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Abstract

Slow feature analysis (SFA) is an unsupervised learning algorithm that extracts slowly
varying features from a multi-dimensional time series. Graph-based SFA (GSFA) is an
extension to SFA for supervised learning that can be used to successfully solve regression
problems if combined with a simple supervised post-processing step on a small number of
slow features. The objective function of GSFA minimizes the squared output differences
between pairs of samples specified by the edges of a structure called training graph. The
edges of current training graphs, however, are derived only from the relative order of the
labels. Exploiting the exact numerical value of the labels enables further improvements in
label estimation accuracy.

In this article, we propose the exact label learning (ELL) method to create a more pre-
cise training graph that encodes the desired labels explicitly and allows GSFA to extract
a normalized version of them directly (i.e., without supervised post-processing). The ELL
method is used for three tasks: (1) We estimate gender from artificial images of human faces
(regression) and show the advantage of coding additional labels, particularly skin color. (2)
We analyze two existing graphs for regression. (3) We extract compact discriminative fea-
tures to classify traffic sign images. When the number of output features is limited, such
compact features provide a higher classification rate compared to a graph that generates
features equivalent to those of nonlinear Fisher discriminant analysis. The method is ver-
satile, directly supports multiple labels, and provides higher accuracy compared to current
graphs for the problems considered.

Keywords: slow feature analysis, nonlinear regression, image analysis, pattern recogni-
tion, many classes

1. Introduction

The slowness principle is one of the learning paradigms that might explain the self-
organization of neurons in the brain to extract invariant representations (e.g. Franzius
et al., 2007). This principle operates on an abstract level of information processing and
postulates that perceived information relevant to a subject typically changes much slower
than individual sensory components—e.g., the position of a moth changes slower than the
quickly changing neural activations in the retina of a frog observing it.
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The slowness principle was probably first formulated by Hinton (1989), and early online
learning rules were developed by Földiák (1991) and Mitchison (1991). The first closed-
form algorithm is referred to as slow feature analysis (SFA, Wiskott, 1998; Wiskott and
Sejnowski, 2002). Given a multi-dimensional time series (i.e., a sequence of samples), SFA
finds an instantaneous mapping from the input samples to output features that change as
slowly as possible within a given feature space. The objective function of SFA requires the
minimization of the average squared differences of consecutive output values. Thus, SFA is
especially useful for extracting slowly changing hidden parameters of the data.

Although SFA is unsupervised, it has also been used to solve supervised learning tasks,
where it operates as a dimensionality reduction algorithm that is complemented by a su-
pervised algorithm on a small number of slow features. This is motivated by the idea that
samples originating at a similar time (e.g., consecutive samples) are likely to have similar
labels due to physical and biological constraints on the subject and the environment. Thus,
the temporal arrangement of the samples provides a weak form of supervised information.

Recently, an extension of SFA for classification and regression, called graph-based SFA
(GSFA, Escalante-B. and Wiskott, 2013), has been proposed, which explicitly exploits the
available labels. The training data of GSFA are organized in a graph structure called train-
ing graph, in which the vertices are the samples and the edge weights represent similarities
between the corresponding labels, where each sample typically has several connections. The
objective function of GSFA is similar to that of SFA, except that the pairs of samples need
not be temporally consecutive, are weighted, and are indicated by the edges of the graph.

Typically, GSFA is more effective than SFA at extracting a set of features that tend
to concentrate the label information, allowing accurate prediction of the labels from a
few features, and implicitly solving the supervised learning problem. The resulting (low-
dimensional) output features can then be easily post-processed by standard supervised
algorithms, such as a regression method based on a Gaussian classifier (Escalante-B. and
Wiskott, 2012) or ordinary least squares, to generate the final label estimation.

The main type of application addressed in this article is the solution of regression prob-
lems on high-dimensional data with hierarchical GSFA (HGSFA, see Section 2). Regression
problems can be solved with GSFA using pre-defined graphs (e.g., a serial graph explained in
Section 5.1). However, the structure of pre-defined graphs only takes into account the rank
of the labels and not their exact value, a simplification that might decrease the estimation
accuracy.

In this article, we focus on the analysis and design of training graphs. We develop a
new approach, called exact label learning (ELL), for solving regression problems with GSFA
based on the construction of a special training graph, in which the slowest feature extracted
is already a label estimation, up to an affine transformation (Figure 1.c). The resulting
system learns a nonlinear mapping from the input data (e.g., the pixels or features) to label
estimations, where the features extracted by the layers of the GSFA network increase in
complexity, abstraction level, and invariance as the data is propagated from the bottom to
the top layer.

To develop the ELL method, we first study the slowest possible features that can be
extracted by GSFA from a given graph when the feature space is unrestricted. Such features
are called optimal free responses. After we express the optimal free responses of GSFA in a
closed form, we develop a theoretical method for the converse operation: from a set of free
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Figure 1: Three approaches for solving supervised learning problems. (a) A classic ap-
proach. (b) Previous approach using GSFA with a pre-defined training graph,
which is defined by the input samples, node weights v, and edge weights Γ. The
samples are assumed to be ordered by increasing label. (c) Our proposal, which
consists of a single GSFA architecture that is trained with a specially constructed
graph Γ(`,v). The first slow feature (with a global sign adjustment) directly pro-
vides the label estimation. If the label ` does not have weighted zero mean and
weighted unit variance, a final affine transformation (scaling and offset) should
be included.

responses we design the corresponding training graph. The method allows the creation of
a graph in which the slowest possible feature is the label to be learned. Moreover, one can
learn multiple labels simultaneously (e.g., object position, average color, shape, and size),
and balance their importance by setting the value of certain parameters.

We show analytically that the serial graph is similar to the ELL graph in terms of
the first optimal free responses, and that when only one label is learned the former may
substitute the later reasonably well with faster training time. In addition, we outline in
the discussion a few extensions to the ELL method towards improving its efficiency and
allowing the combination of training graphs.

The remainder of the article is organized as follows: In the next section, we describe
the context of the ELL method and review previous work. In Section 3, we review GSFA.
In Section 4, we propose the ELL method. In Section 5, we provide 3 applications: (1)
We solve a regression problem on gender estimation from artificial images, validating the
method. (2) We analyze efficient pre-defined training graphs for regression. (3) We use
the ELL method in a non-conventional way to design a training graph for the extraction
of compact features for classification, yielding improved performance when the number of
features preserved is between log2(C) and C − 2, where C is the number of classes. For
applications (1) and (3) the accuracy is evaluated experimentally; the first one uses HGSFA
and the latter one uses direct (i.e., non-hierarchical) GSFA. Section 6 closes the article with
a discussion.
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2. Related Work

There are several approaches to solve regression problems on high-dimensional data and
reduce the expensive computational requirements typically associated with this type of
problems. A classic approach consists of feature extraction, (unsupervised) dimensionality
reduction (DR), and an explicit supervised step (Figure 1.a). A different approach first
uses GSFA for supervised DR. Supervised DR might result in higher accuracy than unsu-
pervised DR. A small number of slow features extracted by GSFA are post-processed with
a conventional classification or regression algorithm (Escalante-B. and Wiskott, 2013), see
Figure 1.b. In such an approach, the supervised learning problem is mostly solved by GSFA
implicitly, because it identifies and concentrates the label-predictive information in a few
features.

For high-dimensional data, the direct application of SFA and GSFA is computation-
ally too expensive, but one can resort to hierarchical processing (e.g., Franzius et al.,
2011), which is an efficient divide-and-conquer strategy for the extraction of slow fea-
tures1 (e.g., Figure 2). For example, if the input dimension I is large, one can divide
input data spatially into k lower-dimensional signals x(1)(t), . . . ,x(k)(t) of dimensionality

I ′
def
= I/k. Then, one can extract slow features y(1), . . . ,y(k) from each lower-dimensional

signal: y(1)(t)
def
= SFA(1)(x(1)(t)), y(2)(t)

def
= SFA(2)(x(2)(t)), . . . ,y(k)(t)

def
= SFA(k)(x(k)(t)).

A concrete instance of SFA trained with a particular subset of the training data is denoted
as SFA(·). Different SFA instances are also referred to as SFA nodes, especially in the con-
text of hierarchical SFA networks structured as directed graphs. The nodes above are called
local because their input is only a local subset of the original input. Each of them extracts
J ′ slow features. Afterwards, another SFA node SFA(top) in an additional layer extracts
global slow features from the concatenation of the local slow features computed previously:

y(top)(t)
def
= SFA(top)

(
y(1)(t)| · · · |y(k)(t)

)
, where ·|· is the concatenation operation in space

(not in time). A proper choice of J ′ and k ensures that the computation of y(top)(t) is
feasible.

If the input dimensionality I ′ of the local nodes SFA(1), . . . ,SFA(k) is still too large,
one can repeat the strategy above to each of these nodes. Following such an approach
recursively results in a multi-layer hierarchical network. Due to information loss before
the top node and the change of the feature space, hierarchical SFA does not guarantee
globally optimal slow features anymore. However, it has been shown to be effective in many
practical experiments, in part because low-level features are spatially localized in most
real-world data. Hierarchical GSFA (HGSFA) offers an excellent computational complexity
compared to direct GSFA that can be as good as linear w.r.t. the number of samples and
the input dimensionality, depending on the network architecture (Escalante-B. and Wiskott,
2016).

The ELL method allows the creation of graphs useful to train direct, cascaded, and
hierarchical GSFA. Cascaded GSFA refers to the application of several consecutive passes
of GSFA (thus, it is equivalent to HGSFA with only one GSFA node per layer) and is a
useful approach when the features obtained through direct GSFA are not slow enough for a

1. Even linear SFA becomes infeasible if I is sufficiently large. Therefore, the usefulness of hierarchical
processing is not limited to nonlinear SFA.
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Figure 2: An example hierarchical SFA network for 2D data with 4 layers and no receptive
field overlap that has been used for gender and age estimation from artificial face
images (Escalante-B. and Wiskott, 2010). The SFA nodes can be easily replaced
by GSFA nodes to construct an HGSFA network. The input to one node in layers
1, 2 and 3 is highlighted.

particular application. The main advantage of cascaded over direct GSFA is that the feature
space of the cascade may be more complex without making the individual nodes/layers/steps
more complex. The theoretical part of this article concentrates on GSFA for simplicity, but
we implicitly assume that it will be implemented in practice as HGSFA and applied to
high-dimensional data.

