
Mach Learn
DOI 10.1007/s10994-017-5632-x

Graph-based predictable feature analysis

Björn Weghenkel1 · Asja Fischer2 ·
Laurenz Wiskott1

Received: 22 December 2015 / Accepted: 1 March 2017
© The Author(s) 2017

Abstract We propose graph-based predictable feature analysis (GPFA), a new method for
unsupervised learning of predictable features from high-dimensional time series, where high
predictability is understood very generically as low variance in the distribution of the next
data point given the previous ones. We show how this measure of predictability can be
understood in terms of graph embedding as well as how it relates to the information-theoretic
measure of predictive information in special cases. We confirm the effectiveness of GPFA on
different datasets, comparing it to three existing algorithms with similar objectives—namely
slow feature analysis, forecastable component analysis, and predictable feature analysis—to
which GPFA shows very competitive results.

Keywords Unsupervised learning · Dimensionality reduction · Feature learning ·
Representation learning · Graph embedding · Predictability

1 Introduction

When we consider the problem of an agent (artificial or biological) interacting with its envi-
ronment, its signal processing is naturally embedded in time. In such a scenario, a feature’s
ability to predict the future is a necessary condition for it to be useful in any behaviorally rel-

Editors: Thomas Gärtner, Mirco Nanni, Andrea Passerini, and Celine Robardet.

B Björn Weghenkel
bjoern.weghenkel@rub.de

Asja Fischer
fischera@iai.uni-bonn.de

Laurenz Wiskott
laurenz.wiskott@rub.de

1 Institute for Neural Computation, Ruhr University Bochum, Bochum, Germany

2 Computer Science Institute, University of Bonn, Bonn, Germany

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10994-017-5632-x&domain=pdf
http://orcid.org/0000-0002-0834-8875

Mach Learn

evant way: A feature that does not hold information about the future is out-dated the moment
it is processed and any action based on such a feature can only be expected to have random
effects.

As an practical example, consider a robot interactingwith its environment.When its stream
of sensory input is high-dimensional (e.g., the pixel values from a camera), we are interested
in mapping this input to a lower-dimensional representation to make subsequent machine
learning steps and decision making more robust and efficient. At this point, however, it is
crucial not to throw away information that the input stream holds about the future as any
subsequent decision making will depend on this information. The same holds for time series
like video, weather, or business data: when performing classification or regression on the
learned features, or when the data is modelled for instance by a (hidden) Markov model, we
are mostly interested in features that have some kind of predictive power.

Standard algorithms for dimensionality reduction (DR), like PCA, however, are designed
to preserve properties of the data that are not (or at least not explicitly) related to predictability
and thus are likely to waste valuable information that could be extracted from the data’s
temporal structure. In this paper we will therefore focus on the unsupervised learning of
predictable features for high-dimensional time series, that is, given a sequence of data points
in a high-dimensional vector space we are looking for the projection into a sub-space which
makes predictions about the future most reliable.

While aspects of predictability are (implicitly) dealt with through many different
approaches in machine learning, only few algorithms have addressed this problem of finding
subspaces for multivariate time series suited for predicting the future. The recently proposed
forecastable component analysis (ForeCA) (Goerg 2013) is based on the idea that predictable
signals can be recognized by their low entropy in the power spectrum while white noise in
contrast would result in a power spectrumwithmaximal entropy.Predictable feature analysis
(PFA) (Richthofer and Wiskott 2013) focuses on signals that are well predictable through
autoregressive processes. Another DR approach that was not designed to extract predictable
features but explicitly takes into account the temporal structure of the data is slow feature
analysis (SFA) (Wiskott and Sejnowski 2002). Still, the resulting slow features can be seen
as a special case of predictable features (Creutzig and Sprekeler 2008). For reinforcement
learning settings, predictive projections (Sprague 2009) and robotic priors (Jonschkowski
and Brock 2015) learn mappings where actions applied to similar states result in similar
successor states. Also, there are recent variants of PCA that at least allow for weak statistical
dependence between samples (Han and Liu 2013).

All in all, however, the field of unsupervised learning of predictable subspaces for time
series is largely unexplored. Our contribution consists of a new measure of the predictability
of learned features aswell as of an algorithm for learning those. The proposedmeasure has the
advantage of being very generic, of making only few assumptions about the data at hand, and
of being easy to link to the information-theoretic quantity of predictive information (Bialek
et al. 2001), that is, the mutual information between past and future. The proposed algorithm,
graph-based predictable feature analysis (GPFA), not only shows very competitive results
in practice but also has the advantage of being very flexible, and of allowing for a variety of
future extensions. Through its formulation in terms of a graph embedding problem, it can
be straightforwardly combined with many other, mainly geometrically motivated objectives
that have been formulated in the graph embedding framework (Yan et al. 2007)—like Isomap
(Tenenbaum et al. 2000), Locally Linear Embedding (LLE, Roweis and Saul 2000), Lapla-
cian Eigenmaps (Belkin and Niyogi 2003), and Locality Preserving Projections (LPP, He and
Niyogi 2004). Moreover, GPFA could make use of potential speed-ups like spectral regres-
sion (Cai et al. 2007), include additional label information in its graph like in (Escalante et al.

123

Mach Learn

2013), or could be applied to non-vectorial data like text. Kernelization and other approaches
to use GPFA in a non-linear way are discussed in Sect. 5.

The remaining paper is structured as follows. In Sect. 2 we derive the GPFA algorithm.We
start by introducing a new measure of predictability (Sect. 2.1), a consistent estimate for it
(Sect. 2.2), and a simplified version of the estimate which is used by the proposed algorithm
as an intermediate step (Sect. 2.3). Then the link to the graph embedding framework is
established in Sects. 2.4 and 2.5. After describing three useful heuristics in Sect. 2.6, the core
algorithm is summarized in Sect. 2.7 and an iterated version of the algorithm is described in
Sect. 2.8. Afterwards the algorithm is analyzed with respect to its objective’s close relation
to predictive information (Sect. 2.9) and with respect to its time complexity (Sect. 2.10).
Section 3 summarizes the most closely related approaches for predictable feature learning—
namely SFA, ForeCA, and PFA—and Sect. 4 describes experiments on different datasets.
We end with a discussion of limitations, open questions and ideas which shall be conducted
by future research in Sect. 5 and with a conclusion in Sect. 6.

2 Graph-based predictable feature analysis

Given is a time series xt ∈ R
N , t = 1, . . . , S, as training data that is assumed to be gen-

erated by a stationary stochastic process (X t)t of order p. The goal of GPFA is to find a
lower-dimensional feature space for that process by means of an orthogonal transformation
A ∈ R

N×M , leading to projected random variables Y t = AT X t with low average vari-
ance given the state of the p previous time steps. We use X (p)

t to denote the concatenation
(XT

t , . . . , XT
t−p+1)

T of the p predecessor of X t+1 to simplify notation. The corresponding

state values are vectors in R
N ·p and denoted by x(p)

t .

