
DFT in two dimensions 
or more ...

Gregor Schöner



example: retinal pace
obviously two-dimensional

visual field location, although the RF of each neuron might be
broadly tuned to stimulus location.

For extrapolation, DPAs were obtained by replacing the neural
activity observed in other time intervals or in response to com-
posite stimuli.

Temporal evolution of the DPAs of elementary stimuli
The main emphasis of this study was to explore cortical interac-
tion processes. It appears conceivable that such processes can be
traced during the entire temporal structure of neuron responses
because of differences of time constants of excitatory and inhib-
itory contributions (Bringuier et al., 1999) and because of time-
delayed feedback (Dinse et al., 1990). Accordingly, as an impor-
tant prerequisite, time-resolved DPAs were constructed for a
number of subsequent time intervals after stimulus onset using
the firing rates within each time slice as weights. Figures 3 and 4

illustrate the temporal evolution of the DPAs from 30 to 80 msec
after stimulus onset for two selected elementary stimuli. There is
a remarkable spatial coherence of activity within the ensemble.
The gradual build-up and decay of activation were quite uniform
across the distributions of all elementary stimuli.

On average, the DPAs constructed by Gaussian interpolation
reached maximal level of activation 54 ! 4 msec after stimulus
onset as compared to 53 ! 5 msec for the OLE-derived DPAs
(see Fig. 9B). To quantitatively assess the accuracy with which the
DPAs represent the location of the elementary stimuli position
during the entire time course of responses analyzed (30–80
msec), we compared the position of the maximum of each DPA to
the respective stimulus position. Figure 5 plots these constructed
positions against the real stimulus positions. Results from both
reconstruction methods revealed that the DPAs represent stimu-
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Figure 3. Two-dimensional DPAs of adjacent elementary stimuli (top and bottom) derived by Gaussian interpolation. The DPAs were obtained for
consecutive intervals of 10 msec duration covering the period from 30 to 80 msec after stimulus onset. Same conventions as in Figure 2 B. Each example
was normalized separately. As for the OLE-derived DPAs (compare Fig. 4), the distributions grow and decay gradually, and their maximum is always
located near the position of the stimulus. Although the two stimuli are at neighboring locations, differences of the spatial representations are apparent
throughout the time course of the response. For all elementary stimuli, the average latency of maximal activation was 54 ! 4 msec.
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Figure 4. The temporal evolution of two OLE-derived DPAs of the same elementary stimuli (A, B, vertical lines indicate position) as shown in Figure
3. The DPAs are depicted in 10 msec time intervals covering the period from 30 to 80 msec. The distributions grow and decay, gradually reaching
maximum activity at 53 ! 5 msec (average of all seven elementary stimuli) after stimulus onset. The position of the maximum of each distribution closely
approximates the stimulus position of the elementary stimulus throughout the time course of the neural population response, yet less accurately in the
late time epoch.

9020 J. Neurosci., October 15, 1999, 19(20):9016–9028 Jancke et al. • Population Dynamics within Parametric Space
time

[Jancke et al., 1999]



example: visual feature map

orientation-retinal location

[Jancke, JNeursci (2000)]



example: visual feature maps

the neural field 
representation a single 
feature (e.g. orientation) as 
well as retinal location is at 
least three-dimensional

cannot be mapped onto 
cortical surfaces without 
cuts ... 



mathematics of 2D fields

=> simulation

no problem ... self-
stabilized peaks 
work just fine...