There is a close relation between GSFA, generalized SFA (genSFA, Sprekeler, 2011; also
see Rehn and Sprekeler, 2014) and locality preserving projections (LPP, He and Niyogi,
2003), sharing very similar objective functions and constraints, even though they originate
from different backgrounds and were developed with different goals and applications in mind.
Two differences are that in GSFA the vertex weights are independent of the edge weights
and that GSFA is invariant to the scale of the weights, providing a normalized objective
function 0 ≤ ∆ ≤ 4 (for consistent graphs with non-negative edge weights). There are also
differences in the similarity matrices used in practice for these algorithms. LPP originates
from the field of manifold learning and its similarity matrices have been frequently computed
using nearest neighbors of the input samples, reflecting input similarities. genSFA has
mostly been used for classification and its similarity matrices are typically computed using
input similarity information (nearest neighbors) with transitions restricted to samples of the
same class. One can consider genSFA as LPP applied on the nonlinearly expanded data.
GSFA originates from unsupervised learning and learning of invariances but is motivated
by supervised learning, and training graphs for classification and regression have been used.
Such graphs are computed using only the label information. The goal is to provide sensitivity
to the label information and invariance to any other factor. Therefore, GSFA does not intend
to preserve the manifold structure of the input data. It is possible to use GSFA to compute
LPP features, and vice versa. The results of this article might thus also be relevant for
researchers using LPP and genSFA.
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Various efficient training graphs for classification (clustered graph) and regression (e.g.,
serial, mixed, sliding window graphs) have been proposed (Escalante-B. and Wiskott, 2013).
These graphs have been pre-defined with efficiency in mind; although the number of edges
contained in them is O(N2), where N is the number of samples, their structure makes the
training complexity linear w.r.t. N . This is possible due to algebraic simplifications in the
training method that avoid the explicit representation of the graph as an N ×N matrix.

Wiskott (2003) has studied the optimal free responses of SFA, i.e., the slowest possible
features that can be extracted by SFA when there is no restriction regarding the training
data or feature space. For SFA, he has computed the optimal free responses in continuous
time by using variational calculus (also see Franzius et al., 2007). In this article, we use a
different method for GSFA based on linear algebra to cope with the discrete nature of the
index n that takes the place of time.

Due to the close connection between GSFA and LPP, the method proposed in Section 4.1
for computing the free responses of GSFA is closely connected to Laplacian eigenmaps (LE,
Belkin and Niyogi, 2003). LE can be interpreted as a relaxation of LPP where the output
features belong to an unrestricted feature space instead of being linear transformations of
the inputs. Equivalently, LPP is a linearization of LE (Zhang et al., 2009).

Most regression methods have the shortcoming of a prohibitive computational cost if
the data is high dimensional. Unsupervised DR can be useful to reduce the complexity, but
the final accuracy may be suboptimal. Instead of direct regression, one could attempt to do
hierarchical regression by training several regression nodes on low-dimensional data chunks
and then combining their outputs on higher layers, similarly as HGSFA is built to create a
network of GSFA nodes. However, it is likely that the labels are not extractable at the lowest
levels of the network (except with a noticeable error). Therefore, most information would
be lost after the first layer, making the next layers unable to recover the labels accurately.
GSFA extracts several slow features that do not need to be related to the labels in any
simple way, allowing more label information to reach the top layers in HGSFA, even if the
labels cannot be extracted in the first layers.

The features extracted by GSFA nodes in an HGSFA network have smaller receptive
fields in the first layers that increase in size, as well as in complexity and selectivity, as one
approaches the top of the network. This property is also present in other neural networks,
such as the highly successful convolutional neural networks (CNNs). However, HGSFA and
CNNs differ considerably: the training method of HGSFA is bottom-up, uses other types
of nonlinearities, is not convolutional (although one can make some layers convolutional via
weight sharing), and uses neither backpropagation nor max pooling. Moreover, in HGSFA
the features of each node fulfill a local optimality criterion (i.e., slowness).

3. Review of Graph-Based SFA (GSFA)

In this section, we recall the GSFA optimization problem and the GSFA algorithm. For a
more detailed presentation of GSFA we refer to Escalante-B. and Wiskott (2013).

3.1 Training Graphs and the GSFA Problem

GSFA is trained with a so-called training graph, in which the vertices are the samples and
the edges between two samples may represent or be related to the similarity of their labels.
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In mathematical terms, the training data is represented as a training graph G = (V,E)
(illustrated in Figure 3.a) with a set V = {x(n)}n of vertices, each vertex being a sample
(i.e., a vector of length I), and a set E of edges (x(n),x(n′)), which are pairs of samples,
with 1 ≤ n, n′ ≤ N . The index n (or n′) replaces the time variable t used by SFA. The edges
are directed but typically have symmetric weights ΓT = Γ = {γn,n′}n′,n; weights vn > 0 are
associated with the vertices x(n) and can be used to reflect their importance, frequency, or
reliability. This representation includes the standard time series of SFA as a special case in
which the graph has a linear structure (see Figure 3.b).

In order to solve classification problems with GSFA features, one should use training
graphs that favor connections between samples from the same class by means of larger
edge weights compared to those of different classes. When one is interested in regression
problems, the training graphs should favor connections between samples with similar labels.

Figure 3: (a) Example of a training graph with N = 7 vertices. (b) A regular sample
sequence (time series), which can be used to train SFA. This sequence is repre-
sented here as a linear graph that can be used with GSFA. If labels are available
and the samples have been reordered by increasing/decreasing label (e.g., instead
of having been ordered by time), the graph is called sample reordering graph.
(Figure from Escalante-B. and Wiskott, 2013).

The concept of slowness has been originally defined for sequences of samples, but it
has been generalized for GSFA to training graphs. The general goal of GSFA is to extract
features that fulfill certain normalization restrictions and minimize the sum of the weighted
squared output differences of all connected samples. More formally, the GSFA optimization
problem (Escalante-B. and Wiskott, 2013) can be stated as follows: For 1 ≤ j ≤ J , where J

is the number of output features, find features yj(n)
def
= gj(x(n)), where 1 ≤ n ≤ N , N is the

number of samples, and gj is a function belonging to a feature space F (frequent choices for
F are all linear or quadratic transformations of the inputs), such that the objective function
(weighted delta value)

∆j
def
=

1

R

∑
n,n′

γn,n′(yj(n
′)− yj(n))2 is minimal (1)
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under the constraints

1

Q

∑
n

vnyj(n) = 0 , (2)

1

Q

∑
n

vn(yj(n))2 = 1 , and (3)

1

Q

∑
n

vnyj(n)yj′(n) = 0 , for j′ < j , (4)

with Q
def
=
∑
n

vn and R
def
=
∑
n,n′

γn,n′ . (5)

The objective function penalizes the squared output differences between arbitrary pairs
of samples using the edge weights as weighting factors. The feature y1(n), for 1 ≤ n ≤
N , is the slowest one, y2(n) is the second slowest, and so on. Constraints (2)–(4) are
called weighted zero mean, weighted unit variance, and weighted decorrelation, respectively.
They are similar to the normalization constraints of SFA, except for the inclusion of vertex
weights. The factors 1/R and 1/Q are not essential for the optimization problem, but they
provide invariance to the scale of the edge weights as well as to the scale of the vertex
weights, and serve a normalization purpose.

We write vectors and matrices in bold type. For instance, yj is the j-th feature vector
of size N , yj(n) is the j-th feature of sample n, and x(n) is the n-th input sample of size I.

3.2 Linear GSFA Algorithm

The linear GSFA algorithm is similar to standard SFA (Wiskott and Sejnowski, 2002) and
only differs in the computation of the matrices C and Ċ, which in GSFA takes into account
the neighborhood structure specified by the training graph (samples, edges, and weights).
The sample covariance matrix CG is defined as:

CG
def
=

1

Q

∑
n

vn(x(n)− x̃)(x(n)− x̃)T ,

where x(n) and vn denote an input sample and its weight, respectively, and

x̃
def
=

1

Q

∑
n

vnx(n)

is the weighted average of all samples. The derivative second-moment matrix ĊG is defined
as:

ĊG
def
=

1

R

∑
n,n′

γn,n′
(
x(n′)− x(n)

)(
x(n′)− x(n)

)T
, (6)

where edge weights γn,n′ are defined as 0 if the graph does not have an edge (x(n),x(n′)).
Given these matrices, a sphering matrix S and a rotation matrix R are computed with

STCGS = I , and

RTST ĊGSR = Λ ,
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where Λ is a diagonal matrix with diagonal elements λ1 ≤ λ2 ≤ · · · ≤ λJ . Finally the
algorithm returns ∆(y1), . . . ,∆(yJ), W and y(n), where

W = SR , and

y(n) = WT (x(n)− x̃) . (7)

It has been shown that the GSFA algorithm presented above indeed solves the optimiza-
tion problem (1)–(4) in the linear function space. The proof is similar to the corresponding
proof of standard linear SFA (Wiskott and Sejnowski, 2002).

The choice of the training graph Γ is important because it defines the types of features
to be extracted. Figure 5 shows a serial graph useful for regression, whereas Figure 9 shows
a clustered graph useful for classification.

3.3 Probabilistic interpretation of a graph

Interestingly, if the graph is connected and the following consistency restriction is fulfilled

∀n : vn/Q =
∑
n′

γn,n′/R , (8)

then GSFA yields the same features as standard SFA trained on a sequence generated by
using the graph as a Markov chain with transition probabilities γn,n′/R (see Klampfl and
Maass, 2010; Escalante-B. and Wiskott, 2013). Thus, one can use SFA to emulate GSFA.
However, depending on the training graph chosen, emulating GSFA with SFA may be more
expensive computationally.

3.4 GSFA Optimization Problem in Matrix Notation

In order to apply linear algebra methods to analyze GSFA, we use matrix notation. In what
follows we assume that the edge weights are symmetric2 (Γ = ΓT ) and that the consistency
restriction (8) is fulfilled. This restriction can also be written as

v
(8)
=
Q

R
Γ1 , (9)

where 1 is a vector of ones of length N .
If y is a feasible solution (i.e., satisfying (2) and (3)) and the graph fulfills the consistency

restriction (8), the weighted delta value (1) can be simplified as follows,

∆y
(1)
=

1

R

∑
n,n′

γn,n′(y(n′)− y(n))2

=
1

R

(∑
n′

(y(n′))2
∑
n

γn,n′ +
∑
n

(y(n))2
∑
n′

γn,n′ − 2
∑
n,n′

γn,n′y(n′)y(n)
)

(8)
=

1

R

(∑
n′

(y(n′))2
R

Q
v(n′) +

∑
n

(y(n))2
R

Q
v(n)− 2yTΓy

)
(3)
= 2− 2

R
yTΓy . (10)

2. An asymmetric edge-weight matrix Γ can be converted into a symmetric one Γ′
def
= Γ+ΓT

2
without altering

the solution to the optimization problem.
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The optimization problem can then be stated as follows: For 1 ≤ j ≤ J , find vectors yj

of length N , with yj(n)
def
= gj(x(n)) and gj ∈ F , minimizing

∆j
(1,3,8)

= 2− 2

R
yT
j Γyj (11)

subject to:

vTyj
(2)
= 0 (12)

yT
j Diag(v)yj

(3)
= Q (13)

yT
j Diag(v)yj′

(4)
= 0, for j′ < j , (14)

where

Q
(5.a)
= 1Tv , (15)

R
(5.b)
= 1TΓ1 , (16)

and Diag(v) denotes a diagonal matrix with diagonal v.
The use of matrix notation will facilitate the study of GSFA and the development of

the ELL method in the next section.