2.1 Measuring predictability

We understand the predictability of the learned feature space in terms of the variance of the
projected random variables Y t in this space: the lower their average variance given their
p-step past, the higher the predictability. We measure this through the expected covariance
matrix of Y t+1 given Y

(p)
t and minimize it in terms of its trace, i.e., we minimize the sum of

variances in all principal directions. Formally, we look for the projection matrix A leading
to a projected stochastic process (Y t)t with minimum

trace
(
E
Y (p)

t

[
cov

(
Y t+1|Y (p)

t

)])
. (1)

For simplicity, we refer to this as “minimizing the variance” in the following. When we make
the generally reasonable assumption of p(Y t+1|Y (p)

t = y(p)
t) being Gaussian, that makes

the learned features a perfect fit to be used in combination with least-squares prediction
models.1 For non-Gaussian conditional distributions we assume the variance to function as
a useful proxy for quantifying the uncertainty of the next step. Note, however, that assuming
Gaussianity for the conditional distributions does not imply or require Gaussianity of X t or of
the joint distributions p(Xs, X t), s �= t , which makes the predictability measure applicable
to a wide range of stochastic processes.

1 Note that in the Gaussian case the covariance not only covers the distribution’s second moments but is
sufficient to describe the higher-order moments as well.

123

Mach Learn

2.2 Estimating predictability

In practice, the expected value in (1) can be estimated by sampling a time series y1, . . . , yS

from the process (Y t)t . However, the empirical estimate for the covariance matrices
cov(Y t+1|Y (p)

t = y(p)
t), with y(p)

t ∈ R
M ·p , is not directly available because there might

be only one sample of Y (p)
t+1 with previous state value y(p)

t . Therefore we calculate a k-
nearest neighbor (kNN) estimate instead. Intuitively, the sample size is increased by also
considering the k points that are most similar (e.g., in terms of Euclidean distance) to y(p)

t ,

assuming that a distribution p(Y t+1|Y (p)
t = y′(p)

t) is similar to p(Y t+1|Y (p)
t = y(p)

t) if y′(p)
t

is close to y(p)
t . In other words, we group together signals that are similar in their past p steps.

To that end, a setK(p)
t is constructed, containing the indices of all k nearest neighbors of y(p)

t

(plus the 0-st neighbor, t itself), i.e., K(p)
t := {i | y(p)

i is kNN of y(p)
t , i = 1, . . . , S} ∪ {t}.

The covariance is finally estimated based on the successors of these neighbors. Formally, the
k-nearest neighbor estimate of (1) is given by

trace
(〈
cov

({
yi+1 | i ∈ K(p)

t

})〉
t

)
, (2)

where 〈·〉t denotes the average over t . Note that the distance measure used for the k near-
est neighbors does not necessarily need to be Euclidean. Think for instance of “perceived
similarities” of words or faces.

Whilewe introduce the kNNestimate here to assess the uncertainty inherent in the stochas-
tic process, we note that it may be of practical use in a deterministic setting as well. For a
deterministic dynamical system the kNN estimate includes nearby points belonging to nearby
trajectories in the dataset. Thus, the resulting feature space may be understood as one with
small divergence of neighboring trajectories (as measured through the Lyapunov exponent,
for instance).

2.3 Simplifying predictability

Finding the transformation A that leads to the most predictable (Y t)t in the sense of (1)
becomes difficult through the circumstance that the predictability can only be evaluated after
A has been fixed. The circular nature of this optimization problem motivates the iterated
algorithm described in Sect. 2.8. As a helpful intermediate step we define a weaker measure
of predictability that is conditioned on the input X t instead of the features Y t and has a
closed-form solution, namely minimizing

trace
(
E
X(p)

t

[
cov

(
Y t+1|X (p)

t

)])

via its k-nearest neighbor estimate

trace
(〈
cov

({
yi+1 | i ∈ K̃(p)

t

})〉
t

)
. (3)

Analogous to K(p)
t , the set K̃(p)

t contains the indices of the k nearest neighbors of x(p)
t plus

t itself. Under certain mild mixing assumptions for the stochastic process, the text-book
results on k-nearest neighbor estimates can be applied to auto-regressive time series as well
(Collomb 1985). Thus, in the limit of S → ∞, k → ∞, k/S → 0, the estimated covariance

cov
({

yi+1 | i ∈ K̃(p)
t

})
=

〈
yi+1yT

i+1

〉
i∈K̃(p)

t

− 〈yi+1〉i∈K̃(p)
t

〈yi+1〉T
i∈K̃(p)

t

123

Mach Learn

converges to

E

[
Y t+1Y T

t+1|X(p)
t = x(p)

t

]
− E

[
Y t+1|X(p)

t = x(p)
t

]
E

[
Y t+1|X(p)

t = x(p)
t

]T
,

i.e., it is a consistent estimator of cov(Y t+1|X (p)
t = x(p)

t).
When measuring predictability, one assumption made about the process (X t)t in the

following is that it is already white, i.e., E[X t] = 0 and cov(X t) = I for all t . Otherwise
components with lower variance would tend to have higher predictability per se.

2.4 Predictability as graph

Instead of optimizing objective (3) directly, we reformulate it such that it can be interpreted
as the embedding of an undirected graph on the set of training samples. Consider the graph
to be represented by a symmetric connection matrix W = (Wi j)i j ∈ R

S×S with weights
Wi j = W j i > 0 whenever two nodes corresponding to vectors xi and x j from the training
sequence are connected by an edge {xi , x j }. Further assume an orthogonal transformation
A ∈ R

N×M for that graph with M
 N that minimizes

S∑
i, j=1

Wi j‖AT xi − AT x j‖2 =
S∑

i, j=1

Wi j‖yi − y‖2. (4)

Intuitively, this term becomes small if the projections of points connected in the graph (i.e.,
nodes for which Wi j > 0) are close to each other, while there is no penalty for placing the
projections of unconnected points far apart.

