
A Simulated Car-Park Environment for the Evaluation of

Video-Based On-Site Parking Guidance Systems

Marc Tschentscher1, Ben Pruß1, Daniela Horn1

Abstract— Developing image-processing algorithms based on
machine learning is a challenging problem concerning the huge
amount of thoroughly annotated data needed. The internet
provides many already tagged images for basic classification
problems like vegetables or different cars, but not for more nar-
row problems. In order to extend and evaluate the previously
presented parking guidance system from our previous work, in
this paper, we propose a simulation system based on Unreal
Engine 4. We developed an artificial camera which implements
all features of a real camera, e.g., lens distortion, motion blur
etc. to export video data from the simulated environment. This

data is then compared to real-world video footage by using
our classification module that distinguishes occupied and free
parking lots. We reached a classification rate between 92.28 %
and 99.72 % depending on the parking rows’ distance using
DoG-features and a support vector machine.

I. INTRODUCTION

These days, developing image-processing algorithms

based on machine learning methods is a problematic under-

taking due to the huge amount of data needed [1]. Many

images can be found on the internet to train classifiers if they

are already tagged (e.g., vegetables, different cars etc.). For

a more distinct problem, as, in the present case, classifying

occupied and vacant parking lots, it is extremely difficult to

find representative images. In the past, hours of recording

sessions with a huge amount of video data and manual

labeling were required to extract a good data set.

Using a simulated environment can overcome these prob-

lems. It is possible to create video data reproducing natural

scenes (e.g., huge parking areas) and use them for the training

and / or testing phase of image processing algorithms.

In this paper, we propose a simulation system based on

Unreal Engine 4. We established this system to generate

training and test data which are close to reality. This data

will be used to further improve and evaluate our video-based

parking classification and routing system [2], [3], [4].

Generating data for different weather and lighting condi-

tions and using them for training and testing improves the

robustness of our current system. We are able to simulate

various scenarios of parking and leaving vehicles (cf. Fig. 1)

to test our algorithms in every imaginable situation without

having to record a large amount of sequences, or having to

wait for special scenarios or environmental conditions in the

real world. Furthermore, we can directly extract the ground

truth data e.g., for the occupancy of the observed parking lot

and compare it with the results of the classification algorithm.

1 University of Bochum, Institute for Neural Computation
marc-philipp.tschentscher at ini.rub.de

(a) Sunny day (b) Foggy afternoon

(c) Rainy afternoon (d) Afternoon snowfall

Fig. 1: The simulated environment showing different lighting

and weather conditions

The challenge for the simulation is to be as close to

reality as possible. This is a requirement for the development

of the video-based parking guidance system based on the

simulation and its use in real-world scenarios. Therefor we

recorded a few scenes on a real parking lot, which we rebuilt

in the simulation. We compare the results of our algorithm

(e.g., lot-occupancy-classification) of the real-world scenario

with the artificial one. This leads to a decision on how exact

the simulation is and whether it is realistic enough to develop

and test new algorithms.

This paper is organized as follows: We first give an

overview of what is done in the field so far concern-

ing artificial cameras and simulation systems in general

(cf. Sec. II). Afterwards we describe our proposed system’s

setup (cf. Sec. III). The simulated environment is explained

in Sec. III-A, while Section III-B focuses on the artificial

camera which we implemented to extract video material from

the virtual environment. Experiments, which were executed

to evaluate the system, can be found in Sec. IV. The paper

closes with a conclusion and outlook in Sec. V.

II. RELATED WORK

This section covers related work in this field. It can be

divided into two parts:

On the one hand, the use of virtual environments within

the field of traffic modeling and their purposes have to be

considered. Simulation tools like AnyLogic are commonly

used to model high traffic situations or parking scenarios

in order to find and optimize bottlenecks [5], [6]. For this

purpose, AnyLogic also offers a special Road Traffic Library,

which comprises a number of traffic-related assets that are



useful for a number of traffic scenarios. The library can be

customized ad lib to fit personal requirements.

Companies like the PTV Group build virtual models

using their own tool, PTVissim, to demonstrate simulations

of actually implemented parking guidance systems, e.g., at

airports, or to model and optimize high traffic situations

at roundabouts or crossroads [7]. Especially in industry,

simulations are used to visualize products in order to make

them more comprehensible for potential clients.