4. Explicit Label Learning for Regression Problems

In this section, we propose the ELL method. First, we compute the optimal free responses
of GSFA given any training graph. Then, we show how to construct a graph useful to learn
any particular label or multiple labels. Afterwards, we show how to convert graphs with
negative edge weights into graphs with non-negative weights only (such a method is useful
to allow the probabilistic interpretation of the graph and to guarantee that the ∆ values of
all features lie between 0 and 4). Then, we motivate the use of auxiliary labels to improve
learning. Finally, we analyze the computational complexity of the ELL method.

4.1 Optimal Free Responses of GSFA

In this section, we calculate the slowest possible solutions (optimal free responses) to the
GSFA problem (11)–(14) that one could find if the feature space were unlimited. As we
will see, the optimal free responses together with their corresponding ∆ values, provide
an alternative representation of the training graph and are a useful tool to understand its
structure.

We use the Lagrange multiplier method to find critical points y that are candidates for
the optimal free responses. For the moment, we ignore the weighted decorrelation constraint
(14) to solve for the first optimal free response, but we consider the remaining responses
later. The method of Wiskott (2003) and Franzius et al. (2007) for computing optimal free
responses of SFA relies on a continuous time variable t and cannot be applied to GSFA due
the discrete index n. Due to the close relationship between GSFA and LPP, the approach
below is strongly related to Laplacian Eigenmaps (Belkin and Niyogi, 2003). Let

L
def
=
(
2− 2

R
yTΓy

)
+ αvTy + β

(
yTDiag(v)y −Q

)
(17)
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be a Lagrangian corresponding to the objective function (11), under the constraints (12)
and (13). A signal y is a critical point if the partial derivatives of L with respect to α, β,
and y(n), for 1 ≤ n ≤ N , are simultaneously zero:

∂L/∂α
(17)
= vTy

!
= 0 , (18)

∂L/∂β
(17)
= yTDiag(v)y −Q !

= 0 , and (19)

∂L/∂y
(17)
= − 4

R
Γy + αv + 2βDiag(v)y

!
= 0 , (20)

where 0 is a vector of zeros.
Equations (18) and (19) merely require that the output y has weighted zero mean and

weighted unit variance, respectively. Multiplying (20) with 1T from the left and taking into

account that 1TDiag(v) = vT , 1Tv
(15)
= Q,1TΓ

(9)
= R

QvT , and Q > 0 results in

− 4

R

(R
Q

vT
)
y + αQ+ 2βvTy = 0 ,

implying α = 0 due to (18). Therefore, (20) can be simplified to:(
− 4

R
Γ + 2βDiag(v)

)
y = 0 ,

⇔ Diag(v−1/2)
( 4

R
Γ− 2βDiag(v)

)
Diag(v−1/2)Diag(v1/2)y = 0 ,

⇔
( 4

R
Diag(v−1/2) Γ Diag(v−1/2)− 2βI

)(
Diag(v1/2)y

)
= 0 ,

⇔
(

Diag(v−1/2) Γ Diag(v−1/2)− Rβ

2
I
)(

Diag(v1/2)y
)

= 0 , (21)

where v1/2 is defined as the element-wise square root of the elements of v, and v−1/2 is
defined similarly (as usual, weights vj are required to be strictly positive).

In a few words, y is a critical point if it fulfills the weighted normalization constraints
and the vector Diag(v1/2)y is an eigenvector of the matrix M defined as

M
def
= Diag(v−1/2) Γ Diag(v−1/2) . (22)

The corresponding eigenvalue is denoted

λ =
Rβ

2
. (23)

We denote the (orthogonal) eigenvectors of matrix M as uj with uT
j uj = 1. Each eigenvector

uj gives rise to a critical point yj
def
= Q1/2Diag(v−1/2)uj as long as also the weighted

normalization constraints (12) and (13) are satisfied by yj . The slowest possible solution is
the critical point yj with the smallest ∆-value. As we show below, the ∆-value of a critical
point yj is directly related to the eigenvalue λj of the eigenvector uj = Q−1/2Diag(v1/2)yj

of M and can be computed as follows.

11
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∆yj

(11)
= 2− 2

R
(yj)

TΓyj

(22)
= 2− 2

R
(yj)

TDiag(v1/2) M
(
Diag(v1/2)yj

)
(23)
= 2− 2

R
(yj)

TDiag(v1/2)λjDiag(v1/2)yj

(13)
= 2− 2Q

R
λj . (24)

Thus, the slowest solution is the critical point yj with the largest eigenvalue λj . The
remaining optimal free responses can now be addressed. They are given by the remaining
critical points, where their corresponding eigenvalue defines their order, from largest to
smallest. The weighted decorrelation condition (14) is fulfilled automatically due to the
orthogonality of the eigenvectors: uT

j uj′ = 0 ⇔ 1
QyT

j Diag(v)yj′ = 0 (follows from the
definition of yj above).

One special case is when an eigenvalue has multiplicities. This means that two or more
optimal free responses have the same ∆ value, which is in fact the same ∆ value of any
rotation of such free responses. Therefore, optimal free responses with the same ∆ value
are not uniquely defined and any rotation of them is equivalent.

4.2 Design of a Training Graph for Learning One or Multiple Labels

Given a set of samples {x(1), . . . ,x(N)} with label ` = (`1, . . . , `N ), we show how to generate
a training graph, such that the slowest feature that could be extracted by GSFA is equal to
a normalized version of the label. Notice that this problem (determining the structure of
a training graph, or more concretely, its edge-weight matrix Γ, having a particular optimal
solution) differs considerably from the original GSFA problem of finding an optimal solution
given a training graph and a feature space. The approach can be extended to multiple labels
per sample. To distinguish them, we introduce an index 1 ≤ j ≤ L, making `j denote the
j-th label. The L labels can then be expressed as an affine transformation of the first L
free responses, as described below.

Vertex-weights vn indicate a priori likelihood information about the samples, and are
thus assumed to be given and strictly positive. If this information is absent, one may set
the vertex weights constant, e.g. v = 1

N 1.
Due to the normalization constraints, the outputs generated by GSFA must have weighted

zero mean (12) and weighted unit variance (13). Therefore, to learn a single label `
we normalize it as follows: Let µ` = 1

QvT ` be the weighted label average and σ2` =
1
Q(` − µ`1)TDiag(v)(` − µ`1) be the weighted label variance. Then, the normalized la-
bel is computed as

˜̀ =
1

σ`
(`− µ`1) . (25)

Hence, it is trivial to convert a normalized label into a non-normalized label and vice versa.
In order for the construction to work when samples have multiple labels, we must weight

decorrelate them first. To decorrelate two labels `j′ and `j , with j′ > j, one can project `j
out of `j′ ; `

dec
j′ (n) = `j′(n)− 1

Q

(
`Tj′Diag(v)`j

)
`j(n), which is an invertible linear operation.

12
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From now on, we assume that the labels `1, . . . , `L have been decorrelated and normal-
ized. We show how to compute edge weights γn,n′ such that the j-th optimal free response
is equal to `j (with arbitrary polarity).

Define

ΓELL def
= Diag(v1/2) MELL Diag(v1/2) , (26)

where

MELL def
=

N−1∑
j=0

λju
ELL
j (uELL

j )T . (27)

If L < N − 1 one can set λj>L = 0. The matrix ΓELL is symmetric by construction.
The eigenvectors and eigenvalues of MELL, which are explicit in its eigenvector decomposi-
tion (27), directly define the matrix ΓELL and determine the optimal free responses of the
resulting graph. Concretely, for each j ≥ 1 one sets uELL

j according to the desired label `j
(ignore uELL

0 and λ0 for the time being).

uELL
j = Q−1/2Diag(v1/2)`j , for j ≥ 1 (28)

Notice that the weighted decorrelation of the labels translates directly into the orthog-
onality of the corresponding eigenvectors, that is

1

Q
(`j)

TDiag(v)`j′
(14)
= 0

(28)⇔ (uELL
j )TuELL

j′ = 0 (29)

Once the eigenvectors are computed we must decide which eigenvalues we want to give
them. Alternatively, we can decide which ∆ values we give to the labels, because ∆`j and

λj are directly related: λj
(24)
= R

2Q(2−∆`j ).

Larger eigenvalues (equivalent to smaller ∆ values) might result in higher accuracy
for the corresponding label. We give some intuition on how to choose the eigenvalues of
the eigenvectors. a) In general, important labels should have larger eigenvalues than less
important ones. b) The global scale of the eigenvalues λj>0 is irrelevant, only their relative
scales matter. For convenience one can scale them so that

∑
λj>0 = 1. c) If two labels are

similarly important, their eigenvalues should be also similar.

For example, if one only wants to learn a single label `1 with a delta value ∆`1 = 0, one
can set uELL

1 = Q−1/2Diag(v1/2)`1, λ1 = 1, and the eigenvalues λj>1 to zero. If `1 takes only
two possible values (e.g., −1 and 1), the resulting graph will be disconnected and contain
two clusters. Otherwise, the resulting graph will be connected, and the condition ∆`1 = 0
necessarily implies that some of the resulting edge weights will be negative, a condition that
we deal with in Section 4.3.

The analysis of Section 4.1, which is used by the ELL method requires that the graph
fulfills the consistency restriction (9). We set the remaining eigenvector

uELL
0 = Q−1/2v1/2 , (30)
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with eigenvalue λ0 = R/Q. This ensures that (uELL
0 )TuELL

0 = 1 and (9) is fulfilled, as follows.