Through a proper selection of the weights Wi j , the transformation A can be used to
maximize predictability in the sense of minimizing (3). This becomes clear by noting that
the trace of the sample covariance

cov
({

yi+1 | i ∈ K̃(p)
t

})
=

〈
yi+1yT

i+1

〉
i∈K̃(p)

t

− 〈yi+1〉i∈K̃(p)
t

〈yi+1〉T
i∈K̃(p)

t

=
〈
(yi+1 − yi+1)(yi+1 − yi+1)

T
〉
i∈K̃(p)

t

,

with yi+1 = 〈yi+1〉i∈K̃(p)
t

being the sample mean, can always be formulated via pairwise

differences of samples, since

trace

(〈
(yi+1 − yi+1)(yi+1 − yi+1)

T
〉
i∈K̃(p)

t

)
=

〈
(yi+1 − yi+1)

T (yi+1 − yi+1)
〉
i∈K̃(p)

t

=
〈
yT

i+1yi+1

〉
i∈K̃(p)

t

− 〈yi+1〉T
i∈K̃(p)

t
〈y j+1〉 j∈K̃(p)

t
=

〈
yT

i+1yi+1 − yT
i+1y j+1

〉
i, j∈K̃(p)

t

= 1

2

〈
yT

i+1yi+1 − 2yT
i+1y j+1 + yT

j+1y j+1

〉
i, j∈K̃(p)

t

= 1

2

〈‖yi+1 − y j+1‖2
〉
i, j∈K̃(p)

t
. (5)

Thus, by incrementingweights2 of the edges {yi+1, y j+1} for all i, j ∈ K̃(p)
t , t = p, . . . , S−1,

minimizing (4) directly leads to the minimization of (3).
Note that for the construction of the graph, the data actually does not need to be represented

by points in a vector space. Data points also could, for instance, be words from a text corpus
as long as there are either enough samples per word or there is an applicable distance measure
to determine “neighboring words” for the k-nearest neighbor estimates.

2 All edge weights are initialized with zero.

123

Mach Learn

2.5 Graph embedding

To find the orthogonal transformation A = (a1, a2, . . . , aM) ∈ R
N×M that minimizes (4),

let the training data be concatenated in X = (x1, x2, . . . , xS) ∈ R
N×S , and let D ∈ R

S×S

be a diagonal matrix with Di i = ∑
j Wi j being the sum of edge weights connected to node

xi . Let further L := D − W be the graph Laplacian. Then, the minimization of (4) can be
re-formulated as a minimization of

1

2

S∑
i, j=1

Wi j‖AT xi − AT x j‖2

= 1

2

S∑
i, j=1

Wi j trace

((
AT xi − AT x j

) (
AT xi − AT x j

)T
)

= trace

⎛
⎝

S∑
i=1

AT xiDi ixT
i A −

S∑
i, j=1

AT xiWi jxT
j A

⎞
⎠

= trace(ATX(D − W)XTA) = trace(ATXLXTA) =
M∑

i=1

aT
i XLX

T ai . (6)

The ai that minimize (6) are given by the first (“smallest”) M eigenvectors of the eigenvalue
problem

XLXT a = λa. (7)

See He and Niyogi (2004) for the analogous derivation of the one-dimensional case that was
largely adopted here as well as for a kernelized version of the graph embedding.

2.6 Additional heuristics

The following three heuristics proved to be useful for improving the results in practice.

Normalized graph embedding

First, in the context of graph embedding, theminimization of aTXLXT a described in the sec-
tion above is often solved subject to the additional constraint aTXDXT a = 1 (see for instance
He and Niyogi 2004; Luxburg 2007). Through this constraint the projected data points are
normalized with respect to their degree of connectivity in every component Y = XT a, i.e.,
YTDY = 1. Objective function and constraint can be combined in the Lagrange function
aTXLXT a − λ(aTXDXT a − 1). Then the solution is given by the “smallest” eigenvectors
of the generalized eigenvalue problem

XLXT a = λXDXT a. (8)

Solving this generalized eigenvalue problem instead of (7) tended to improve the results for
GPFA.

Minimizing variance of the past

Second, while not being directly linked to the above measure of predictability, results benefit
significantly when the variance of the past is minimized simultaneously to that of the future.

123

Mach Learn

To be precise, additional edges {yi−p, y j−p} are added to the graph for all i, j ∈ K̃(p)
t ,

t = p + 1, . . . , S. The proposed edges here have the effect of mapping states with similar
futures to similar locations in feature space. In otherwords, states are representedwith respect
towhat is expected in the next steps (notwith respect to their past). Conceptually this is related
to the idea of causal states (Shalizi and Crutchfield 2001), where all (discrete) states that
share the same conditional distribution over possible futures are mapped to the same causal
state (also see Still (2009) for a closely related formulation in interactive settings).

Star-like graph structure

As a third heuristic, the graph above can be simplified by replacing the sample mean yi+1 in
the minimization objective

trace
(〈
cov

({
yi+1 | i ∈ K̃(p)

t

})〉
t

)

= trace

(〈
(yi+1 − yi+1)(yi+1 − yi+1)

T
〉
i∈K̃(p)

t

)

= 〈‖yi+1 − yi+1‖2
〉
i∈K̃(p)

t

by yt+1. This leads to 〈‖yi+1 − yt+1‖2
〉
i∈K̃(p)

t
, (9)

inducing a graph with star-like structures. It is constructed by adding (undirected) edges
{yi+1, yt+1} for all i ∈ K̃(p)

t . Analogously, edges for reducing the variance of the past are

given by {yi−p, yt−p} for i ∈ K̃(p)
t .

We refer to the resulting algorithms as GPFA (1) and GPFA (2), corresponding to the
graphs defined through (5) and (9), respectively. See Fig. 1 for an illustration of both graphs.
The differences in performance are empirically evaluated in Sect. 4.

2.7 Algorithm

In the following, the core algorithm is summarized step by step,where training datax1, . . . , xS

is assumed to be white already or preprocessed accordingly (in that case, the same transfor-
mation has to be taken into account during subsequent feature extractions). Lines starting
with (1) and (2) indicate the steps for GPFA (1) and GPFA (2), respectively.

1. Calculate neighborhood
For every x(p)

t , t = p, . . . , S, calculate index set K̃(p)
t of k nearest neighbors (plus t

itself).
2. Construct graph (future)

Initialize connection matrixW to zero. For every t = p, . . . , S −1, add edges, according
to either

(1) Wi+1, j+1 ← Wi+1, j+1 + 1 ∀i, j ∈ K̃(p)
t or

(2) Wi+1,t+1 ← Wi+1,t+1 + 1 and Wt+1,i+1 ← Wt+1,i+1 + 1 ∀i ∈ K̃(p)
t \ {t}.

3. Construct graph (past)
For every t = p + 1, . . . , S, add edges, according to either

(1) Wi−p, j−p ← Wi−p, j−p + 1 ∀i, j ∈ K̃(p)
t or

(2) Wi−p,t−p ← Wi−p,t−p + 1 and Wt−p,i−p ← Wt−p,i−p + 1 ∀i ∈ K̃(p)
t \ {t}.

123

Mach Learn

Fig. 1 Graphs constructed for GPFA (1) and GPFA (2) are illustrated on the left and right, respectively. Both
pictures show a sample xt and its k nearest neighbors together with their successors in time (indicated through
arrows). The distribution of the successors indicates that the first axis can be predicted with less uncertainty
than the second axis. The dotted lines depict edges that are added to the graph according to the two variants
of the algorithm. Edges for minimizing the variance of the past are constructed analogously

4. Linear graph embedding
Calculate L and D as defined in Sect. 2.5.

Find the first (“smallest”) M solutions to XLXT a = λXDXT a and normalize them, i.e.,
||a|| = 1.