It is conspicuous that these simulations show traffic sce-

narios in a highly stylized, simplified form. They focus on

modeling predefined behavior rather than imitating reality in

looks or scenarios. Human shortcomings, such as parking in

an oblique angle using two parking spaces at a time, are not

modeled at all. Also realistic rendering techniques still seem

to be mainly reserved to video game environments.

On the other hand, the process of generating useful video

footage from a virtual environment is equally important when

constructing a system for synthetic data generation. There

are a number of approaches covering virtual camera models

based on different requirements.

Von Neumann-Cosel et al. introduce an idealized cam-

era model for training a traffic lane tracing algorithm [8],

which does not cover significant properties of real cameras

(e.g., depth of field, motion blur and effective exposure).

Williams and Lee simulate a camera merely defined through

its pose and focal length for the reconstruction of 3D objects

from images [9].

Considering the combination of detailed simulated envi-

ronments and virtual camera usage, Noth proposes a com-

plex graphic simulation environment with integrated virtual

cameras, focussing on the production of realistic camera im-

ages [10]. While his system is capable of generating different

advanced effects like realistic shadow rendering, depending

on manually defined light spots, some key elements of real

cameras which are essential for generating highly realistic

images, e.g., image noise or distortions, are missing.

III. SYSTEM SETUP

This section gives a complete overview of our system,

which consists of a simulated environment (cf. Sec. III-A)

and an artificial camera (cf. Sec. III-B).

Different to real-world data, the simulated environment

can comply with various requirements to fulfill a given task.

In this use case, a lively parking area is portrayed, containing

several parking rows and many cars driving around and park-

ing on the lots (cf. Sec. III-A). There are various possibilities

of bringing the environment to life, either by driving a single

car across the given area, by adding a second player with a

separate car, or by including automatically driven cars, which

follow customized paths around the car park.

The artificial camera is implemented as an actor within

the simulated environment. Thus, a variable number of

artificial cameras can be placed at the same time to observe

a simulated scene, e.g., to cover a broader field of view,

or to restore 3D information of the scene. The camera

simulates several physical features of a real camera, such as

lens distortion, different aperture sizes etc. The images are

recorded as either color or grayscale images and are saved

to the shared memory block of the PC’s working memory.

We implemented a module for the used image-processing

framework, which reads the image from shared memory and

makes it available for further processing (cf. Fig. 2). This step

Fig. 2: The software framework YAF, which is used for

image processing. Left: (Artificial) camera image with lens

undistortion applied, Right: Visualization of classification

results for first, second and third row (bottom-up)

is not presented in this paper as it is a special requirement

for the given use-case. It is imaginable to implement any

other tool to read the data block from the shared memory

(e.g., for another framework or a standalone application).

For the experiments (cf. Sec. IV) we evaluated the previ-

ously published classification module [2], [3] on a real and

a simulated sequence, for which the simulated sequence is

exactly the same as the real sequences concerning the cars

and the maneuvers performed.

A. Simulated Environment

As one of our main requirements for the simulated en-

vironment was the realistic appearance, we chose Unreal

Engine 4 (UE4) for implementation, one of the most widely

used game engines. This was especially necessary as one of

our main goals was to model a real-world location for a direct

comparison of both reality and simulation (cf. Sec. IV-A).

We adopted a combination of UE4’s newly introduced

Blueprints Visual Scripting tool and the engine’s native C++

code to build both visual assets and functionality within

the simulated scene. Blueprints were especially used to add

functionality to parking spaces in order to obtain and store

information on the occupancy status of a given spot.

In order to create a more realistic feel, objects within

the modeled scene were coated with materials which had

been created using physically-based rendering (PBR). This

approach refers to a number of concepts rather than strict

rules which describe realistic shading and lighting models

by using measured surface values to mimic the behavior of

real-world materials and add a form of standardization to a

rather artistic work [11], [12].

Within the various possibilities to create realistic materials,

we have chosen a four-layer approach. These layers are:

albedo, gloss, specular, and normal. Required values for

the creation of the first three layers were taken from an

open library, which offers three principal values: albedo,

microsurface, and reflectivity, for a small number of material



categories (cf. [11]). However, libraries which are liable to

costs offer finer distinctions of materials and value types in

order to provide photo-realistic quality.

(a) albedo (b) gloss (c) specular (d) normal

Fig. 3: Material layers used in PBR approach

The albedo layer (see Fig. 3a) represents all color infor-

mation of a material. It is also referred to as diffusion. From

an optics point of view, a natural object receives its color by

absorbing and scattering light, depending on its wavelength.