ΓELL1
(26,27)

= Diag(v1/2)
(∑

λju
ELL
j (uELL

j )T
)
Diag(v1/2)1

(30)
= Diag(v1/2)

(∑
λju

ELL
j (uELL

j )T
)
uELL
0 Q1/2

(30)
= Diag(v1/2)λ0u

ELL
0 Q1/2

= (R/Q)v . (31)

The assignment of uELL
0 and λ0 above also ensures that 1TΓELL1

(15,31)
= R. The free

pseudo-response `0
(28)
= 1 corresponding to uELL

0 fulfills equations (13) and (14) but not
(12). Therefore, `0 is not a feasible solution, but it has similar properties to the optimal
free responses. The introduction of uELL

0 does not reduce the generality of the labels `j>0

that can be learned; orthogonality between uELL
0 and uELL

j>0 is equivalent to (12), i.e., the
weighted zero mean of `j>0, a condition that is required anyway for any feasible solution:

(uELL
0 )TuELL

j>0 = 0
(29)⇔ (Q−1/2v1/2)TQ−1/2Diag(v1/2)`j>0 = Q−1vT `j>0 = 0.

Although only L free responses are explicitly defined, N −L− 1 additional optimal free
responses are defined implicitly with an eigenvalue of 0, corresponding to ∆ = 2.0. This
∆ value has a particular meaning, because as we prove in the next paragraph, it is the ∆
value of unit-variance zero-mean i.i.d. noise for certain graphs.

4.2.1 Expected Weighted ∆ Value of a Noise Feature

Let y be a noise feature randomly sampled from a zero-mean unit-variance distribution D,
i.e., y(n)← D(0, 1). On average, y fulfills the weighted normalization constraints (12) and
(13), as can be seen as follows.

(12): 〈vTy〉D = vT 〈y〉D = 0 , (32)

(13): 〈yTDiag(v)y〉D = 〈
∑
n

vny(n)2〉D =
∑
n

vn〈y(n)2〉D = Q , (33)

where 〈·〉D denotes expected value when sampling over D. The expected delta value can be
computed as

〈∆y〉D
(1)
=

1

R

∑
n,n′

γn,n′〈(y(n′)− y(n))2〉D

=
1

R

( ∑
n,n′,n 6=n′

γn,n′〈(y(n′)− y(n))2〉D +
∑
n

γn,n〈(y(n)− y(n))2〉D
)

=
1

R

( ∑
n,n′,n 6=n′

γn,n′
(
〈y(n′)2〉D + 〈y(n)2〉D − 2〈y(n′)〉D〈y(n)〉D

)
+ 0
)

=
1

R

∑
n,n′,n 6=n′

γn,n′(1 + 1− 0)

=
2

R

(∑
n,n′

γn,n′ −
∑
n

γn,n
) (5)

=
2(R−

∑
n γn,n)

R
. (34)
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Therefore, if the graph has no self-loops (i.e., ∀n : γn,n = 0), the expected ∆ value
〈∆y〉D of a noise feature y is 2.0. The self-loops of a graph (e.g., one constructed using
the ELL method) can be removed (i.e., their weight be set to zero). This does not change
the free responses, only the scale of the ∆ values is modified due to the change in R. The
consistency restriction might be broken, though.

4.3 Elimination of Negative Edge Weights

From the objective function (1), it is obvious that a positive edge weight connecting two
samples expresses that those samples should be mapped close to each other in feature space.
In contrast, a negative edge weight expresses that two samples should be mapped as far
apart as possible, thus encoding output dissimilarities. Nevertheless, the weighted unit
variance constraint still applies, so the solutions are not unbounded.

If the edge weights are non-negative, the smallest possible ∆ value is ∆ = 0. However,
if negative edge weights are allowed, some feasible features might have ∆ < 0. A feature
with ∆ < 0 would appear to be “slower” than the infeasible constant feature y = 1 with
∆ = 0, contradicting the intuitive interpretation of slowness. Moreover, negative edge
weights hinder the probabilistic interpretation of the graph (see Section 3.2), because some
of the transition probabilities γn,n′/R of the resulting Markov chain would be negative.

Training graphs constructed using the ELL method might include negative edge weights,
which would result in the disadvantages described above. Therefore, in this section, we add
an additional step to the ELL method to ensure that the training graph has non-negative
edge weights. More concretely, we show how to transform a training graph with strictly
positive vertex weights vn and arbitrary edge weights Γ (positive and negative) into a graph
with the same vertex weights and only non-negative edge weights Γ′. The optimization
problem defined by Γ′ is equivalent to the original optimization problem in terms of its
solutions and their order. Only the value of the objective function is linearly changed (or,
more precisely, changed by an affine function).

Assume that ∀n : vn > 0, and that there is at least one element γn,n′ < 0. Let

c
def
= maxn,n′

−γn,n′
vnvn′

. (35)

The new edge weights Γ′ are defined as

Γ′
def
=

1

1 + cQ2/R
(Γ + cvvT ). (36)

Now, we show the properties of Γ′ compared to those of Γ:

1. All elements of Γ′ are greater or equal to zero, as desired. (Follows from (35), which
implies γn,n′ + cvnvn′ ≥ 0.)

2. Symmetry is preserved by (36). Clearly Γ′ is symmetric if and only if Γ is symmetric.

3. The sum of edge-weights is preserved:

R′
(16)
= 1TΓ′1

(36)
=

R+ cQ2

1 + cQ2/R
= R . (37)
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4. Fulfillment of the graph consistency restriction (9) is preserved:

1TΓ
(9)
= R/QvT ⇒ 1TΓ′

(36)
=

1

1 + cQ2/R
(1TΓ + c1TvvT )

(9)
=

1

1 + cQ2/R
(R/QvT + cQvT )

=
R/Q

1 + cQ2/R
(1 + cQ2/R)vT

= R/QvT .

5. Γ and Γ′ define equivalent optimization problems. Let y be a feasible solution. The
constraints of the optimization problem are independent of Γ′, and only the objective
function is modified as follows:

∆′y
(10)
= 2− 2

R′
yTΓ′y

(36,37)
= 2− 2

R(1 + cQ2/R)

(
yTΓy + cyTvvTy

)
(12)
= 2− 2

R(1 + cQ2/R)
yTΓy

(10)
= 2− 2

R(1 + cQ2/R)

R

2
(2−∆y) (38)

=
1

(1 + cQ2/R)

(
∆y +

2cQ2

R

)
. (39)

Therefore, the objective function is only modified by a positive scaling factor and a
constant positive offset, proving that the optimal free solutions to the training graph
remain stable, as well as their order.

6. In particular, a feature y with ∆y = 2 preserves its delta value, i.e. ∆y = 2
(38)⇔ ∆′y = 2.

4.4 Auxiliary Labels for Boosting Estimation Accuracy

It is possible to provide additional auxiliary labels derived from the original one `1 to
improve the estimation accuracy when GSFA is applied repeatedly (e.g., cascaded or in a
convergent hierarchical GSFA network). Consider two GSFA nodes, one stacked on top of
the other. If the first GSFA node is not be able to extract `1 accurately, it might still be
capable of approximating labels `k = fk(`1), for 2 ≤ k ≤ K, where the functions fk(·) are
nonlinear. Since these features are derived from the original label `1, they contain a certain
amount of information about it. In this case, the output features are likely to contain linear
combinations of the labels `1, . . . , `k providing a redundant coding of `1. These features
are likely to be easier to disentangle by the second node to better approximate the original
label `1. Therefore, we suggest to explicitly promote the appearance of these features by
learning also auxiliary labels.

The functions fk can be defined arbitrarily, we suggest to use

`k(n) = cos
( `1(n)−min(`1)

max(`1)−min(`1)
πk
)

, for 2 ≤ k ≤ K , (40)
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where max(`1) is the largest label value, and min(`1) is the smallest one. As usual, we
assume the labels `1 to `K are weight decorrelated and normalized before the ELL method
is applied.

The eigenvalues corresponding to the auxiliary labels must be set smaller than those of
the original label. Otherwise, the slowest features might be more similar to the auxiliary
labels than to the original one. From now on, the term target labels will be used to refer
to the original and auxiliary labels, if present.

The use of auxiliary samples can be justified from information theory. Assume that the
samples have been ordered by increasing label `1. This implies that for `k the argument
of the cosine function ranges from 0 to kπ. Thus `2 describes 1 oscillation, `3 describes
1.5 oscillations, etc. In this sense, the auxiliary labels are “higher-frequency” versions of
`1. Notice that `2 contains almost all the information about `1 except for 1 bit. That is,
I(`1, `2) = H(`1) − 1, where I is mutual information and H is entropy. Similarly, `4 loses
2 bits of information about `1, `8 loses 3 bits, and so on. Thus, auxiliary labels contain a
large amount of information about `1.

Moreover, the use of auxiliary labels supports the goal that samples x(n) and x(n′)
with similar labels `1(n) and `1(n

′) should have similar output features yj(n) and yj(n
′) on

average, for 1 ≤ j ≤ J , and not only the slowest features y1(n) and y1(n
′). This is a result

of the “smoothness” of the auxiliary labels in terms of `1 (i.e., how fast they change w.r.t.
`1). Notice that `1, `2, . . . , `J would be ordered by decreasing smoothness.

Interestingly, in regular SFA (or GSFA trained with the reordering graph) the inclusion
of auxiliary labels occurs automatically. The slowest free response is a half period of a
cosine function, and the subsequent free responses are the higher-frequency harmonics of
the first one (see Section 5.2, particularly Figure 7).

4.5 Computational Complexity of Explicit Label Learning

The main drawback of ELL is its computational efficiency compared to efficient pre-defined
training graphs, which is more marked for large N . We analyze the efficiency of explicit
label learning by considering its two main parts: The construction of the training graph
and training GSFA with it.

The graph construction requires O(L2N + LN2) operations. The term L2N is due to
the transformation of L target labels into eigenvectors, which might require a decorrelation
step on L N -dimensional vectors. The term LN2 is due to the computation of M, which
involves L vector multiplications uju

T
j .

When GSFA is trained, three computations are particularly expensive. (1) The com-
putation of CG, which takes O(NI2) operations. (2) The computation of ĊG, which
can be expressed as ĊG = 2

QXDiag(v)XT − 2
RXΓXT , where X =

(
x1, . . . ,xN

)
, taking

O(N2I + NI2) operations. (3) The solution to the generalized eigenvalue problem, which
requires O(I3) operations. Therefore, in general, training GSFA requires O(NI2+N2I+I3)
operations. Typically N > I to avoid overfitting, so the computation of ĊG is the most
expensive part.

However, when an efficient pre-defined graph (e.g., the serial graph) is used instead of
an ELL graph, it is possible to avoid the explicit graph construction and compute ĊG with
optimized algorithms that take into account the regular structure of the graph. In this way,
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efficient pre-defined graphs allow the computation of ĊG in O(NI2) operations, which is
equivalent to the complexity of standard SFA on N I-dimensional samples. Moreover, if
the number of edges Ne ≤ N(N +1)/2 is small, one can use (6) to compute ĊG in O(NeI

2)
operations. Therefore, for these two special cases, training GSFA takes O(NI2 + I3) and
O((Ne+N)I2+I3) operations, respectively. In Section 6.4 we further discuss the complexity
of the ELL method and in Section 6.5 we propose a few approaches to improve it.