2.8 Iterated GPFA

As shown in Sect. 2.4, the core algorithm above produces features (Y t)t with low
trace (E

X(p)
t

[cov(Y t+1|X (p)
t)]). In many cases these features may already be predictable

in themselves, that is, they have a low trace (E
Y (p)

t
[cov(Y t+1|Y (p)

t)]). There are, however,
cases where the results of both objectives can differ significantly (see Fig. 2 for an example of
such a case). Also, the k-nearest neighbor estimates of the covariances become increasingly
unreliable in higher-dimensional spaces.

Therefore, we propose an iterated version of the core algorithm as a heuristic to address
these problems. First, an approximation of the desired covariances cov(Y t+1|Y (p)

t = y(p)
t)

can be achieved by rebuilding the graph according to neighbors of y(p)
t , not x(p)

t . This in
turn may change the whole optimization problem, which is the reason to repeat the whole
procedure several times. Second, calculating the sample covariance matrices based on the
k nearest neighbors of y(p)

t ∈ R
M ·p instead of x(p)

t ∈ R
N ·p counteracts the problem of

unreliable k-nearest neighbor estimates in high-dimensional spaces, since M · p
 N · p.
The resulting (iterated) GPFA algorithm works like this:

(a) Calculate neighborhoods K̃(p)
t of x(p)

t for t = p, . . . , S − 1.
(b) Perform steps 2–4 of GPFA as described in Sect. 2.7.
(c) Calculate projections yt = AT xt for t = 1, . . . , S.
(d) Calculate neighborhoods3 K(p)

t of y(p)
t for t = p, . . . , S − 1.

(e) Start from step (b), using K(p)
t instead of K̃(p)

t .

where steps (b)–(e) are either repeated for R iterations or until convergence.

3 Of course, this step is not necessary for the last iteration.

123

Mach Learn

Fig. 2 Schematic illustration of a case where p(yt+1|X t = xt) and p(yt+1|Y t = yt) differ significantly.
Points from two neighborhoods are shown together with their immediate successors in time. The distributions
of the successors indicate that the first axis would be the most predictable direction. However, projecting all
points on the first axis would result in a feature that is highly unpredictable. Therefore another direction will
likely be preferred in the next iteration

While we can not provide a theoretical guarantee for the iterative process to converge, it
did so in practice in all of our experiments (see Sect. 4). Also note that in general there is no
need for the dimensionality M of the intermediate projections yt ∈ R

M to be the same as for
the final feature space.

2.9 Relationship to predictive information

Predictive information—that is, the mutual information between past states and future
states—has been used as a natural measure of how well-predictable a stochastic process
is (e.g., Bialek and Tishby 1999; Shalizi and Crutchfield 2001). In this section we discuss
under which conditions the objective of GPFA corresponds to extracting features with max-
imal predictive information.

Consider again the stationary stochastic process (X t)t of order p and its extracted features
Y t = AT X t . Their predictive information is given by

I
(
Y t+1;Y (p)

t

)
= H(Y t+1) − H

(
Y t+1|Y (p)

t

)
, (10)

where H(Y t+1) = E[− log p(Y t+1)] denotes the entropy and

H
(
Y t+1|Y (p)

t

)
= E

Y t+1,Y
(p)
t

[
− log p

(
Y t+1|Y (p)

t

)]

denotes the conditional entropy of (Y t+1)t given its past.
If we assume Y t+1 to be normally distributed—which can be justified by the fact that it

corresponds to a mixture of a potentially high number of distributions from the original high-
dimensional space—then its differential entropy is given by H(Y t+1) = 1

2 log{(2πe)M } +
log{| cov(Y t+1)|} and is thus a strictly increasing function of the determinant of its covariance.
Now recall that (X t)t is assumed to have zero mean and covariance I. Thus, cov(Y t+1) = I
holds independently of the selected transformation A which makes H(Y t+1) independent of
A too.

What remains for the maximization of (10) is the minimization of the term H(Y t+1|Y (p)
t).

Again assuming Gaussian distributions, the differential conditional entropy is given by

H
(
Y t+1|Y (p)

t

)
= 1

2
log{(2πe)M } + E

Y (p)
t

[
log

{∣∣∣cov
(
Y t+1|Y (p)

t

)∣∣∣
}]

. (11)

123

Mach Learn

When we consider the special case of the conditional covariance cov(Y t+1|Y (p)
t = y(p)

t) =:
�

Y t+1|Y (p)
t

being the same for every value that Y (p)
t may take, then the expected value reduces

to log{|�
Y t+1|Y (p)

t
|} and (11) becomes minimal for the projection for which the resulting

determinant |�
Y t+1|Y (p)

t
| isminimized. Furthermore, under this assumption, (1) can bewritten

as

trace
(
E
Y (p)

t

[
cov

(
Y t+1|Y (p)

t

)])

= trace
(
�

Y t+1|Y (p)
t

)

= trace
(
AT �

X t+1|Y (p)
t
A

)
.

Thus, it becomes clear that �
Y t+1|Y (p)

t
with minimal trace is constructed by selecting the

principle directions from the N × N matrix �
X t+1|Y (p)

t
that correspond to the M smallest

eigenvalues. Thereby the determinant |�
Y t+1|Y (p)

t
| is minimized as well, since—like for the

trace—its minimization only depends on the selection of the smallest eigenvalues. Thus,
GPFA produces features with the maximum predictive information under this assumption
of a prediction error �

Y t+1|Y (p)
t

independent of the value of Y (p)
t (and to the degree that the

iterated heuristic in Sect. 2.8 minimizes (1)).
For the general case of different cov(Y t+1|Y (p)

t) for different values of Y (p)
t we have the

following equality for the last term in (11):

E
Y (p)

t

[
log

{∣∣∣cov
(
Y t+1|Y (p)

t

)∣∣∣
}]

= E
Y (p)

t

[
trace

(
log

{
cov

(
Y t+1|Y (p)

t

)})]

= trace
(
E
Y (p)

t

[
log

{
cov

(
Y t+1|Y (p)

t

)}])
. (12)

This corresponds to GPFA’s objective (1) with logarithmically weighted covariances. Such
a weighting intuitively makes sense from the perspective that the predictive information
expresses how many bits of uncertainty (that is, variance) are removed through knowing
about the feature’s past. Since the number of bits only grows logarithmically with increasing
variance, the weight of events with low uncertainty is disproportionally large, which could
be accounted for in the objective function if the goal would be low coding length instead of
low future variance.

2.10 Time complexity

In the following section we derive GPFA’s asymptotic time complexity in dependence of the
number of training samples S, input dimensions N , process order p, output dimensions M ,
number of iterations R, as well as the neighborhood size k.

2.10.1 k-nearest-neighbor search

The first computationally expensive step of the GPFA is the k-nearest-neighbor search.When
we naively assume a brute-force approach, it can be realized in O(N pS). This search is
repeated for each of the S data points and for each of the R iterations (in N · p dimensions
for the first iteration and in M · p for all others). Thus, the k-nearest-neighbor search in the
worst case has a time complexity of

123

Mach Learn

O(N pS2 + RMpS2).

