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Abstract—We study four established reactive approaches that
can be implemented on computationally weak hardware with
the goal of minimizing oscillatory movements to reduce the
energetic cost of robot navigation. In this regard, we examine
the smoothness and variability of the control action in our
analysis. Sensor noise, including the large variance of GPS
estimates, is evaluated. Care is taken to make the techniques
comparable. Statistical data were obtained in simulation in which
environments were randomly varied. We show that the second
order Attractor Dynamics Approach satisfies our requirements
significantly better than Potential Field approaches.

I. INTRODUCTION

Unmanned Aerial Vehicles (UAVs) are employed in a
variety of environments that impose new and challenging
design constraints. As a new generation of light-weight robots,
UAVs are especially in need of computationally and efficient
control since on-board resources are very limited. Conservation
of battery energy is directly linked to the range of applicability
of the system, but handling the noisy and quickly shifting
sensor information that occur in real-world scenarios adds
computational burden.

We aim to study the effect of the smoothness of the
control action of four reactive techniques. Each is ultimately
meant to be embedded into a larger, hybrid architecture, but is
considered in isolation in this paper for analysis. The chosen
reactive techniques are the Artificial Potential Field approach
[1], [2] for robotic manipulators, a variation presented in
[3] that is commonly employed for vehicles, the Attractor
Dynamics approach, developed by [4] and a variation presented
by [9] that modeled human locomotion. These techniques are
computationally light-weight while still delivering good results
in practice. For UAVs, Potential Fields have been employed
(see, for example, [5], [6] for a review) but control actions
and noise effects where not considered.

We are specifically interested in studying the the effect of
noise in the perception layer. We use simulation experiments
in which we may manipulate and analyze the effect of such
noise. Further, to better be able to discuss the results of the
above methods, we opted to implement the approaches in
a two-dimensional, simple vehicle scenario, as this enables
comparison to earlier work publications. The outcome of the
assessment will guide our future work on UAVs.

We employed an e-Puck mobile robot, a well-known ve-
hicle with actuator dynamics and communication delays 1000

times faster than its implemented control loop. That way, a
smoother output control action directly generates a smoother
trajectory which will also be more energetically efficient.
Finally, as noted in [7], the performance of obstacle avoidance
improves with larger range of the sensors, hence we enhanced
the sensory range of the e-Puck by emulating noisy ultrasound
sensors evenly distributed on its front. The ultrasound range
is at least 10 times the robot diameter which is a good range
for obstacle avoidance algorithms.

Section II of this paper briefly reviews the implemented
variants of the approaches. Section III presents the evaluation
methodology including with the metrics used for comparison
and a brief discussion of parameter selection. Results are
presented in Section IV followed by brief conclusions in
Section V.

II. REACTIVE ALGORITHMS

A. Potential Fields

Although a wide variety of Potential Functions have been
presented in the literature, many are really small variations of
the original approach customized for specific environments.
For this reason, we chose to test the Classical Artificial Poten-
tial Field (CAPF) of [1], [2]. We summarize the technique:

~Fr = ~Ft + ~Fo (1)

Where ~Fr is the resulting force vector, ~Ft is the target force
vector contribution and ~Fo is the resulting obstacles force
vector contribution. The ~Ft is defined as shown on Eq. (2):

~Ft = −Kv ∗ (~̂v − ν(~vd) ∗ ~vd) (2)

where ~vd = Kp∗(~Tpos− ~Rpos), ~Tpos the target position vector,
~Rpos, the robot position vector, υ(~vd) = min(1, 1√

~vd
2
), ~̂v

is the estimated actual velocity vector and Kp and Kv user-
defined constants. The ~Fo is defined as shown on Eq. (3):

~Fo =

{
η ∗ ( 1

ρ −
1
ρ0

) ∗ 1
ρ2 · ∇ρ, if ρ ≤ ρ0

0, otherwise
(3)

where ρ is the smallest distance to the obstacle and ρ0 and η
are user-defined constants.

Note, that these equations specify a dynamical system
where the end-state is the robot residing in the target position.



In the description of Khatib, Potential Fields yield forces as
outputs, but for a non-holonomic robot, such as the e-Puck,
the lateral component of the force cannot be exerted on it.
We thus chose to interpret, as is commonly done, the forces
as being unit-mass and acting as accelerations. We accounted
for the angle between the desired acceleration vector and
the actual heading as the angular error for a PD-controller
which then generated the desired angular rate-of-change. The
PD-controller was pre-tuned to avoid oscillations and to not
compromise the response time of the method.