5. Applications of Explicit Label Learning

This section we present three applications of the proposed method. The first one illustrates
how to solve a regression problem with GSFA explicitly, learning a direct mapping from
images to labels (see Figure 1.c). The second application shows the analysis of two pre-
defined graphs by computing their optimal free responses. In the third application, the ELL
method is used in a new way to learn compact discriminative labels for classification.

5.1 Explicit Estimation of Gender with GSFA

We consider the problem of gender estimation from artificial face images, which is treated
here as a regression problem, because the gender parameter is defined as a real value by the
face modeling software (FaceGen SDK, Singular Inversions Inc., 2008).

Input data. The input data are 12,000 64×64 grayscale images. Each image is gener-
ated using a new subject identity, where the gender is explicitly specified, and the rest of
the parameters of the faces (e.g., age, racial composition) are random. The average pixel
intensity of each image is normalized by multiplying the pixel values by an appropriate
factor to eliminate skin color as a cue for gender estimation. The resulting images show
subjects with a fixed pose, no hair or accessories, and the illumination is fixed, as well as
the average pixel intensity and the background color (black). See Figure 4 for some sample
images. To specify the gender parameter, 60 different values are used (−3,−2.9, . . . , 2.9).

Figure 4: Example of the normalized images used, showing different values of the gender
parameter.

The images are randomly split into a training and a test set. The training set consists
of 10,800 images, 180 images for each gender value, whereas the test set consists of 1,200
images, 20 images for each gender value.

Besides the gender label, also a second “color” label is considered, which is the average
pixel intensity of the image before normalization. Due to normalization, this label cannot be
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computed directly, but it can be estimated from other cues, such as the subject’s apparent
race and face size. In the following experiment only the gender label is considered, but
afterwards both labels (gender and color) are used simultaneously.

Network used. For efficiency reasons, hierarchical GSFA (HGSFA) is used, We tested
an 8-layer HGSFA network with the structure described in Table 1. The nodes of the
network have non-overlapping receptive fields and are composed of an expansion function
(x1, . . . , xn) 7→ (x1, . . . , xn, |x1|0.8, . . . , |xn|0.8) followed by linear GSFA. This expansion only
doubles the data dimensionality and is called 0.8Expo (Escalante-B. and Wiskott, 2011).
The nodes of the first layer include a PCA pre-processing step that preserves 50 out of 64
components.

layer
number node’s receptive input dim expanded dim output dim
of nodes field (pixels) per node per node per node

1 8×8 8×8 64 100 40
2 4×8 16×8 80 160 40
3 4×4 16×16 80 160 40
4 2×4 32×16 80 160 40
5 2×2 32×32 80 160 40
6 1×2 64×32 80 160 40
7 1×1 64×64 80 160 40
8 1×1 64×64 40 80 6

Table 1: Structure of the GSFA hierarchical network. The inputs to the nodes in the first
layer are 8×8-pixel patches. The input to the node in layer 8 is the output of the
node in layer 7. The inputs to all other nodes come from two nodes in the previous
layer that are contiguous either vertically or horizontally.

Training graphs for gender estimation. We construct several training graphs using
the ELL method described in Sections 4.2–4.4. These graphs are denoted ELLg-L, where
L is the total number of target labels considered, with L ∈ {1, 10, 20, 30, 40, 50}, and the
superscript g stands for gender (later c will be used for color and g, c for gender and color).
The first target label `1(n) is the gender parameter, where 1 ≤ n ≤ 10,800. The remaining
L − 1 labels are auxiliary and computed using (40). For comparison purposes, the serial
and reordering training graphs are also evaluated.

Serial Training Graph. To evaluate the ELL method, we also consider the serial graph
(Escalante-B. and Wiskott, 2013), which is an efficient pre-defined graph for regression with
one label. The serial training graph, shown in Figure 4, is constructed by discretizing the
original label ` into a relatively small set of K discrete label values, namely {`1, . . . , `K},
where `1 < `2 < · · · < `K . Afterwards, the samples are divided into K groups of size
N/K sharing the same discrete labels. Edges connect all pairs of samples from consecutive
groups with discrete labels `k and `k+1, for 1 ≤ k ≤ K − 1. Thus, connections are only
inter-group, and intra-group connections are absent. Notice that since any two vertices of
the same group are adjacent to exactly the same neighbors, they are likely to be mapped
to similar outputs by HGSFA. Following HGSFA a complementary explicit regression step
on a few features solves the original regression problem. There are several efficient graphs
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for regression besides the serial graph. We employ the serial graph in this article, because
it has consistently given good results for various regression problems.

The serial graph allows efficient training in linear time w.r.t. N , whereas the number of
connections considered is O(N2) if the number of groups is constant.

Figure 5: Illustration of a serial training graph for gender estimation. We use K = 60
discrete label values matching the original label values {`1 = −3.0, `2 = −2.9, `3 =
−2.8, . . . , `60 = 2.9}. Therefore, for these data the labels were not discretized.
However, in general the vertices of this graph are ordered by increasing gender
value and then grouped according to their discrete label. Even if the original
labels of two samples differ, they may be grouped together in the serial graph if
they have the same discrete label. Each dot represents a sample, edges represent
connections, and ovals represent groups of samples. The samples of groups with
discrete labels `2 to `59 have a weight of 2, whereas the samples of the first and
last group with labels `1 and `60 have a weight of 1 (sample weights represented
by bigger/smaller dots). The weight of all edges is 1.

Label estimations. We used three mappings from the slowest features to the label esti-
mation ˆ̀. The first mapping (only available for the ELL graphs) is an affine transformation
ˆ̀= ±y1σ`+µ`, where µ` and σ` had been previously computed for label normalization (25).
Since the sign of y1 is arbitrary, it is globally adjusted to fit the labels best. The second
method is linear regression (LR, ordinary least squares). For these two methods, final label
estimation ˆ̀ is clipped to the valid label range [−3, 2.9]. The third mapping is the soft GC
method, which provides a soft estimation based on the class probabilities estimated by a
Gaussian classifier, (trained with 60 classes Escalante-B. and Wiskott, 2013).

Results. Table 2 (left) shows the label estimation errors when gender is estimated.
Unless otherwise stated, all results have been averaged over 10 runs. Depending on the
mapping, the ELLg-10 and ELLg-40 graphs outperform the rest. This supports the intuition
that auxiliary labels are useful. 50 target labels perform worse than 40, probably in part
because the output dimensionality of the intermediate nodes in the network is 40. Without
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the final clipping step LR was clearly more accurate than affine mapping (experiment not
shown), but both methods have similar accuracy if clipping is enabled. For all graphs, the
explicitly supervised soft GC method provided better accuracy than the affine mapping,
although the difference is smaller than one might have expected.

Graph ELLg-L

L
scaling LR soft GC soft GC
(1F) (1F) (1F) (3F)

1 0.376 0.380 0.364 0.365
10 0.364 0.365 0.353 0.356
20 0.372 0.374 0.356 0.357
30 0.367 0.368 0.350 0.349
40 0.368 0.367 0.346 0.345
50 0.376 0.375 0.351 0.350

Graph ELLg,c-L

L
scaling LR soft GC soft GC
(1F) (1F) (1F) (3F)

2× 1 0.298 0.299 0.289 0.284
2× 5 0.349 0.350 0.343 0.277

2× 10 0.423 0.426 0.410 0.288
2× 15 0.473 0.478 0.453 0.291
2× 20 0.508 0.514 0.479 0.292
2× 25 0.535 0.543 0.499 0.294

Table 2: Gender estimation errors (RMSE) using various graphs and either one (1F) or
three (3F) features. For the linear regression (LR) mapping, the label is estimated
as ˆ̀

1 = ay1 + b, with a and b fitted to the training data. Chance level (RMSE) is
1.731 if one uses the constant estimation ˆ̀

1 = −0.05. All errors computed on test
data and averaged over 10 runs. (Left) Estimation errors using training graphs for
gender estimation only. (Right) Estimation errors using training graphs for the
experiment on simultaneous estimation of gender and color.

For comparison, the serial graph results in RMSEs of 0.351 (soft GC, 1F) and 0.349
(soft GC, 3F), whereas the reordering graph results in RMSEs of 0.353 (soft GC, 1F) and
0.347 (soft GC, 3F). The accuracy of these two graphs appears to be similar; however, in
more complex experiments the serial graph has typically been more accurate. The ELLg-40
graph is, therefore, slightly more accurate than the serial and reordering graphs but 25
times slower, taking about 250 min for training instead of about 10 min (single thread).

Simultaneous learning of gender and color. We construct a graph that encodes
gender and color simultaneously, learning labels `1, . . . , `L, where `1 is the gender label, `2
is the color label, `3, `5, . . . , `L−1 are derived from `1, and `4, `6, . . . , `L are derived from
`2. Each set of labels is computed using (40) similarly to the auxiliary labels for gender
only but starting from either the original gender or color labels. The chosen eigenvalues
decrease linearly and add to one. The resulting graphs are denoted ELLg,c-L, where L is
the total number of target labels, with L = 2× d, for d ∈ {1, 5, 10, 15, 20, 25}, and 2(d− 1)
is the number of auxiliary labels used for gender and color.

The effect of coding gender and color simultaneously on gender estimation is shown in
Table 2, right (compare to Table 2, left). The ELLg,c-L graphs yield significantly higher
accuracy than the ELLg-L graphs (an MAE as small as 0.277 vs. 0.345). The results on
color estimation using the ELLg,c-L graphs are shown in Table 3, right (compare to Table 3,
left). The slowest extracted feature represents mostly gender. However, it must also contain
color information since it allows color estimation better than chance level. When 3 features
are preserved, the ELLg,c-L graphs yield higher accuracy than the ELLc-L graphs. Similar
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Graph ELLc-L

L
scaling LR soft GC soft GC
(1F) (1F) (1F) (3F)

1 2.000 1.987 1.971 1.979
10 1.969 1.958 1.905 1.922
20 2.006 1.999 1.914 1.922
30 1.991 1.989 1.877 1.889
40 1.990 1.990 1.864 1.867
50 1.997 1.997 1.865 1.871

Graph ELLg,c-L

L
LR soft GC LR soft GC

(1F) (1F) (3F) (3F)

2× 1 4.247 4.291 1.393 1.221
2× 5 3.606 3.614 1.239 1.210

2× 10 3.214 3.185 1.337 1.180
2× 15 2.978 2.945 1.429 1.158
2× 20 2.828 2.802 1.501 1.141
2× 25 2.718 2.700 1.582 1.140

Table 3: Color estimation errors (RMSE) using various graphs and either one (1F) or three
(3F) features. Chance level (RMSE) is 7.447. All results computed on test data
and averaged over 10 runs. (Left) Error using training graphs that encode only
color. (Right) Error using training graphs that simultaneously encode gender and
color.

experimental results have been reported, e.g. by Guo and Mu (2014), who have shown that
age estimation improves when gender and race labels are also considered.