Of course, more efficient approaches to k-nearest-neighbor search exist.

2.10.2 Matrix multiplications

The second expensive step consists of the matrix multiplications in (8) to calculate the
projected graph Laplacians. For a multiplication of two dense matrices of size l × m and
m × n we assume a computational cost of O(lmn). If the first matrix is sparse, with L
being the number of non-zero elements, we assume O(Ln). This gives us a complexity of
O(N 2S + L N) for the left-hand side of (8). For GPFA (1) there is a maximum of L = 2k2S
non-zero elements (corresponding to the edges added to the graph, which are not all unique),
for GPFA (2) there is a maximum of L = 2kS. The right-hand side of (8) then can be
ignored since it’s complexity of O(N 2S + SN) is completely dominated by the left-hand
side. Factoring in the number of iterations R, we finally have computational costs of

O(RN 2S + RL N)

with L = k2S for GPFA (1) and L = kS for GPFA (2).

2.10.3 Eigenvalue decomposition

For solving the eigenvalue problem (8) R times we assume an additional time complexity of
O(RN 3). This is again a conservative guess because only the first M eigenvectors need to
be calculated.

2.10.4 Overall time complexity

Taking together the components above, GPFAhas a time complexity ofO(N pS2+RMpS2+
RN 2S + RL N + RN 3) with L = k2S for GPFA (1) and L = kS for GPFA (2). In terms of
the individual variables, that is: O(S2), O(N 3), O(M), O(p), O(R), and O(k2) or O(k) for
GPFA (1) or GPFA (2), respectively.

3 Related methods

In this section we briefly summarize the algorithms most closely related to GPFA, namely
SFA, ForeCA, and PFA.

3.1 SFA

Although SFA originally has been developed to model aspects of the visual cortex, it has
been successfully applied to different problems in technical domains as well (see Escalante
et al. 2012 for a short overview), like, for example, state-of-the art age-estimation (Escalante
et al. 2016). It is one of the few DR algorithms that considers the temporal structure of the
data. In particular, slowly varying signals can be seen as a special case of predictable features
(Creutzig and Sprekeler 2008). It is also possible to reformulate the slowness principle imple-
mented by SFA in terms of graph embedding, for instance to incorporate label information
into the optimization problem (Escalante et al. 2013).

123

Mach Learn

Adopting the notation from above, SFA finds an orthogonal transformation A ∈ R
N×M

such that the extracted signals yt = AT xt have minimum temporal variation 〈||yt+1−yt ||2〉t .
The input vectors xt—and thus yt as well—are assumed to be white.

3.2 ForeCA

In case of ForeCA (Goerg 2013), (X t)t is assumed to be a stationary second-order process
and the goal of the algorithm is finding an extraction vector a such that the projected signals
Yt = aT X t are as forecastable as possible, that is, having a low entropy in their power
spectrum. Like SFA, ForeCA has the advantage of being completely model- and parameter-
free.

For the formal definition of forecastability, first consider the signal’s autocovariance func-
tion γY (l) = E(Yt −μY)E(Yt−l −μY), withμY being the mean value and the corresponding
autocorrelation function ρY (l) = γY (l)/γY (0). The spectral density of the process can be
calculated as the Fourier transform of the autocorrelation function, i.e., as

fY (λ) =
∞∑

j=−∞
ρY (j)ei jλ,

with i = √−1 being the imaginary unit.
Since fY (λ) ≥ 0 and

∫ π

−π
fY (λ)dλ = 1, the spectral density can be interpreted as a

probability density function and thus its entropy calculated as

H(Yt) = −
∫ π

−π

fY (λ) log(fY (λ))dλ.

For white noise the spectral density becomes uniform with entropy log(2π). This motivates
the definition of forecastability as

Ω(Yt) := 1 − H(Yt)

log(2π)
,

with values between 0 (white noise) and ∞ (most predictable). Since Ω(Yt) = Ω(aT X t) is
invariant to scaling and shifting, X t can be assumed to be white, without loss of generality.
The resulting optimization problem

arg maxaΩ
(
aT X t

)

then is solved by an EM-like algorithm that uses weighted overlapping segment averaging
(WOSA) to estimate the spectral density of a given (training) time series. By subsequently
finding projections which are orthogonal to the already extracted ones, the approach can be
employed for finding projections to higher dimensional subspaces as well. For details about
ForeCA (see Goerg 2013).

3.3 PFA

The motivation behind PFA is finding an orthogonal transformation A ∈ R
N×M as well

as coefficient matrices Bi ∈ R
M×M , with i = 1 . . . p, such that the linear, autoregressive

prediction error of order p,
〈
‖AT xt −

p∑
i=1

BiAT xt−i‖2
〉

t

,

123

Mach Learn

is minimized. However, this is a difficult problem to optimize because the optimal values
of A and Bi mutually depend on each other. Therefore the solution is approached via a
related but easier optimization problem: Let ζt := (xT

t−1, . . . , x
T
t−p)

T ∈ R
N ·p be a vector

containing the p-step history of xt . Let further W ∈ R
N×N ·p contain the coefficients that

minimize the error of predicting xt from its ownhistory, i.e., 〈‖xt −Wζt‖2〉t . Thenminimizing
〈‖AT xt − ATWζt‖2〉t with respect to A corresponds to a PCA (in the sense of finding the
directions of smallest variance) on that prediction error. Minimizing this prediction error
however does not necessarily lead to features yt = AT xt that are best for predicting their
own future because the calculated prediction was based on the history of xt , not yt alone.
Therefore an additional heuristic is proposed that is based on the intuition that the inherited
errors of K times repeated autoregressive predictions create an even stronger incentive to
avoid unpredictable components. Finally,

K∑
i=0

〈
‖AT xt − ATWViζt‖2

〉
t

is minimized with respect toA, whereV ∈ R
N ·p×N ·p contains the coefficients that minimize

the prediction error 〈‖ζt+1 − Vζt‖2〉t .
Like the other algorithms, PFA includes a preprocessing step to whiten the data. So far,

PFA has been shown to work on artificially generated data. For further details about PFA
(see Richthofer and Wiskott 2013).

4 Experiments

We conducted experiments4 on different datasets to compare GPFA to SFA, ForeCA, and
PFA. As a baseline, we compared the features extracted by all algorithms to features that were
created by projecting into an arbitrary (i.e., randomly selected) M-dimensional subspace of
the data’s N -dimensional vector space.