Example: Color-Space field

1D spatial location (for 
illustration)

1D color dimension (hue)

visual input: 2D

=> 2D peaks

Space-Color Field

for now: 2D field, one spatial

dimension and one color dimension

color processing in visual cortex not

fully understood, but population

code over hue values is a reasonable

simplification

qualitatively same e↵ects as in 3D

field, but easier to visualize in 2D
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[Slides adapted from Sebastian Schneegans, 
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Example: Color-Space field

separate fields for1D spatial 
location

and 1D color dimension 
(hue)

=> combined vs. separate 
representations

Combined vs. Separate Feature Spaces

single high-dimensional

representation vs. separate

low-dimensional representations

low-dimensional fields much less

costly in terms of

computational/neural resources

but limited in their

representational power
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Example: Color-Space field

read-out from 2D to 1D

by projection

summing along the other 
dimension (marginalization)

or taking the (soft)max

Read-out from high-dimensional field

fields of di↵erent dimensionality

can interact with each other

read-out of one feature

dimension: integrate over

discarded dimensions

e.g. spatial readout:

IS(x) =

Z
f (uv (x , y))dy

often additional Gaussian

convolution in read-out for

smoothness (reflects synaptic

spread in biological system)
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[Slides adapted from Sebastian Schneegans, 
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Example: Color-Space field

input from 1D to 2D: ridge input that is constant 
along the other dimension

Ridge Inputs to Multi-Dimensional Fields

projection from 1D to 2D: ridge input

does only specify value in one dimension, homogeneous in the other

should typically not induce a peak by itself
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Example: Color-Space field

peaks at intersections of 
ridges: bind two dimensions

Ridge Intersections

intersection of 1D ridges can

specify location in 2D

binding problem when multiple

items are present
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[Slides adapted from Sebastian Schneegans, 
see Schneegans,  Lins, Spencer, Chapter 5 of Dynamic Field Theory-A Primer, OUP, 2015]



Example: Color-Space field

feature-binding: multiple 
ridges lead to binding 
problem: correspondence 
problem

Feature Conjunctions and Feature Binding

multiple ridges create additional

intersections

1D fields with multiple peaks do

not specify which features

belong together

combined representation

necessary to resolve feature

binding problem
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[Slides adapted from Sebastian Schneegans, 
see Schneegans,  Lins, Spencer, Chapter 5 of Dynamic Field Theory-A Primer, OUP, 2015]



Example: Color-Space field

visual search: combine ridge 
input with 2D input.. 

Visual Search

combine top-down feature input

(1D) with bottom-up localized

input (2D)

read out spatial position of

matching item
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[Slides adapted from Sebastian Schneegans, 
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Example: Color-Space field

joint selection in 
2 1D fields, that 
are coupled 
across 2D field

Coupled Selection

joint selection in separate 1D fields, coupled via 2D field
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[Slides adapted from Sebastian Schneegans, 
see Schneegans,  Lins, Spencer, Chapter 5 of Dynamic Field Theory-A Primer, OUP, 2015]



synaptic association

in conventional 
connectionist 
networks associative 
relationships are 
learned by adjusting 
synapses between 
those color and 
space neurons that 
have been co-
activated

space encoding neurons
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connections must be 
learned, so does not 
account for how 
“where is the red 
square” works from 
current stimulation 
(seen for the first time 
ever)

limitations of synaptic association

space encoding neurons
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learning multiple 
associations poses a 
binding problem: 

connectionist 
associators learn 
one item at a time 
and need separate 
presentation of 
individual items!

limitations of synaptic association

space encoding neurons
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red

blue

left right

the network may associate blue with left and read with right



more functions for higher-
dimensional fields: coordinate 

transformations

which are analogous to the instantaneous 
associations between stimulus features 
demonstrated earlier



coordinate transformations

eye movement: visual target from retinal 
representation to head-centered representation 
for reachingEye Movements and Reference Frames

limited visual acuity in periphery of the retina, eye movements to

perceive larger scenes, read, etc.

gaze direction depends on eye and head orientation, considered as

single variable in the following
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coordinate transformations

every gaze shift changes the 
spatial reference frame of 
the visual perception 

how to memorize locations 
when the reference frame 
keeps shifting? 