In this context, albedo describes the fractions of light which

scatter back from a surface.

Gloss, also known as microsurface, handles information on

a material’s roughness. In this grayscale image (cf. Fig. 3b)

lighter shading defines a rather smooth surface, while darker

pixels represent a rougher surface. It is noteworthy that the

actual roughness of a material is not the gloss map itself but

rather the inverted map. This is due to the fact that gloss and

roughness complement each other in the real world, as well.

A material’s reflectivity is set by its specular map

(cf. Fig. 3c). Analogous to the gloss layer, lighter colors

hint at a higher degree of reflectivity than darker ones. The

fourth material layer (cf. Fig. 3d) is a normal map. This layer

stores height information of the material as RGB values. Its

purpose is to add the impression of three-dimensionality to

an actually flat surface, thus creating the illusion of more

detailed objects.

While each of the layers stores separate aspects of infor-

mation on the resulting material, the layers also affect each

other when combined to a material. The mutual exclusiveness

of diffusion and reflection in natural lighting is reproduced

within the physically-based rendering approach by the term

energy conservation.

(a) Non-PBR (b) PBR

Fig. 4: Comparison of non-PBR and PBR material in UE4

A direct comparison of a non-PBR material with a PBR

material (cf. Fig. 4) shows a clear difference in quality and

closeness to reality. As the left image merely consists of

the same original photograph and a normal map, it cannot

depict the difference between the rather smooth pebbles

and the rough main substance of the paving stone. The

prominent dark lines result from shading problems within

Unreal Engine due to missing information. Microscopic

unevenness are excessively shaded, resulting in a rather

harsh, dark resemblance. The PBR material on the other

hand shows a much smoother appearance of the material.

While depth information are preserved, they do not appear

as promiment as with the simple approach. When viewing

this material from different angles in UE4, differences

in gloss and specular become clear, and show a quite

natural reflective behavior. Although the PBR approach

requires more time, both for creation and computation, the

improvement in looks justifies these concessions.

A benefit of using virtual environments for data generation

is the possibility to extract ground truth data on the fly.

Therefor each parking space was equipped with a trigger

volume which notices objects entering or leaving the re-

spective parking space. The parking space id, its current

status, i.e., available or occupied, and the timestamp of a

change are then written to a log file. As a recorded video

sequence within the virtual environment saves a timestamp

for each recorded frame as well, the gathered data can later

be compared to the video data in order to create ground truth

data for a video sequence.

Fig. 5: Example image of the developed car park

While many of the cars in Fig. 5 have been added as

static objects in order to fill the scene, one car can be

steered freely across the parking area. However, as a more

lively parking situation is more interesting for the evaluation

of the resulting material, two different ways for additional

animation within the car park level have been created. A

basic AI has been implemented to add one or more moving

vehicles to the scene. The chosen amount of vehicles can

move around the area following predefined paths which can

be set with the help of waypoint markers in the level. For

a less deterministic behavior, a local multi-player setup has

been implemented as well. This allows another person to

drive a second car within the area at the same time with

the help of a classical split-screen mode. A further addition

of a network-based multiplayer mode could be interesting

for other scenarios in which more than two user-controlled

vehicles seem advantageous.

A huge benefit of simulated environments is the full

control over environmental parameters. A change of weather,

different daytime lighting conditions or obstructed parking

spaces or lanes due to construction works – every situation

that is required for relevant data material can be set in the

environment. We’ve successfully used exactly this advantage



to create video sequences with various weather conditions for

further evaluation of our classifier (cf. Sec. IV-B and IV-C).

B. Artificial Camera

In order to generate highly realistic camera images from

the simulated scene, it is not only necessary to extract certain

parts of the environment, but also to translate physical restric-

tions to our virtual camera actor which bring on limitations

to the images produced by cameras in the real world. These

restrictions are e.g., depth of field, image noise, and motion

blur. Therefore we implemented a realistic camera model

which modifies the image generation process within the

Unreal Engine interface and performs optional final post

processing operations on the images generated by Unreal

Engine’s API. Our model is based on the same parameters

which apply to modern camera systems and consists of

transform functions between the parameter values and the

Unreal Engine rendering options for each of the parameters:

focal length, aperture opening, film speed, exposure time and

focus distance.

Using the aperture opening number k, film speed S,

and exposure time texp, a scalar exposure value EV [13]

representing the change of brightness in the image caused by

the effects of these parameters can be calculated as shown

in Equation 1.