Learning label transformations. We verify that the method can learn other labels
that are implicitly described by the data. More precisely, we use GSFA to learn labels
(`1)

2 and (`1)
3, which are distorted versions of the original gender label `1. The graphs

constructed for this purpose are denoted ELLg-40(`1)
2

and ELLg-40(`1)
3
, respectively. Both

of them include 39 auxiliary labels besides the main distorted label. To better approxi-
mate the target labels, more complex nonlinearities are used in some of the nodes of the
hierarchical networks. The (`1)

2 network is identical to the `1 network, except that in the
top node the quadratic expansion is used instead of the 0.8Expo expansion. Similarly, the
(`1)

3 network uses the quadratic expansion in the 7th layer, and the 6th-degree polynomial
expansion in the top node. In both networks, the output dimension of the node in the 7th
layer is set to 3 to avoid overfitting due to the expansion in the 8th layer.

The corresponding label estimations are shown in Figure 6. For comparison, also the
ELLg-40 graph is included. The results prove that the ELL method can also be used to learn
distortions of the main label. Admittedly, the accuracy of the estimations (expressed as a
fraction of the respective chance levels) decreases even though we increased the complexity
of the feature space.

5.2 Analysis of Pre-Defined Training Graphs

In this section, we use the method of Section 4.1 to extract the optimal free responses of
three graphs (reordering, serial and ELL-4). The optimal free responses and their ∆ values
(alternatively, the eigenvectors uj and eigenvalues λj) fully characterize the properties of a
training graph, and provide another representation of it that might be more useful in some
contexts.

We compute optimal free responses using (21)–(23) and their delta values using (24).
Therefore, these results have been obtained analytically. We plot them in Figure 7, which
shows an arbitrary label to be learned (top), and three different graphs that can be used
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Figure 6: Plots (a) to (c) show the label estimations on test data (a single run) when differ-
ent distorted versions of `1 are learned. The affine mapping is used. Therefore,
the estimations are only generated from the slowest feature. Ground-truth values
are shown in thicker black. The RMSE is expressed in parenthesis as a percentage
of the chance level. Plot (d) is analogous to (c) but shows training data.

for this purpose. Only N = 30 samples (ordered by increasing label) are used to ease
visualization, but the plots behave similarly for larger N . The following three graphs are
employed. 1) A reordering graph (Figure 3.b) that has been extended with two edge weights
γ0,0 = 1 and γN−1,N−1 = 1 to fulfill the consistency restriction (8), which is required by
the method. These weights introduce a constant scaling N/(N + 2) of the delta values,
without any further consequence. 2) A serial graph (Section 5.1) with K = 15 groups of 2
samples each. 3) An ELL-4 graph (Sections 4.2–4.4) that is constructed with the original
labels `1(n) = `(n), and 3 auxiliary labels computed using (40).

Figure 7 shows also that the most remarkable difference between these graphs is the
number of optimal free responses with ∆ < 2.0, which is 14 for the reordering graph, 6
for the serial graph, and 4 for the ELL-4 graph, for the parameters above. For arbitrary
parameters, the reordering, serial and ELL-L graphs have b(N − 1)/2c, b(K − 1)/2c, and,
depending on the eigenvalues, up to L ≤ N − 1 optimal free responses with ∆ < 2.0,
respectively.

Although the graphs differ considerably in their connectivity, their first four to five
optimal free responses have a somewhat similar shape. Since in all graphs the slowest free
response y1 is increasing, a monotonic mapping would be enough to approximate the label
for any of these graphs. However, the slowest response of the serial graph is constant within
each group, which might lower accuracy due to a discretization error. In contrast, the ELL-
4 graph has been tailored to learn a particular label, and therefore y1 is exactly `1 (the
original label) except for an offset and scaling.

The analysis makes clear that the serial and ELL-4 graphs are more selective than the
reordering graph regarding the features that they consider slow. To illustrate why this
might be an advantage, consider a scaled and noisy version ŷ1 of `1. More concretely,

ŷ1(n) =
√
2
2 `1(n) +

√
2
2 e(n), where e(n) is an i.i.d. zero-mean unit-variance noise signal.

When the reordering graph is used, the feature ŷ1 has an average ∆-value of about 1 (i.e.
〈∆ŷ1

〉 ≈ 1), and therefore such a feature would appear to be faster than an auxiliary (40)
feature y6 = `6, because ∆`6 ≈ 0.38. Hence, a GSFA node trained with the reordering
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Figure 7: An arbitrary label `(n) (top) and three graphs that can be used to learn it. The
five slowest optimal free responses y1 to y5 of each graph are plotted, as well as
the delta values of all optimal free responses. The ELL-4 graph is almost fully
connected, but here only the strongest 30% of the connections are displayed.
Samples have an index n from 0 to 29, and free responses have an index j from
1 to 29. The free responses are also plotted against the original label (smaller
square plots). The polarity of the free responses was adjusted once to make them
negative for the first sample.
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graph would favor the extraction of y6 over ŷ1, even though ŷ1 is more similar to the label.
In contrast, the serial and ELL-4 graphs might favor the extraction of ŷ1, because for these
graphs ∆`6 is larger and close to 2.0.

5.3 Compact Discriminative Features for Classification

A well-known algorithm for supervised dimensionality reduction for classification is Fisher
discriminant analysis (FDA). According to the theory of FDA, if there are C classes, C − 1
features define a C−1 dimensional subspace that best separates the classes. In practice, one
typically uses all these C−1 features, because all of them contain discriminative information
and contribute to classification accuracy. The same holds for GSFA if the clustered training
graph is used (GSFA+clustered), because in this case the features learned are equivalent to
those of FDA (see Klampfl and Maass, 2010; Escalante-B. and Wiskott, 2013).

One can take advantage of hierarchical processing to do classification using the clustered
graph (HGSFA+clustered). However, when the number of classes C is large (e.g. C ≥ 100)
it might become expensive to preserve C − 1 features in each node, because the size of the
input to subsequent nodes would be a multiple of C− 1. Such a large dimensionality would
be further increased by the expansion function, resulting in a large training complexity. For
instance, consider a 2-layer nonlinear network for classification with two GSFA nodes in the
first layer and one in the top layer. Suppose the first two nodes have output dimensionality
C − 1 = 99, making the input of the top node 198-dimensional, and suppose that the top
node applies a quadratic expansion to its input data before linear GSFA. The expanded data
would have dimensionality I ′ =19,701. The combination of a large sample dimensionality
I ′ and a large number of samples N (with N � I ′ to avoid overfitting) would result in
considerable computational and memory costs. Therefore, if we could encode the class
information in the first layer more compactly, we could reduce the output dimensionality
of the first-layer nodes and reduce overfitting, aiming at increasing classification accuracy.

In this section, we use the theory of explicit learning of multiple labels to compute
compact features for classification using GSFA. We classify images of C = 32 traffic signs
from the German traffic sign recognition benchmark database (Houben et al., 2013).

The images are represented as 48×48-pixel color (RGB) images (see Figure 8). We use
only 32 out of 43 traffic signs with the most samples, so that the number of classes is a
power of 2 and the number of samples is maximized. For the training data, we use the
same number of samples for each class (traffic sign), namely 2,160 of them, making a total
of 69,120 images. To reach 2,160 samples per class, images of some classes are used up to
6 times (since the database is unbalanced). The images used for training are distorted by
a random rotation r of −3.15 ≤ r ≤ 3.15 degrees, horizontal and vertical translations ∆x,
∆y with −1.73 ≤ ∆x,∆y ≤ 1.73 pixels, and a scaling factor s with 0.91 ≤ s ≤ 1.09. The
purpose of these distortions is to improve generalization and provide invariances to small
misalignments. We use the official test data, which ensures that the test images originate
from signs physically different from the ones used for training. The test data consists of
9,030 undistorted images.

We used a simple (non-hierarchical) GSFA architecture, in which PCA is applied first
to reduce the dimensionality to 120 principal components. Afterwards, quadratic GSFA is
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Figure 8: The 32 traffic signs learned, one image per class.

applied using different training graphs, described below. Finally, since this is a classification
problem, a nearest centroid classifier is used instead of the affine mapping.

The ELL method is used to construct two training graphs with binary target labels (i.e,
label values are either 1 or −1). The first one has 5 labels (compact+5) and the second
one has 31 (compact+31). The target labels are defined in Table 4. Notice that the first 5
labels (for both graphs) suffice, in principle, to fully encode the class information, because
they can be viewed as a binary representation of the class number.

For the compact+5 graph, identical eigenvalues (λ11 = λ12 = λ13 = λ14 = λ15 = 0.2) are
used to express equal importance of the target labels. The compact+31 graph has been
included to show the effect of auxiliary labels `6, `7, . . . , `31. For this graph, the first five
eigenvalues (λ21, λ

2
2, . . . , λ

2
5) = (0.056, 0.056, . . . , 0.056) are identical, but the rest decrease

linearly: (λ26, λ
2
7, . . . , λ

2
31) = (0.053, 0.051, . . . , 0.004, 0.002), where only three decimal places

are shown. Thus, the importance given to the auxiliary labels decreases from `6 to `31. For
both graphs, we scale the eigenvalues to make their sum equal to 1.

We choose C = 25 classes, because powers of two make it simple to obtain binary labels
with a weighted zero mean, weighted unit variance, and weighted decorrelation, as follows.
The first five original labels can be computed as `j(c) = 2( c−1

25−j mod 2)−1, where 1 ≤ c ≤ C
is the class number, the division is integer division and “mod” is the modulo operation (i.e.,
an image n of class c is assigned a label `j(c)). The auxiliary labels are computed as the
product of two or more labels `1 to `5, possibly multiplied by a factor −1 to make the label
assigned to the first class negative. More concretely, `6 is the product of all original labels,
`7 to `11 are all products of four of them, `12 to `21 are all products of three, and `22 to `31
are all products of two (e.g., `6 = `1`2`3`4`5, `7 = −`1`2`3`4, `8 = −`1`2`3`5, `30 = −`3`5,
`31 = −`4`5).