For all experiments, first the training set was whitened and then the same whitening trans-
formation was applied to the test set. After training, the learned projection was used to extract
the most predictable M-dimensional signal from the test set with each of the algorithms. The
extracted signals were evaluated in terms of their empirical predictability (2). The neigh-
borhood size used for this evaluation is called q in the following to distinguish it from the
neighborhood size k used during the training of GPFA. Since there is no natural choice for
the different evaluation functions that effectively result from different q , we arbitrarily chose
q = 10 but also include plots on how results change with the value of q . The size of train-
ing and test set will be denoted by Strain and Stest , respectively. The plots show mean and
standard deviation for 50 repetitions of each experiment.5

4.1 Toy example (“predictable noise”)

We created a small toy data set to demonstrate performance differences of the different
algorithms.The data set contains a particular kind of predictable signalswhich are challenging
to identify for most algorithms. Furthermore, the example is suited to get an impression for

4 GPFA and experiments have been implemented in Python 2.7. Code and datasets will be published upon
acceptance.
5 Note that while the algorithms themselves do not depend on any random effects, the data set generation
does.

123

Mach Learn

a b c

Fig. 3 Predictability in terms of (2) of two dimensional signals (M = 2) extracted from the the toy dataset
by the different algorithms. If not varied during the experiment, parameters were p = 1, k = 10, q = 10,
Strain = 700, Stest = 100, N = 10, R = 50, and K = 0

running time constants of the different algorithms that are not apparent from the big O
notation in Sect. 2.10.

First, a two-dimensional signal

xt =
(

ξt

ξt−1

)
(13)

was generated with ξt being normally distributed noise. Half of the variance in this sequence
can be predicted when xt−1 is known (i.e., p = 1), making the noise partly predictable.
This two-dimensional signal was augmented with N − 2 additional dimensions of normally
distributed noise to create the full data set.Wegenerated such data setswith up to Strain = 800
training samples, a fixed test set size of Stest = 100, andwith up to N = 100 input dimensions
and extracted M = 2 components with each of the algorithms. If not varied themselves
during the experiment, values were fixed to Strain = 700 training samples, N = 10 input
dimensions, and k = 10 neighbors for the training of GPFA. The results of PFA did not
change significantly with number of iterations K , which was therefore set to K = 0.

Figure 3 shows the predictability of the signals extracted by the different algorithms and
how it varies in Strain , N , and k. Only ForeCA and GPFA are able to distinguish the two
components of predictable noise from the unpredictable ones, as can be seen from reaching a
variance of about 1, which corresponds to the variance of the two generated, partly predictable
components. As Fig. 3b shows, the performance of both versions of GPFA (as of all other
algorithms) declines with a higher number of input dimensions (but for GPFA (2) less than
for GPFA (1)). At this point, a larger number of training samples is necessary to produce
more reliable results (experiments not shown). The results do not differ much with the choice
of k though.

As the runtime plots of the experiments reveal (see Fig. 4), ForeCA scales especially badly
in the number of input dimensions N , so that it becomes very computationally expensive to
be applied to time series with more than a few dozen dimensions. For that reason we excluded
ForeCA from the remaining, high-dimensional experiments.

4.2 Auditory data

In the second set of experiments we focused on short-time Fourier transforms (STFTs) of
audio files. Three public domain audio files (a silent film piano soundtrack, ambient sounds
from a bar, and ambient sounds from a forest) were re-sampled to 22kHz mono. The STFTs
were calculatedwith the Python librarystftwith a frame length of 512 and a cosinewindow

123

Mach Learn

a b c

Fig. 4 Runtime for the experiments in Fig. 3

function, resulting in three datasets with 26,147, 27,427, and 70,433 frames, respectively,
eachwith 512 dimensions (after discarding complex-conjugates and representing the remain-
ing complex values as two real values each). For each repetition of the experiment, Strain =
10,000 successive frames were picked randomly as training set and Stest = 5000 distinct
and successive frames were picked as test set. PCA was calculated for each training set to
preserve 99% of the variance and this transformationwas applied to training and test set alike.

The critical parameters p and k, defining the assumed order of the process and the
neighborhood size respectively, were selected through cross-validation to be a good compro-
mise between working well for all values of M and also not treating one of the algorithms
unfavourably. PFA and GPFA tend to benefit from the same values for p. The number of
iteration R for GPFA was found to be not very critical and was set to R = 50. The iteration
parameter K of PFA was selected by searching for the best result in {0 . . . 10}, leaving all
other parameters fixed.

The central results can be seen in Figs. 5f, 6f, 7f in terms of the predictability of the
components extracted by the different algorithms in dependence of their dimensionality M .
The other plots show how the results change with the individual parameters. Increasing the
number of past time steps p tends to improve the results first but may let them decrease later
(see Figs. 5a, 6a, 7a). Presumably, because higher numbers of p make the models more prone
to overfitting. The neighborhood size k had to be selected carefully for each of the different
datasets. While its choice was not critical on the first dataset, the second dataset benefited
from low values for k and the third one from higher values (see Figs. 5b, 6b, 7b). Similar, the
neighborhood size q for calculating the final predictability of the results had different effects
for different datasets (see Figs. 5c, 6c, 7c). At this point it’s difficult to favor one value over
another, which is why we kept q fixed to q = 10. As expected, results tend to improve with
increasing numbers of training samples Strain (see Figs. 5d, 6d, 7d). Similarly, results first
improve with the number of iterations R for GPFA and then remain stable (see Figs. 5e, 6e,
7e). We take this as evidence for the viability of the iteration heuristic motivated in Sect. 2.8.

To gauge the statistical reliability of the results, we applied the Wilcoxon signed-rank
test, testing the null hypothesis that the results for different pairs of algorithms actually come
from the same distribution. We tested this hypothesis for each data set for the experiment
with default parameters, i.e., for the results shown in Figs. 5f, 6f, 7f with M = 5. As can
be seen from the p-values in Table 1, the null hypothesis can be rejected with certainty in
many cases, which confirms that GPFA (2) learned the most predictable features on two of
three datasets. For GPFA (1) the results are clear for the first dataset as well for the second
in comparison to PFA. It remains a small probability, however, that the advantage compared
to SFA on the second dataset is only due to chance. For the large third dataset, all algorithms

123

Mach Learn

a b

c d

e f

Fig. 5 Results for STFT #1 (“piano”): if not varied during the experiment, parameters were p = 5, k = 10,
q = 10, Strain = 10, 000, R = 50, M = 5, and K = 10. Slight x-shifts have been induced to separate error
bars

produce relatively similar results with high variance between experiments. It depends on the
exact value of M if SFA or GPFA produced the best results. For M = 5 GPFA happened to
find slightly more predictable results (not highly significant though as can be seen in Table 1).
But in general we don’t see a clear advantage of GPFA on the third dataset.