EV = log2(
1 [sec]

texp
) + log2(

100

S
) + log2(k

2) (1)

The total brightness of the scene captured by the virtual

camera sensor is reduced by a factor of 2EV which corre-

sponds quite accurately to the behavior of real-world cameras

(e.g., image brightness doubles when doubling the exposure

time).

Real camera systems offer different methods to automati-

cally determine the exposure parameters in order to guarantee

correct lighting conditions in the generated image. The most

common functions measure the amount of incoming light to

establish an estimate for the optimal value of the exposure

time so that the image is neither under- nor overexposed.

The measurement is either performed in the concrete scene

(e.g., using a light meter) or based on the images generated

with a fixed set of parameters.

We are using the second approach by retrieving infor-

mation about the exposure from the grayscale histograms

of the different color channels with the following criterion

for correctly exposed images: In each histogram the lowest

gray value which occurs at least once shall be as far away

from position 0 as the highest gray value occurring at least

once is away from position 255. The difference must not be

more than 20. If an image is not matching the criterion, the

next image will be generated using either an increased or

decreased exposure time, depending on whether the current

image was too bright or too dark.

The image area supposed to be sharp is determined by two

distances dnear and dfar which both define a curved plane

relative to the pivot point of the camera actor [14]. Objects

which are located in between these planes are expected to

appear satisfactorily sharp. The distances depend on the focal

length f , the chosen focus distance df , and on the hyperfocal

distance dh, which itself is dependent on the focal length,

aperture opening number k, and on the maximum permissible

circle of confusion diameter c (cf. Eq. 2).

dh =
f2

k ∗ c
+ f

dnear =
df ∗ (dh − f)

dh + df − 2f

dfar =
df ∗ (dh − f)

dh − df

(2)

Using these distances, the engine is parameterized with the

focus distance and two transition regions before and beyond

the focus distance to define the area which will be rendered

sharply in contrast to the remaining area, which is blurred.

Images generated by real cameras suffer from various

sources of error such as sensor related image noise, radial

distortions caused by wide-angle lenses, or motion blur. To

reproduce these effects in the virtual images, we imple-

mented post processing steps which we apply to the output

image generated by the Unreal Engine functions.

We used a simple symmetric model to describe a radial

distortion transformation which is only dependent on the

focal length f of the virtual camera and a hardware related

correction factor bd which we determined empirically for

our reference camera system. This factor is used to align the

distortion strength sd gradation of the virtual camera with a

certain system in the real world by giving a starting point

for it at a fixed focal length of 55 mm.

sd = bd ∗
55 [mm]

f
(3)

Eq. 3 describes the relation between the focus length and

the total strength of the distortion effect with regard to the

correction factor, which is similar to the gradation of the

distortion strength in real-world cameras, where a halved

focal length results in a doubled strength of distortion. The

described transformation can easily be undone preserving

most of the relevant image information, by using the method

proposed by Zhang [15].

(a) Original camera image (b) Virtual camera image

Fig. 6: Comparison of distorted camera images generated a

by a real-world camera system and b by the proposed virtual

camera system

A direct comparison of the radial distortions caused by

using wide-angle lenses in real-world camera systems and the



distortion effects generated by our virtual system is depicted

in Fig. 6. Both system use the same set of parameters.

The artificial image noise we used to model the effects of

the film speed on the resulting image is generated by picking

values from a random variable with normal distribution of

mean 0 and variance σ2 (cf. Eq. 4) with correction factor bg

σ2 = bg ∗
S

100
(4)

depending on the hardware which is supposed to be virtually

replicated. For each color channel of each image pixel a

single value is picked and added to the original scalar gray

value.

The engine is producing snapshots of the scene with

no temporal extension. Thus the generated images cannot

contain the motion blur effect which is caused by fast moving

objects within the covered image area during the exposure

time. Because exact image-based calculations of motion blur

effects rely on meta information about the objects within the

simulation context (such as complete object segmentation,

position, moving direction, and movement speed) which is

unavailable or at least hard to calculate, we implemented

a concept that approximates this effect by taking multiple

snapshots during a period of exposure and calculating an

average image based on these snapshots.