B. Potential Fields on Velocity Space

As the Potential Field on Velocity Space (PFVS) we
understand the vector field as velocities for the robot. This was
described in [3], for example. albeit in a global sense with a
known environment and gradient descent search. As we are
interested on the reactive usage, we considered the following
Field formulation, as described in Eq (4) to Eq. (6):

~Vr = ~Vt + ~Vo (4)

~Vt =

{
Kp ∗ (~Tpos − ~Rpos), if ρ ≤ ρT
ρT ∗Kp∗(~Tpos−~Rpos)

ρ , otherwise
(5)

~Vo =

{
η ∗ ( 1

ρ −
1
ρ0

) ∗ 1
ρ2 · ∇ρ, if ρ ≤ ρ0

0, otherwise
(6)

Where ~Tpos represents the target position vector, ~Rpos, the
robot position vector, ρ the distance to the obstacle, Kp, ρT ,
η and ρ0 user-defined constants.

The same transformation from Cartesian vectors to steering
commands was performed as for the CAPF approach.

C. First Order Attractor Dynamics

The First Order Attractor Dynamics (FOAD) was first
presented in [4] and introduced the notion of the robot per-
forming a task, i.e. moving, while residing in an attractor state
of an asymptotically stable dynamical system over a specific
variable, one for each task, instead of the attractor state being
the final state of the process of all tasks. As it was originally
developed for a non-holonomic robot, usage of the steering
angle as non-holonomic control variable was directly possible.

The complete set of equations we used can obtained from
[8] and the final equations used are presented from Eq. (7) to
(11):

φ̇ = Ft(φ) + Fo(φ) (7)

Ft(φ) = −λt ∗ sin (φ−Ψt) (8)

Fo(φ) = λo(do) ∗ sin (φ−Ψo) ∗ e

(
−(φ−Ψo)2

2σo(do)2

)
(9)

λo(do) = β3 ∗ e
(

−do
β4

)
(10)

σo(do) = arctan

(
tan

(
∆θ

2

)
+

Rrobot
Rrobot+do

)
(11)

Where φ is the estimated heading angle measured on the
Inertial Frame, Ψt the angle of the target based on the robot’s

position measured on the Inertial Frame, similarly for Ψo but
for the obstacle now, do is the distance to the object, Rrobot
is the major radius that involves all the robot, ∆θ, λt, β3, β4,
are user-defined parameters.

D. Attractor Dynamics with Damping

The Attractor Dynamics with Damping (ADWD) was used
by [9] to model human locomotion experiments. It is a second
order approach. The Eqs. (12) to (16) describe the technique:

φ̈ = −b ∗ φ̇+ φ̈t + φ̈o (12)

φ̈t = −Kg ∗ sin (φ−Ψt)(e
−c1∗dg + c2) (13)

φ̈o = λo(do) ∗ sin (φ−Ψo) ∗ e

(
−(φ−Ψo)2

2σo(do)2

)
(14)

λo(do) = Ko ∗ e
(

−do
β1

)
(15)

σo(do) = arctan

(
tan

(
∆θ

2

)
+

Rrobot
Rrobot+do

)
(16)

Where φ is the estimated heading angle measured on the
Inertial Frame, φ̇ is the estimated angular velocity, Ψt the angle
of the target based on the robot’s position measured on the
Inertial Frame, similarly for Ψo but for the obstacle now, dg
and do are, respectively, the distance to the goal and to the
object, Rrobot is the major radius that involves all the robot,
Kg , Ko, b, c1, c2, ∆θ, β1, are user-defined parameters. Note,
that we modified the original equations to include a sin term
and applied an σ0 as in Eq. (11) to make the approaches more
comparable.

III. EXPERIMENT DESCRIPTION AND COMPARISON
METRICS

A. The Simulated Environment

Our simulations were carried out using the software
Webots

TM
and we chose a sparse forest-like scenario with

fifteen slim tree trunks as obstacles for a testbed. We saw the
sparse forest scenario as an appropriate environment for these
trials for both vehicles and quadrocopter-like UAVs that would
mostly operate on a plane parallel to the ground if they were to
avoid aggressive, i.e. fast and energy consuming, maneuvers.
Moreover, inside forests, GPS signals are extremely noisy and
often not reliable, making it a sensible decision to study the
limit of the noise effect in this setup.

To make the results comparable over the four approaches,
we decided to enforce a forward constant velocity of 0.04m/s.
This implies that for CAPF and PFVS, which are prone to
stop at local minima, the robot would tend to move out of
these. This modification was termed acceptable, as it was not
the focus of our investigations. With a fixed constant velocity,
and knowing e-Puck wheel speed limitations, the maximum
angular velocity calculated was 3.2rad/s at which a saturation
cap was applied.

The e-Puck was initially placed beyond the edge of the
forest, facing right, and the target waypoint was placed at the
other side of the forest. The simulations ran for 50s as the
robot was not explicitly stopped at the target.



B. Metrics

We used two goal metrics to assess the performance: the
minimum distance to any obstacle (M2O) throughout the entire
simulation and the minimum distance to target (M2T). The
former was a safety measurement, as the larger M2O was, the
safer the path was. The latter indicated whether the goal had
been reached in the allocated time.

To analyze the control action, we introduced three metrics:
The average of angular acceleration (AAA), measured over
time. The standard deviation of angular acceleration (SDA),
where low values of AAA and SDA would imply smoothness
over the entire trajectory. And also the count of occurred
saturations (SAT) of the velocity command to capture the
capability of the hardware to enact the issued commands.