4.3 Visual data

A third experiment was conducted on a visual dataset. We modified the simulator from the
Mario AI challenge (Karakovskiy and Togelius 2012) to return raw visual input in gray-scale
without text labels. The raw input was scaled from 320×240 down to 160×120 dimensions
and then the final data points were taken from a small window of 20 × 20 = 400 pixels at a
position where much of the game dynamics happened (see Fig. 8 for an example). As with the
auditory datasets, for each experiment Strain = 10,000 successive training and Stest = 5000
non-overlapping test frameswere selected randomly and PCAwas applied to both, preserving
99% of the variance. Eventually, M predictable components were extracted by each of the

123

Mach Learn

a b

c d

e f

Fig. 6 Results for STFT #2 (“bar”): if not varied during the experiment, parameters were p = 7, k = 2,
q = 10, Strain = 10, 000, R = 50, M = 5, and K = 10. Slight x-shifts have been induced to separate error
bars

algorithms and evaluated with respect to their predictability (2). Parameters p and k again
were selected from a range of candidate values to yield the best results (see Fig. 9a, b).

Two things are apparent from the results as shown in Fig. 9. First, the choice of parameters
was less critical compared to the auditory datasets. And second, all compared algorithms
show quite similar results in terms of their predictability. GPFA only is able to find features
slightly more predictable than those of SFA for higher values of M (see Fig. 9f). Again, this
observation is highly significant with a Wilcoxon p-value of 0.00 for M = 12.

5 Discussion and future work

In the previous section we saw that GPFA produced the most predictable features on a
toy example with a certain kind of predictable noise as well as on two auditory datasets.

123

Mach Learn

a b

c d

e f

Fig. 7 Results for STFT #3 (“forest”): if not varied during the experiment, parameters were p = 6, k = 20,
q = 10, Strain = 10, 000, R = 50, M = 5, and K = 10. Slight x-shifts have been induced to separate error
bars

Table 1 p-values for the Wilcoxon signed-rank test which tests the null hypothesis that a pair of samples
come from the same distribution

STFT #1 STFT #2 STFT #3

SFA PFA SFA PFA SFA PFA

GPFA (1) 0.00 0.00 0.18 0.00 0.43 0.09

GPFA (2) 0.00 0.00 0.00 0.00 0.38 0.17

Values refer to the experiments shown in Figs. 5f, 6f, 7f with M = 5. Row and column indicate the pair of
algorithms compared. p-values that show a significant (p ≤ 0.01) advantage of GPFA over the compared
algorithm are printed bold

However, on a third auditory dataset as well as on a visual dataset, GPFA did not show a
clear advantage compared to SFA. This matches our experience with other visual datasets
(not shown here). We hypothesize that SFA’s assumption of the most relevant signals being

123

Mach Learn

Fig. 8 An example frame generated by a modified simulator from the Mario AI challenge. The highlighted
square indicates the 400 pixels extracted for the experiment

the slow ones may especially suited for the characteristics of visual data. This also matches
the fact that SFA originally was designed for and already proved to work well for signal
extraction from visual data sets. A detailed analysis of which algorithm and corresponding
measure of predictability is best suited for what kind of data or domain remains a subject of
future research.

In practical terms we conclude that GPFA (2) has some advantages over GPFA (1). First,
its linear time complexity in k (see Sect. 2.10.2) makes a notable difference in practice (see
Sect. 4.1). Second, GPFA (2) consistently produced better results (see Sect. 4) which is a bit
surprising given that the fully connected graph of GPFA (1) is theoretically more sound and
also matches the actual evaluation criterion (2). Our intuition here is that it is beneficial to
give yt+1 a central role in the graph because it is a more reliable estimate of the true mean
of p(Y t+1|Y t = yt) than the empirical mean of all data points (stemming from different
distributions) in the fully connected graph.

In the form described above, GPFA performs linear feature extraction. However, we are
going to point out three strategies to extend the current algorithm for non-linear feature
extraction. The first strategy is very straight-forward and can be applied to the other linear
feature extractors as well: in a preprocessing step, the data is expanded in a non-linear
way, for instance through all polynomials up to a certain order. Afterwards, application of
a linear feature extractor implicitly results in non-linear feature extraction. This strategy is
usually applied to SFA, often in combination with hierarchical stacking of SFA nodes which
further increases the non-linearities while at the same time regularizing spatially (on visual
data) (Escalante et al. 2012).

The other two approaches to non-linear feature extraction build upon the graph embed-
ding framework. We already mentioned above that kernel versions of graph embedding are
readily available (Yan et al. 2007; Cai et al. 2007). Another approach to non-linear graph
embedding was described for an algorithm called hierarchical generalized SFA: A given
graph is embedded by first expanding the data in a non-linear way and then calculating a
lower-dimensional embedding of the graph on the expanded data. This step is repeated—
each time with the original graph—resulting in an embedding for the original graph that is
increasingly non-linear with every repetition (see Sprekeler 2011 for details).

123

Mach Learn

a b

c d

e f

Fig. 9 Results for visual dataset (“Super Mario”): if not varied during the experiment, parameters were
p = 1, k = 2, q = 10, Strain = 10, 000, R = 50, M = 5, and K = 1. Slight x-shifts have been induced to
separate error bars

Regarding the analytical understanding of GPFA, we have shown in Sect. 2.9 under which
assumptionsGPFA can be understood as finding the featureswith the highest predictive infor-
mation, for instance when the underlying process is assumed to be deterministic but its states
disturbed by independent Gaussian noise. If we generally had the goal of minimizing the
coding length of the extracted signals (which would correspond to high predictive informa-
tion) rather than minimizing their next-step variance, then the covariances in GPFA’s main
objective (1) needed to be weighted logarithmically. Such an adoption, however, would not
be straight forward to include into the graph structure.

Another information-theoretic concept relevant in this context (besides predictive infor-
mation) is that of information bottlenecks (Tishby et al. 2000). Given two random variables
A and B, an information bottleneck is a compressed variable T that solves the problem
minp(t|a) I (A; T) − β I (T ; B). Intuitively, T encodes as much information from A about
B as possible while being restricted in complexity. When this idea is applied to time series
such that A represents the past and B the future, then T can be understood as encoding the
most predictable aspects of that time series. In fact, SFA has been shown to implement a spe-

123

Mach Learn

cial case of such a past-future information bottleneck for Gaussian variables (Creutzig and
Sprekeler 2008). The relationship between GPFA and (past-future) information bottlenecks
shall be investigated in the future.

In Sect. 2.6 we introduced the heuristic of reducing the variance of the past in addition
that of the future. Effectively this groups together parts of the feature space that have sim-
ilar expected futures. This property may be especially valuable for interactive settings like
reinforcement learning. When you consider an agent navigating its environment, it is usu-
ally less relevant to know which way it reached a certain state but rather where it can go
to from there. That’s why state representations encoding the agent’s future generalize better
and allow for more efficient learning of policies than state representations that encode the
agent’s past (Littman et al. 2001; Rafols et al. 2005). To better address interactive settings,
multiple actions may incorporated into GPFA by conditioning the kNN search on actions,
for instance. Additional edges in the graph could also allow grouping together features with
similar expected rewards. We see such extension of GPFA as an interesting avenue of future
research.