For both graphs, we set v = 1. The corresponding eigenvectors are uj
(28)
= Q−1/2`j ,

where Q
(5)
= N · 1 = 69,120 (N is the number of training images). These eigenvectors are

also binary and allow for a fast computation of the covariance matrix in O(LNI2 + I3)
operations, where L is the number of target labels.
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c→ 1 2 3 4 5 6 7 8 9 . . . 16 17 . . . 30 31 32
`1(c) −1 −1 −1 −1 −1 −1 −1 −1 −1 . . . −1 +1 . . . +1 +1 +1
`2(c) −1 −1 −1 −1 −1 −1 −1 −1 +1 . . . +1 −1 . . . +1 +1 +1
`3(c) −1 −1 −1 −1 +1 +1 +1 +1 −1 . . . +1 −1 . . . +1 +1 +1
`4(c) −1 −1 +1 +1 −1 −1 +1 +1 −1 . . . +1 −1 . . . −1 +1 +1
`5(c) −1 +1 −1 +1 −1 +1 −1 +1 −1 . . . +1 −1 . . . +1 −1 +1
`6(c) −1 +1 +1 −1 +1 −1 −1 +1 +1 . . . −1 +1 . . . −1 −1 +1
`7(c) −1 −1 +1 +1 +1 +1 −1 −1 +1 . . . +1 +1 . . . +1 −1 −1

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
`30(c) −1 +1 −1 +1 +1 −1 +1 −1 −1 . . . −1 −1 . . . −1 +1 −1
`31(c) −1 +1 +1 −1 −1 +1 +1 −1 −1 . . . −1 −1 . . . +1 +1 −1

Table 4: Target labels used to encode the class information, compactly expressed as a func-
tion of the class number c. The compact+5 graph is constructed with labels `1
to `5, whereas the compact+31 graph with `1 to `31. The first five labels can be
seen as the original ones and the rest as auxiliary.

Clustered training graph. For comparison purposes, we also consider the clustered
graph (Escalante-B. and Wiskott, 2013), an efficient pre-defined graph that generates fea-
tures useful for classification, see Figure 9. The optimization problem associated with this
graph explicitly demands that samples from the same class should typically be mapped to
similar outputs.

Figure 9: Illustration of a clustered training graph for classification with C classes (traffic
signs). Each vertex represents a sample, and edges represent transitions. The
Nc samples belonging to a class c ∈ {1, . . . , C} are connected, constituting a
fully connected subgraph. Samples of different classes are not connected. Vertex
weights are identical and equal to one, whereas edge weights depend on the cluster
size as γn,n′ = 1/(Nc − 1), where x(n) and x(n′) belong to class c and n 6= n′.
For traffic sign recognition, we use C = 32 signs and Nc = 2, 160 images per sign.

The features learned by GSFA on this graph are equivalent to those learned by Fisher
discriminant analysis (FDA, see Klampfl and Maass 2010 and also compare Berkes 2005a and
Berkes 2005b). This type of problem can be analyzed theoretically when the function space
of SFA is unrestricted. Consistent with FDA, the first C−1 slow features extracted (optimal
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Figure 10: Classification error when GSFA is trained with the compact+5, compact+31 and
clustered graph (FDA). This error is a function of the graph and the number of
slow features d passed to the classifier. For the clustered graph, dropping even a
single feature might increase the error rate significantly. For instance, the error
rate of using 30 features computed with the clustered graph is worse than the
error rate of 13 features computed with the compact+31 graph. Performance
on 9,030 test samples, averaged over 10 runs. For d ≥ 4 the standard error or
the mean is at most 0.38%.

free responses) are orthogonal step functions, and are piece-wise constant for samples from
the same class (Berkes, 2005a).

The classification error is plotted in Figure 10, where the number of slow features d
given to a nearest centroid classifier ranges from 4 to 31. For comparison, the clustered
graph is also evaluated. For d = 5 features, the compact+5 graph results in the best accu-
racy with an error rate of 11.67%, against 12.42% (compact+31) and 29.74% (clustered).
However, the error rate of the compact+5 graph increases if one preserves more than 5
features, indicating that additional features contain little or no discriminative information.
For 6 ≤ d ≤ 30, the compact+31 graph yields clearly better accuracy than the other
graphs. Interestingly, for d = 31 = C − 1 features, the compact+31 and clustered graph
give identical error rates of 2.89%, which is their top performance. In this case, the features
extracted are different but contain the same information since they can be mapped to each
other linearly. In other words, the first 31 free responses of both graphs describe the same
subspace. Any single optimal free response from the compact+31 graph contains 1 bit of
discriminative information (which might be redundant to the others). In contrast, the first
features extracted by the clustered graph might sacrifice discriminative information to min-
imize within-class variance (e.g., a feature y(c) =

(
(C2 )1/2,−(C2 )1/2, 0, 0, . . . , 0

)
has minimal

(zero) within-class variance but provides little discriminative information (less than 1 bit if
C ≥ 9), because most of the time the feature takes the value 0 and otherwise only the first
two classes can be identified from it). Using d > 31 features does not improve accuracy in
any case. For comparison, the highest performance obtained for this database during the
official competition is a 0.54% error rate for all 43 signs by Ciresan et al. (2012).
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The method of compact discriminative classes provides more accurate label estimations
if the feature space is complex enough to allow the extraction of features that approximate
the binary labels. If the feature space is poor, the compact graphs might not bring any
advantage over the clustered one.

6. Discussion

In this article, we propose exact label learning (ELL) for the construction of training graphs.
When GSFA is trained with an ELL graph, the final label estimation is just an affine
transformation of the slowest extracted feature. Thus, the method allows the direct solution
of regression problems with GSFA, without having to resort to a supervised post-processing
step. In other words, given a new input sample (e.g., an input image) the first feature
computed using an ELL graph directly provides an approximation of the label (or an affine
transformation of it). In practice, even better results may be achieved using more than one
feature and supervised post-processing.

Supervised learning problems on high-dimensional data are of great practical impor-
tance, but they frequently result in systems with large computational demands. A common
approach is to apply feature extraction, dimensionality reduction, and a supervised learning
algorithm. A promising alternative approach is hierarchical GSFA (HGSFA), because its
complexity scales in some cases even linearly w.r.t. the input dimensionality and the number
of samples. In this context, it is especially useful to train HGSFA with an ELL graph since
the resulting architecture is simple and homogeneous, as shown in Figure 1.c.

We have proposed a method to compute the optimal free responses of a training graph
analytically. This method allows us to understand the type of features that can be extracted
from a training graph independently of the feature space. Moreover, it has allowed us to
propose the ELL method, where the labels are explicitly considered to create the training
graph. In the resulting ELL graph, the optimal free responses are equal to a normalized
version of the labels, and if the feature space is complex enough, HGSFA will learn features
that approximate (or span) the original labels.

Graphs with negative edge weights would result in negative transition probabilities,
violating the probabilistic interpretation of the graph, and might yield features with negative
∆ value, contradicting the notion of slowness. Therefore, we also show how to transform a
graph to make the edge weights non-negative without altering the extracted features.

We have proved the usefulness of the ELL method by showing three types of applications
that are relevant in practice: ELL regression with multiple labels, analysis of training
graphs, and classification with compact discriminative features.

It is crucial to emphasize that GSFA optimizes feature slowness, which depends on the
particular training graph used, and not label estimation accuracy. However, when the ELL
method is used, the training graphs define a slowness objective that requires optimizing
an output similarity function where the similarities are intimately related to the desired
label similarities. As a consequence, the feature slowness objective and estimation accuracy
objective become equivalent when the feature space F is unlimited. That is, the slowest
possible features that can be extracted (i.e. optimal free responses) are equal to a normalized
version of the label(s). In practice, F is finite to allow generalization from training to test
data and, if the features extracted are slow enough (i.e. close to the optimal free responses),
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they are also good solutions to the original regression problem. If the slowest feature
extracted is not sufficiently similar to the label, one can enhance the mapping from features
to labels by mapping more than one output feature, and one can boost feature slowness by
including auxiliary labels in the graph construction, as explained in Section 6.1.

We would like to underline that the ELL method is not equivalent to linear regression
from the data to the (weight-decorrelated and normalized) target labels `1, . . . , `L. Any fea-
sible feature vector ỹ can be decomposed in terms of the optimal free responses y1, . . . ,yN−1
as ỹ =

∑N−1
j=1 αjyj , with αTα = 1 to ensure weighted unit variance. The ELL method

ensures that the first L optimal free responses y1, . . . ,yL are equal to the target labels
`1, . . . , `L and have ∆ values ∆1, . . . ,∆L. The remaining free responses are defined implic-
itly and have ∆L<j<N = 2. The ∆ value of ỹ can be expressed as ∆ỹ =

∑N−1
j=1 (αj)

2∆j . Let
ỹ1, . . . , ỹJ be concrete output features of GSFA for particular data using an ELL graph.
We remark that the features ỹ1, . . . , ỹJ are ordered by slowness, and ỹj does not necessarily
approximate yj . In particular, ỹ1 is the slowest possible feature in the feature space, and
it may be a linear combination of the free responses that is uncorrelated with y1 = `1 if y1

cannot be approximated in the feature space (although this extreme case is less likely). In
contrast, if one used linear regression, each one of the target labels would be approximated
separately (i.e., ỹj would approximate yj) regardless of the quality of the approximation.
This would be mostly disadvantageous when used hierarchically. For instance, if a node in a
network has output dimensionality J < L (this scenario is frequent in the lower layers of the
network), it is preferable to preserve the J slowest extractable features than the (eventually
poor) linear approximations of `1, . . . , `J .

6.1 Multiple and Auxiliary Labels

ELL allows learning multiple labels simultaneously, for instance to encode different aspects
of the input at once (e.g. object color, size, shape, orientation). The use of multiple labels
has been inspired by biological systems, where complementary information channels have
been observed and appear to improve feature robustness, for example, under incomplete
information (Krüger et al., 2013). Learning gender and color simultaneously yielded clearly
smaller estimation errors than when these labels were estimated separately (Section 5.1).
This shows that multiple label learning is not only theoretically possible, but that coding
complementary information channels might boost accuracy in practice. For instance, an
automatic system for face image processing might benefit from the simultaneous extraction
of the subject’s identity, age, gender, race, pose, and expression.