IV. EXPERIMENTS

In this section the experiments to evaluate the proposed

system are described. We used the same setting of the car

park as in [3] (3 parking rows containing 36 parking lots in

total). The following tables show the accuracy (in percent)

for each row (from near to far) and each feature (color

=̂ best performing color feature in HSV color space, gray

=̂ best performing Difference of Gaussian (DoG)-feature)

classifier presented in [3]. The best accuracy for each row

and each scenario is highlighted. For a first test we used the

third sequence from [3] and reconstructed the given setting

in the simulated environment (cf. Sec.IV-A) to estimate the

quality of the simulation. Section IV-B provides information

of experiments with different lighting conditions (e.g., sunny,

cloudy and foggy) to show the robustness of the system.

Finally, it is possible to simulate precipitation, e.g., rain and

snow. The results are presented in Section IV-C.

A. Reconstructed Setting

This setting is a reconstruction of a previously used

sequence in [3] for evaluating the parking space classification

algorithm. Figure 6 juxtaposes a real-world image to an

image of the reconstructed scenario. The classification result

including a comparison to the previously calculated real-

world accuracy is shown in Table I. It is noteworthy that the

algorithm reached an accuracy on the reconstructed scenario

which is comparable to the real-world scenario. Concerning

row 2, the accuracy drops significantly in this scenario using

both, the color features and the DoG-features.

reconstruction real world
color gray color gray

row 1 93.68 99.53 96.68 99.96
row 2 72.73 82.78 98.95 96.99
row 3 100.00 100.00 91.83 92.33

TABLE I: Accuracy for the reconstructed scene compared to

the real world

sunny cloudy foggy
color gray color gray color gray

row 1 99.72 99.78 98.25 99.77 80.31 99.70
row 2 98.48 93.17 77.20 88.74 56.42 97.18
row 3 92.28 99.82 98.77 99.27 4.35 58.44

TABLE II: Accuracy for scenarios with adjusted lighting

conditions (sunny, cloudy, foggy)

B. Adjusted Lighting Conditions

In the next phase of experiments we focused on the ad-

justment of the lighting conditions. We tested three different

states: Sunny, cloudy and foggy. The results are presented in

the following.

1) Sunny: This sequence represents a typical summer’s

day at noontide. Figure 7a shows an image which is included

in the sequence. The results gained from the classification

algorithms are shown in table II.

(a) sunny (b) cloudy (c) foggy

Fig. 7: Images of the three different lighting states

Similar to the previous experiment, there is a drop in the

classification result in row 2. However, this holds only for

the gray features. In contrast, the accuracy slightly drops

in row 3 using color features but provides good results for

row 2.

2) Cloudy: This scenario shows a cloudy day in the

afternoon. The lighting is darker than in the previous scenario

so the driving cars turned their lights on (cf. Fig. 7b). Table II

presents the achieved results.

Regarding the second parking row, the typical accuracy

drop can be observed.

3) Foggy: An example of this sequence is visualized

in Figure 7c. The scenario contains dense fog; again the

vehicles have turned on their lights. The classification results

are shown in Table II.

The accuracy of the third parking row has decreased. This

can be explained by the density of the fog, which increases

with the camera distance.

The color features are not suitable to deal with the problem

of fog. On operation, the system should use gray features in

foggy situations instead.



rain snow
color gray color gray

row 1 93.04 99.83 72.40 71.41
row 2 62.90 82.77 40.94 52.11
row 3 65.01 43.11 25.02 25.75

TABLE III: Accuracy for the rain and snow scene with cars

having turned their lights on

C. Precipitation

Precipitation is an everyday occurrence. Therefor we eval-

uated the algorithm for the two most frequent common

categories: Rain and snow.

1) Rain: In this experiment, it is raining heavily and the

cars have to turn on their light. An example can be found in

Figure 8a. The performance of the algorithm is presented in

Table III.

(a) rain (b) snow

Fig. 8: Images of the two different states

Again, the gray features perform better than color features.

Interestingly enough, this holds only for the first and second

parking row.

2) Snow: An even harder challenge for classification is

snow. In this experiment, we implemented falling snow

which significantly affects the camera image (cf. Fig. 8b).

The results of the classification are shown in Table III.

The hardness of the problem can be seen in the relatively

low accuracy, which is 70 % concerning the first parking

row using both color and gray features. Only the second

row differs notably in accuracy regarding the two features.

V. CONCLUSION

In this paper we proposed a simulation system based

on Unreal Engine 4. The system contains the simulated

environment, which represents a real world parking scenario

and an artificial camera, implementing many of the features

a real camera has. The camera captures images and provides

them via shared memory.