6 Conclusion

We presented graph-based predictable feature analysis (GPFA), a new algorithm for unsu-
pervised learning of predictable features from high-dimensional time series. We proposed
to use the variance of the conditional distribution of the next time point given the previous
ones to quantify the predictability of the learned representations and showed how this quan-
tity relates to the information-theoretic measure of predictive information. As demonstrated,
searching for the projection that minimizes the proposed predictability measure can be refor-
mulated as a problem of graph embedding. Experimentally, GPFA produced very competitive
results, especially on auditory STFT datasets, whichmakes it a promising candidate for every
problem of dimensionality reduction (DR) in which the data is inherently embedded in time.

References

Belkin, M., & Niyogi, P. (2003). Laplacian eigenmaps for dimensionality reduction and data representation.
Neural Computation, 15(6), 1373–1396.

Bialek,W., Nemenman, I., & Tishby, N. (2001). Predictability, complexity, and learning. Neural Computation,
13(11), 2409–2463.

Bialek, W., & Tishby, N. (1999). Predictive information. e-print arXiv:cond-mat/9902341, February 1999.
Cai, D., He, X., & Han, J. (2007). Spectral regression: A unified approach for sparse subspace learning. In 7th

IEEE International Conference on Data Mining (ICDM 2007), pp. 73–82. IEEE.
Collomb, G. (1985). Non parametric time series analysis and prediction: Uniform almost sure convergence of

the window and k-nn autoregression estimates. Statistics: A Journal of Theoretical and Applied Statistics,
16(2), 297–307.

Creutzig, F., & Sprekeler, H. (2008). Predictive coding and the slowness principle: An information-theoretic
approach. Neural Computation, 20(4), 1026–1041.

Escalante, B., Alberto, N., &Wiskott, L. (2012). Slow feature analysis: Perspectives for technical applications
of a versatile learning algorithm. Künstliche Intelligenz (Artificial Intelligence), 26(4), 341–348.

Escalante, B., Alberto, N., &Wiskott, L. (2013). How to solve classification and regression problems on high-
dimensional data with a supervised extension of slow feature analysis. Journal of Machine Learning
Research, 14(1), 3683–3719.

Escalante, B., Alberto, N., & Wiskott, L. (2016) Improved graph-based SFA: Information preservation com-
plements the slowness principle. e-print arXiv:1601.03945, January 2016.

123

http://arxiv.org/abs/cond-mat/9902341
http://arxiv.org/abs/1601.03945

Mach Learn

Goerg, G. (2013). Forecastable component analysis. In Proceedings of the 30th international conference on
machine learning (ICML 2013), (Vol 28, pp. 64–72). JMLR Workshop and Conference Proceedings.

Han, F., & Liu, H. (2013). Principal component analysis on non-gaussian dependent data. In Proceedings of
the 30th International Conference on Machine Learning (ICML 2013), (Vol. 28, pp. 240–248). JMLR
Workshop and Conference Proceedings.

He, X., & Niyogi, P. (2004). Locality preserving projections. In T. Sebastian, K. S. Lawrence, & S. Bernhard
(Eds.), Advances in neural information processing systems (Vol. 16, pp. 153–160). Cambridge,MA:MIT
Press.

Jonschkowski, R., & Brock, O. (2015). Learning state representations with robotic priors. Autonomous Robots,
39(3), 407–428.

Karakovskiy, S., & Togelius, J. (2012). The Mario AI benchmark and competitions. IEEE Transactions on
Computational Intelligence and AI in Games, 4(1), 55–67.

Littman, M. L., Sutton, R. S., & Singh, S. (2001). Predictive representations of state. In Advances in neural
information processing systems (NIPS) (Vol. 14, pp. 1555–1561). Cambridge, MA: MIT Press.

Rafols, E. J., Ring, M. B., Sutton, R. S., & Tanner, B. (2005). Using predictive representations to improve
generalization in reinforcement learning. In Proceedings of the 19th international joint conference on
Artificial intelligence, IJCAI’05 (pp. 835–840). San Francisco, CA: Morgan Kaufmann Publishers Inc.

Richthofer, S., & Wiskott, L. (2013). Predictable feature analysis. e-print arXiv:1311.2503, November 2013.
Roweis, S. T., & Saul, L. K. (2000). Nonlinear dimensionality reduction by locally linear embedding. Science,

290(5500), 2323–2326.
Shalizi, C. R., & Crutchfield, J. P. (2001). Computational mechanics: Pattern and prediction, structure and

simplicity. Journal of Satistical Physics, 104(3–4), 817–879.
Sprague,N. (2009). Predictive projections. InProceedings of the 21st international joint conference on artifical

intelligence (IJCAI 2009) (pp. 1223–1229). San Francisco, CA: Morgan Kaufmann Publishers Inc.
Sprekeler, H. (2011). On the relation of slow feature analysis and Laplacian eigenmaps. Neural Computation,

23(12), 3287–3302.
Still, S. (2009). Information-theoretic approach to interactive learning. Europhysics Letters, 85(2), 28005.
Tenenbaum, J. B., de Silva, V., & Langford, J. C. (2000). A global geometric framework for nonlinear dimen-

sionality reduction. Science, 290(5500), 2319–2323.
Tishby, N., Pereira, F. C., & Bialek, W. (2000). The information bottleneck method. e-print

arXiv:physics/0004057, April 2000.
von Luxburg, U. (2007). A tutorial on spectral clustering. Statistics and Computing, 17(4), 395–416.
Wiskott, L., & Sejnowski, T. (2002). Slow feature analysis: Unsupervised learning of invariances. Neural

Computation, 14(4), 715–770.
Yan, S., Dong, X., Zhang, B., Zhang, H.-J., Yang, Q., & Lin, S. (2007). Graph embedding and extensions: A

general framework for dimensionality reduction. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 29(1), 40–51.

123

http://arxiv.org/abs/1311.2503
http://arxiv.org/abs/physics/0004057

	Graph-based predictable feature analysis
	Abstract
	1 Introduction
	2 Graph-based predictable feature analysis
	2.1 Measuring predictability
	2.2 Estimating predictability
	2.3 Simplifying predictability
	2.4 Predictability as graph
	2.5 Graph embedding
	2.6 Additional heuristics
	Normalized graph embedding
	Minimizing variance of the past
	Star-like graph structure

	2.7 Algorithm
	2.8 Iterated GPFA
	2.9 Relationship to predictive information
	2.10 Time complexity
	2.10.1 k-nearest-neighbor search
	2.10.2 Matrix multiplications
	2.10.3 Eigenvalue decomposition
	2.10.4 Overall time complexity

	3 Related methods
	3.1 SFA
	3.2 ForeCA
	3.3 PFA

	4 Experiments
	4.1 Toy example (``predictable noise'')
	4.2 Auditory data
	4.3 Visual data

	5 Discussion and future work
	6 Conclusion
	References

