a Jacobian that took into account both the 3D end-effector position and the 3D orientation
of the hand for a total of six degrees of freedom in task space. Mean self-motion and range space
motion per degree of freedom averaged across participants is shown for the early, middle, and late
phase of reaching when reaching at a fast speed to a target. Data are from Scholz et al. (2011;
compare to Fig. 3 there, which includes other conditions as well)

might want to flick the elbow to get it to go away without spilling the precious222

stout! Internal motion of the arm joints that does not affect the hand position is, by223

definition, self-motion. But how much self-motion is present for a given task when224

motion to achieve a secondary task is not required?225

To answer this question, we developed a method of analysis that can be carried out226

on individual trials or on means across trials. The method was adapted from the UCM227

approach to the analysis of variance. The Jacobian, J, that relates the joint velocity228

vector, θ̇ , to the velocity of the hand, ẋ = J (θ )θ̇ , is computed from a geometrical229

model of the effector. It is evaluated at the instantaneous joint configuration, θ , at230

each point in time. Based on this Jacobian, the null (UCM) and range spaces can231

be determined. The joint velocity vector, θ̇ , is computed from the time series by232

numerical differentiation and is projected into either subspace. Finally, the length233

of these projections is computed and divided by the number of dimensions of each234

subspace.235

Figure 7.2 presents an example of this analysis from a recent article investigat-236

ing self-motion at different speeds of reaching (Scholz et al. 2011). The results for237

reaching at a self-selected fast speed are depicted. Note that although range space238

motion (component of the joint velocity vector projection that moves the hand in239

space) generally was larger than self-motion, self-motion was nonetheless quite sub-240

stantial. The results were similar at slow and moderate speeds of reaching, although241

self-motion was not quite as large as compared to range space motion. Of interest242

was that at all speeds of reaching, self-motion actually was larger than range space243

motion at the early stage of reaching, probably because the arm had to be adjusted244

to exit the trough in which it rested as the reach was initiated.245
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The results suggest that even during the performance of goal-oriented targeting246

tasks there is a substantial amount of self-motion, i.e., joint configuration motion247

within the UCM subspace of joint space, even when an obvious secondary task is not248

involved. It is hypothesized that this amount of self-motion is a reflection of the nature249

of the control system that minimally restricts combinations of motor elements for a250

task that do not interfere with successful performance even when the configurations251

deviate from the initially planned configuration.252

7.3 Conclusion253

The UCM approach was developed originally to investigate the role of motor vari-254

ance and has been successfully applied to a variety of motor tasks from finger force255

production to reaching to postural control. In most cases, variance consistent with256

flexible combinations of the motor elements that maintain a consistent value of an257

important task variable has been shown to be significantly greater than variance258

leading to variability of the task variable. The approach allows one to test hypothe-259

ses about the importance of different task-relevant variables based on the structure260

of variance of the underlying motor elements and to evaluate how different motor261

elements contribute to that structure.262

Recently, the approach has been extended to address additional important issues263

in motor control such as motor equivalence in the presence of a perturbation and264

the extent to which motor abundance is used in the control of motor tasks through265

self-motion analysis. A model of a control strategy based on the UCM hypothesis266

and consistent with the recent results was developed by Martin, Scholz, and Schöner267

(Martin et al. 2009) and applied to postural control by Reimann et al. (2011). We268

believe that the geometrical perspective offered by UCM thinking will be useful both269

to interpret experimental signatures of control hypotheses and to investigate possible270

neural processes that bring about the coordination of the many degrees of freedom of271

the motor system. Ultimately, we will need to understand how spatial information and272

timing constraints for the motion of effectors in space can be translated to control273

signals at the level of each muscle (Bullock et al. 1993; Butz et al. 2007). That274

transformation sets up the geometry uncovered by the UCM method.275
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