We showed that the system can help to evaluate a given

problem, e.g., parking lot classification under certain lighting

and weather conditions. We compared a real-world sce-

nario from [3] and reconstructed it considering the parking

situation and the movement of the cars. We reached a

classification rate of 99.53 % on the first parking row, which

is comparable to the results on the real-world sequence being

99.96 %. Considering the results on varying lighting and

weather conditions, the gray image features (DoG) perform

better than the color image features (using the HSV color

space). It is noteworthy that the algorithm can deal with most

of the lighting and weather conditions as well as with cars

turning on their lights although the classifier was trained and

tested exclusively on real-world image snippets containing

only examples of a sunny and a light foggy scene, without

any precipitations and headlights.

Using simulated data to train and test a new parking lot

classifier and verify it with different real-world scenarios,

which we already recorded, could lead to an improvement

of the classifier to deal with certain problems, e.g., rain and

snow, where the accuracy is not satisfying at the moment. We

will test the algorithm for the routing and tracking module

[4] on the simulation to build up the entire video-based on-

site parking guidance system. Therefor we will implement

an more powerful AI which is able to perform realistic

maneuvers on the parking area autonomously. A car entering

the area will receive the position of the next vacant parking

lot and should drive on its own taking other driving and

parking cars into account.

REFERENCES

[1] C. Bishop, Pattern Recognition and Machine Learning. Springer,
2006.

[2] M. Tschentscher, M. Neuhausen, C. Koch, M. König, J. Salmen, and
M. Schlipsing, “Comparing image features and machine learning al-
gorithms for real-time parking-space classifiaction,” in Proceedings of

the ASCE International Workshop on Computing in Civil Engineering,
2013, pp. 363–370.

[3] M. Tschentscher, C. Koch, M. König, J. Salmen, and M. Schlipsing,
“Scalable real-time parking lot classification: An evaluation of image
features and supervised learning algorithms,” in Proceedings of the

IEEE International Joint Conference on Neural Networks, 2015, pp.
1–8.

[4] D. Horn and M. Brüggenthies, “Video-based parking space detection:
Localisation of vehicles and development of an infrastructure for a
routeing system,” in Proceedings of the Forum Bauinformatik, 2015,
pp. 175–182.

[5] G. Merkuryeva and V. Bolshakovs, “Vehicle schedule simulation
with anylogic,” in Proceedings of the International Conference on

Computer Modelling and Simulation, 2010, pp. 169–174.
[6] M. Kondratyev, “An object-oriented approach to port activity simula-

tion,” Internation Journal Simulation and Process Modelling, vol. 10,
no. 1, 2015.

[7] PTV GROUP, “What keeps traffic flowing?”
Brochure, 2017. [Online]. Available: http://vision-
traffic.ptvgroup.com/fileadmin/files ptvvision/Downloads N/0 General/
2 Products/2 PTV Vissim/BRO PTV Vissim EN.pdf

[8] K. von Neumann-Cosel, E. Roth, D. Lehmann, J. Speth, and A. Knoll,
“Testing of image processing algorithms on synthetic data,” in Pro-

ceedings of the International Conference on Software Engineering

Advances, vol. 4. ICSEA, 2009, pp. 169–172.
[9] J. Williams and W. Lee, “Interactive virtual simulation for multiple

camera placement,” in IEEE International Workshop on Haptic Audio

Visual Environments and their Applications, vol. 5, 2006, pp. 124–129.
[10] S. Noth, “A multi-user driving simulator for studying human driving,”

Ph.D. dissertation, University of Bochum, 2014.
[11] J. Wilson, “Physically-based rendering, and you can too!”

2015, [Online; posted 01-October-2015]. [Online]. Avail-
able: https://www.marmoset.co/posts/physically-based-rendering-and-
you-can-too/

[12] J. Russel, “Basic theory of physically-based render-
ing,” 2015, [Online; posted 01-November-2015]. [Online].
Available: https://www.marmoset.co/posts/basic-theory-of-physically-
based-rendering/

[13] D. A. Kerr, “Apex-additive system of photographic exposure,” Issue,
vol. 7, no. 2007.08, p. 04, 2007.

[14] R. E. Jacobson, S. F. Ray, G. G. Attridge, and N. R. Axford, The

Manual of Photography: Photographic and Digital Imaging. Oxford:
Focal Press, 2000.

[15] Z. Zhang, “A flexible new technique for camera calibration.” IEEE

Transactions on Pattern Analysis and Machine Intelligence, vol. 22,
no. 11, pp. 1330–1334, 2000.