One application of multiple labels is learning auxiliary labels derived from the original
one (e.g. “higher-frequency” transformations of it). The results show that encoding auxiliary
labels improves accuracy (Section 5.1). Such a technique is particularly relevant for cascaded
or convergent hierarchical GSFA networks, where the outputs of some GSFA nodes feed
other nodes. The use of auxiliary labels has been justified based on the fact that these
labels contain substantial information about the original label (Section 4.4). For instance,
as explained before, the first auxiliary label `2 only lacks one bit of information about the
original label `1. Therefore, even if `1 does not belong to the feature space of a node, the
auxiliary labels might be (approximately) extracted, preserving information about `1. A
GSFA node (or any supervised learning algorithm) higher in the hierarchy may then be
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able to approximate `1 more accurately by making use of the information carried by the
auxiliary labels. Additionally, auxiliary labels have also been justified by a smoothness
heuristic, where samples n and n′ having similar labels `1(n) and `1(n

′) should have similar
output features yj(n) and yj(n

′), for 1 ≤ j ≤ J . Without auxiliary labels only the first
output feature would have this property, and the remaining features might vary quickly
w.r.t. the original label.

6.2 Application of the ELL Method

The experiments on gender (and skin-color) estimation from artificial face images demon-
strate that the ELL method also works in practice when used hierarchically.

The experiments of Section 5.1 and the analytical results of Section 5.2 show the strength
of the serial graph when only a single label is available. In this case, the ELL graph provided
marginally better estimations than the serial graph (an RMSE of 0.345 with the ELLg-40
graph vs. 0.349 with the serial graph, in both cases using 3 features, the soft GC post-
processing method, and averaging over 10 runs), but the computation time was 25 times
longer. We verified that the difference is statistically significant.

Although the shape of the slowest feature extracted with the serial graph may be less
similar to the label, a monotonic transformation of the slowest feature learned by a nonlinear
supervised step (e.g. soft GC) may suffice to approximate it.

However, the results suggest that if two or more (intrinsically connected) labels are
available, the accuracy of using ELL graphs further increases. Efficient pre-defined graphs
are not available in this case. In the gender estimation experiment, the RMSE was improved
to 0.277 by jointly learning gender and skin (ELLg,c-(2 × 5) graph, 3 features, soft GC).
This is much better than the serial graph. Hence, a particularly promising application for
the ELL method is multiple label learning.

Various methods for mapping the slowest feature to a label were tested. The affine
mapping method is interesting from a theoretical point of view. However, as one would
expect, the soft GC method, which is nonlinear and supervised, provides better accuracy
on test data. Therefore, the latter might be preferred in practical applications. Moreover,
in this scenario, supervised post-processing methods might be computationally inexpensive,
because their input is frequently low-dimensional (e.g., we only used 1 to 3 slow features
for gender estimation).

6.3 Classification with ELL

Although ELL was originally designed for regression, we have shown that it can also be
useful for classification when particular labels are learned. The experiment on traffic sign
classification shows the benefit of using compact discriminative features, implemented here
by learning multiple binary labels. The resulting system has a much smaller classification
error than the clustered graph (equivalent to nonlinear FDA) when the number of output
dimensions is less than C − 1, where C is the number of classes. The compactness of the
feature set can be useful to do classification with many classes. This is particularly beneficial
for hierarchical GSFA because less features have to be propagated by the network, which
might also reduce overfitting. Although ideally log2(C) binary target labels suffice for
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perfect classification, the experiments show that additional target labels via auxiliary labels
improve classification accuracy in practice.

Interestingly, the clustered graph for C classes (equivalent to FDA) and the compact+(C−
1) graph are equivalent if the latter is constructed with constant positive eigenvalues
λ1 = · · · = λC−1 = 1/(C−1). The reason for this equivalence is that this compact+(C−1)
graph would only have within-class transitions, because transitions between different classes
cancel out each other. Therefore, the clustered graph can be seen as a special case of the
compact+(C − 1) graph, with maximum label redundancy (C − 1 target labels) and giving
equal importance (eigenvalues) to all of them.

For simplicity we used binary target labels, but it is also possible to use C-valued labels.
For instance, the first label can be the class number, and additional labels can be random
permutations of this assignment (label decorrelation and normalization still apply). Ideally,
these labels might result in an even more compact representation, because a single optimal
free response encodes the class information.

Contrary to many approaches for classification based on LPP, the goal of the ELL
method is strictly focused on learning the label information while being invariant to any
other aspect of the data. Since we do not intend to learn the input manifold, we do not use
nearest neighbors to compute the training graph. However, as shown by the (regression)
experiments on simultaneous gender and color estimation, learning specific additional labels
can also be useful to better disentangle the discriminative information.

6.4 Efficiency of ELL

The complexity of training a single GSFA node with an ELL graph is O(IN2 + I2N + I3)
operations, where I is the input dimensionality (possibly after a nonlinear expansion), and
N > I is the number of samples. For comparison, the serial graph has a complexity of
O(I2N + I3). Thus, the main limitation of using ELL graphs is the training complexity
when N is large. However, this might not be a big disadvantage for the following reasons:
(1) The complexity of the ELL method is comparable to the complexity of LPP. Similarity
matrices in LPP are typically computed using nearest neighbors. In practice, the complexity
of computing these matrices is similar to O(IN2) (He, 2005), and the remaining steps of
LPP have complexity O(I2N + I3) if the number of edges is linear w.r.t. N .
(2) The experiment on the estimation of gender shows that it is feasible to apply the ELL
method to 10,800 64× 64 images in 250 min (single thread, Intel Core i7-870 2.93GHz, 16
GByte RAM). This might be fast enough for some real-life applications.
(3) The ELL method is of theoretical interest in any case, allowing the analysis of training
graphs and providing insights for the design of better hand-crafted graphs.

In case better efficiency is still necessary, we outline a few extensions to the ELL method
in Section 6.5, two of them trading accuracy for speed.

6.5 Extensions of ELL

We have devised the following possible extensions (which may be combined):

(1) Graph trimming. One might compute sparse approximations of the ELL graphs
with significantly less than O(N2) edges. For example, one might delete a fraction of the
edges having the smallest weights or a random selection of all the edges.
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(2) Sample grouping. Another method first groups the input samples according to
their labels, resulting in K groups of N/K samples each. The ELL method is then applied
to the average labels of the groups to compute a reduced graph with K vertices and O(K2)
edges. If the largest number of labels L is used, i.e. L = I, the reduced graph can be
constructed in O(IK2 + I2K) operations. Afterwards, one can derive a specialized method
to train GSFA using the reduced graph. Such a method considers the transitions between
all pairs of samples of two connected groups, in the same way as the serial graph. This
avoids the explicit computation of the full edge-weight matrix of size N ×N . The training
complexity would then be O(I2N+I2K2 +I3) using O(I2K+NI) memory. An interesting
value for K is K =

√
N , which divides the training data in

√
N groups of

√
N samples

each, resulting in O(I2N + I3) operations. The term I2K in the memory complexity might
be large, but one can sacrifice some performance to reduce memory usage, resulting in
O(I2N + I2KN + I3) operations and O(I2 +NI) memory.

(3) Combination of graphs. Under some conditions, we show how to combine train-
ing graphs meaningfully. Consider two training graphs that fulfill the consistency restriction
(9) and share the same vertices (samples) x(n) and vertex weights v(n). Let Γ1 and Γ2 be
the corresponding edge weight matrices, and 0 < α < 1 be a weighting factor. The com-
bined graph has the same vertices and node weights, but a combined edge weight matrix

Γc
def
= αΓ1 + (1− α)Γ2. Assume that 1TΓ11 = 1TΓ21 = R (otherwise the edge weights of

one graph can be scaled). Since the vertices and vertex weights are identical, a feature y
that is feasible for one of the graphs is also feasible for the other two. Let ∆Γ1

y and ∆Γ2
y be

the ∆ value of y for the original graphs. Then, ∆Γc
y

(10)
= α∆Γ1

y + (1− α)∆Γ2
y . This implies

that if a feature y has a ∆-value smaller than an arbitrary constant β (i.e., ∆Γ1
y < β) and

it is not larger than β in the second one (i.e., ∆Γ2
y ≤ β), it can be warranted that it will

be also smaller than β in the combined graph (i.e., ∆Γc
y < β) for any 0 < α < 1. This

property may be useful to create graphs with optimal free responses that span various labels.

The third extension can be used to combine ELL and/or pre-defined graphs without
distinction. In an upcoming work, Escalante-B. and Wiskott (2016) combine three efficient
pre-defined graphs for face image analysis: two clustered graphs for classification of race
and gender, and a serial graph for the estimation of age. The accuracy for age estimation on
the MORPH-II database using the combined graph (and an improved version of HGSFA)
is a mean average error (MAE) of 3.50 years, which is more accurate than the current
state-of-the-art systems for this database (Yi et al., 2015 with an MAE of 3.63 years and
Guo and Mu, 2014 with an MAE of 3.92).

6.6 Future Work

In future work, we would like to explore the extensions above. For example, it seems
reasonable to combine the serial and the reordering graph. The first one has a large number
of edges, which provides good generalization, whereas the second one does not incur in
the quantization error of the serial graph caused by its grouping of samples. Thus, the
combination might improve accuracy.

Although the ELL method supports multiple labels, it might be less effective if the
number of target labels L is large. However, in this case the labels are frequently categorical
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and sparse. Therefore, we would like to investigate methods that concentrate the label
information (e.g., by computing a compressed representation of the labels) to reduce the
number of effective labels.

We have proposed a method to set the auxiliary labels, and have explained why it is
meaningful to use them. However, one could choose them according to some optimization
criterion, e.g., to explicitly maximize estimation accuracy. Also the assignment of the
eigenvalues could be optimized. Apparently it is difficult to determine optimal auxiliary
labels and their eigenvalues analytically. For classification with C = 32 classes, linearly
decreasing eigenvalues (for the auxiliary labels) provided great results, but other eigenvalues
might be better if C is very large.

In the ELL method, several eigenvalues were set to zero and the corresponding eigen-
vectors remained unspecified. As suggested by a reviewer, one could use these eigenvectors
and eigenvalues to construct graphs with special structural constraints, such as a minimum
and maximum number of edges per vertex.

6.7 Conclusion

Hierarchical processing and the slowness principle are two powerful brain-inspired learning
principles. The strength of SFA originates from its theoretical foundations in the field of
learning of invariances and the generality of the slowness principle. For practical supervised
learning applications, HGSFA provides good accuracy and efficiency and still profits from
strong theoretical foundations. An advantage of relying on such general principles is that the
resulting algorithms are application independent and not confined to a particular problem
or input feature representation. Of course, fine tuning the network parameters and the
integration of problem-specific knowledge are always possible for additional performance.
The proposed ELL method explores the limits of HGSFA and is valuable as a theoretical
tool for the analysis and design of training graphs. However, the results show that with
certain adaptations (e.g., the use of supervised post-processing) it is also sufficiently robust
to be applied to practical computer vision and machine learning tasks.
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