C. Parameter Estimation

A difficulty of comparisons of different approaches is that
performance and comparability relies heavily on the choice
of the parameters of the techniques, this being especially true
for systems of coupled dynamical equations. Here, one can
observe that the approaches do not have the same quantity of
parameters and that the parameters not even have the same
meaning or the same order of magnitude. Another difficulty is
the structure of the parameter space being sparse.

To tackle this issue, we first hand-tuned all the parameters
to a qualitatively satisfactory region of parameter space and
then applied an optimization using a score-based genetic algo-
rithm. The scores were based on the above mentioned metrics
and they were graded using a desired boxplot that express
the desired behavior. The truncation selection was chosen
with Arithmetic cross-over and small random pertubation as
mutation. After 3,200 trials for each technique, the parameters
chosen were as follows:

• FOAD: λt = 1.1, β3 = 3.2, ∆θ = 0.59 and β4 = 0.5

• ADWD: Kg = 1.6, Ko = 5, b = 5.3, c1 = 0.23,
c2 = 0.3, ∆θ = 0.45, β1 = 0.29

• CAPF: Kp = 1.1, Kv = 5, ρ0 = 0.3, η = 0.008

• PFVS: Kp = 0.8, ρT = 1, η = 0.003, ρ0 = 0.2

In the end, the four techniques did not present collisions,
they did not show saturations and they all reached the target
area. Thus, the performance metrics showed us that the algo-
rithms achieved with this parameter sets what was expected
from them based on the literature.

D. Experiment

We randomly generated 400 forest scenarios with different
difficulty levels, Fig. 1 illustrate an easy and hard scenario.

We ran the trials with small and large noises. Trials with
small noise served as a ground test. The chosen standard
deviations for small noise for the ultrasound and GPS were
1mm and 0.14m, respectively, and large noises were 2cm
and 0.7m, respectively. The value of the large noise was
determined by searching for the stability margin of the setup.
For noisy obstacle data, the stability margin was at a noise level
of 29% of the robot diameter, and for the localization of the

Fig. 1. Superposition of a example of hard scenario and easy scenario
generated.

robot itself, a noise with 10 times the robot diameter delimited
the stability margin. The noise in localization position also
affected the target representation, for instance, an initial target-
robot distance of 1m would erect a desired heading error of
0.6rad while when the distance would drop to 0.2m, the error
would rise to 1.3rad.

IV. RESULTS

As it postulated by the parameter design, we did not have
any collisions for the 800 runs. All achieved the target area and
no saturation cap occured. Moreover, all trials achieved similar
M2O and M2T metrics overall, with medians 0.08m± 0.02m
and 0.05m± 0.05m, respectively. The figures 2 to 3 show the
overall statistics for the control action metrics.

FOAD ADWD CAPF PFVS

−0.05

0

0.05

Overall Statistics

A
ve

ra
ge

 o
f A

ng
ul

ar
 A

cc
. [

ra
d/

s2 ]

Fig. 2. Boxplot comparison for the four techniques. For the AAA metric,
the desired position of the quartiles would be near zero for smoothness.

Note that the plots show the bias of the AAA towards
negative values, which comes from the initial orientation of
the robot in the experiments.

The ADWD shows the smoothest transitions in control
actions and with the lowest variation for the length of the
trajectories, even in the presence of noise. The Attractor
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Fig. 3. Boxplot comparison for the four techniques. For the SDA metric, the
desired position of the quartiles would be near zero for smoothness.

Dynamics approach tries to hold the system in an attractor state
all the time, which only slowly shifts as the robots moves and
its AAA and SDA measurements confirm that such a tracking
of the attractor was indeed occuring.

The Figures 4 and 5 show how the substantial increase in
the localization error affected the performance.
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Fig. 4. M2T metric boxplot for ADWD with small and large noise. It
was expected higher values for the second quartile and increased difference
between first and third quartile due to localization noise affecting target
representation.

One may observe, that as the noise in the localization
degraded, the M2T metric degraded as would be expected.
However ADWD was able to handle significantly more noisy
GPS signals and still reach the target. Moreover, the oscilla-
tions also increased with larger noise, becoming about twice
as big. Nevertheless, while increase on the sensor noise was
of a factor of five, the degradation of the smoothness of the
trajectory did not occur by the same scale.
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Fig. 5. SDA metric boxplot for ADWD with small and large noise. It was
expected a significantly increase in the second quartile due to more oscillations
caused by depreciation on target representation.

V. CONCLUSIONS AND FUTURE WORKS

We have shown that of the four approaches tested on
a variety of sparse forest scenarios, the attractor dynamics
with damping exhibited significantly smoother control action
while retaining about the same performance. Smoothness on
the control action is an important issue since it implies,
in real world implementations, that the movement plan is
more likely to being followed and the resulting control action
is energetically more efficient. In this approach, localization
errors up to 10 times the robot’s size were tolerable.
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