Embodied cognition and autonomous robotics

Gregor Schöner

Research goal

understand how cognition emerges in organism, that is,

nervous systems linked to sensors and effectors, immersed in structured environments

Research goal

understand=discover the theoretical concepts that capture the "laws" (constraints, principles) that characterize cognition, perception, and action

uncover such constraints

Research goal

contribute to the empirical foundation of the concepts

- by linking to empirical data from human behavior and neurophysiology
- by demonstrating function in autonomous cognitive systems

DFT, neural dynamics

as the conceptual framework for this research program

The conceptual framework of DFT

Domains

to probe the power of the concepts, cover "everything"

action: motor control, movement planning, coordinate frames

- perception: visual psychophysics, discrimination, change detection
- cognition: working memory, scene representations, object representations, pose estimation, sequence generation, sequence memory

higher cognition: concepts, grounding language

Approaches

- models to account for experimental data from the literature
- models to account for experimental data from collaborators: contribute to paradigms
- models of our own experimental data
- experiments
- models for autonomous robots/vision systems that demonstrate function

Motor domain: current

an integrated account of motor control that takes muscles models into account

[Rachid Ramadan, Cora Hummert, Jean-Stéphane Jokeit]

Motor domain: current

Movement sequence and the degree of freedom problem

[Eva Hansen, Cora Hummert]

Motor control: current

[Cora Hummert]

Object-oriented movement

[Jan Tekülve, Stephan Zibner]

Object-oriented movement

modeling time, constraint integration, obstacle avoidance

[Jean-Stéphane Jokeit, Britta Grimme]

Locomotion

 modeling integration of stepping, balance, and obstacle avoidance

[Hendrik Reimann, John Jeka]

Visual perception

the counterchange model of apparent motion: interaction with the perception of the scene

[Howard Hock]

Visual cognition: scene perception

an account for the maintenance of visual scene memory

[Stephan Zibner]

Visual cognition: binding

a neural dynamic account for feature binding

Visual scene

[Sebastian Schneegans, Raul Grieben]

Visual cognition: object recognition

concurrent object recognition and pose estimation

[Oliver Lomp, Christian Faubel]

Higher cognition: spatial relations

a neural dynamic model of the perceptual grounding of spatial relations

[Mathis Richter, Jonas Lins]

Higher cognition: spatial relations and their link to embodiment

mouse tracking to probe the grounding of spatial relations

[Jonas Lins]

Integration: Intentional robots

building a robot demonstration of a neural dynamics of intentionality

[Jan Tekülve]

Research opportunities

in all domains!