=> transformation to gaze-
invariant reference frame 

Eye Movements and Reference Frames

limited visual acuity in periphery of the retina, eye movements to

perceive larger scenes, read, etc.

gaze direction depends on eye and head orientation, considered as

single variable in the following
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coordinate transformations

head movement: transform visual target from 
retinal representation to body-centered 
representation



coordinate transformations

hand movement: transform movement target from 
body-centered representation to hand-centered 
representation for reaching

Movement preparation
movement is prepared before it is initiated: 

movement parameters like movement direction, amplitude, time, or 
force level can be predicted from the first 10 to 20 ms of 
movement  

movement parameters are about the hand’s 
movement in space 

[Erlhagen, Schöner, Psych Rev 2002]

movement
direction

movement
extent



coordinate transformations

need mapping between different reference frame: 
retinocentric (moving with the eye) to body-centered 
(gaze-invariant) 

mapping is a variable shift, depends on current gaze 
direction

as a formula x body = x retinal + x gaze

but how to implement this in DNFs, using space code 
representations? 

[Slides adapted from Sebastian Schneegans, 
see Schneegans,  Chapter 7 of Dynamic Field Theory-A Primer, OUP, 2015]



coordinate transformations

fixed mapping: neural 
projection in a neural network

flexible mapping that depends 
on gaze/eye position?

Reference Frame Transformation

fixed mapping between fields: easy

but how to implement variable mapping (two input fields) using just

synaptic projections?
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Reference Frame Transformation

fixed mapping between fields: easy

but how to implement variable mapping (two input fields) using just

synaptic projections?
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coordinate transformations

expand into a 2D field

free output connectivity to 
implement any mapping

Reference Frame Transformation

solution:

expand into combined, higher-dimensional field

then can implement arbitrary (smooth) mappings from this field to

target representation
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coordinate transformations

DNF Mechanism for Reference Frame Transformation
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coordinate transformations

DNF Mechanism for Reference Frame Transformation

Sebastian Schneegans (INI) Multi-Dimensional Fields December 5, 2013 29 / 37

[Slides adapted from Sebastian Schneegans, 
see Schneegans,  Chapter 7 of Dynamic Field Theory-A Primer, OUP, 2015]



coordinate transformations

DNF Mechanism for Reference Frame Transformation
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coordinate transformations

DNF Mechanism for Reference Frame Transformation
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coordinate transformations
DNF Mechanism for Reference Frame Transformation
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coordinate transformations

bi-directional 
coupling: reversing 
the 
transformations

Multi-Directional Transformations
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spatial remapping during saccades
Case Study: Spatial Remapping during Saccades
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Case Study: Spatial Remapping during Saccades

transformation fieldA

retinocentric field

gaze field
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0°
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body-centered field
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Coordinate transformations

predict 
retinal 
location 
following 
gaze shift

[Schneegans, Schöner, BC 2012]



=> accounts for predictive updating of retinal representation

Case Study: Spatial Remapping during Saccades
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Scaling dimensionality



multi-dimensional fields represent 
“bound” feature conjunctions

the 2D fields 
representing the 
combinations of features 
(e.g., color, orientation, 
etc) and locations 

co
lo

r
space



Scaling dimensionality

example: 6-dimensional field (as needed for 
coordinate transformations from 3D to 3D)

sample each dimension with 100 neurons: 
10^12 neurons! problem: entire brain...



scaling

many combinations of lower 
dimensional fields may do the job

=> binding



feature binding along space

peaks in 
different 
feature-space 
fields are 
bound by local 
excitatory 
coupling along 
space

[Johnson, Spencer, Schöner, NIP 2008]



Memoriza)on	of	le.	item

[Slides adapted from Sebastian Schneegans, 
see Schneegans, Spencer, Schöner,  Chapter 9 of Dynamic Field Theory-A Primer, OUP, 2015]



Adding	third	item	to	scene

[Slides adapted from Sebastian Schneegans, 
see Schneegans, Spencer, Schöner,  Chapter 9 of Dynamic Field Theory-A Primer, OUP, 2015]



Post	sequen)al	memoriza)on	of	all	three	items

[Slides adapted from Sebastian Schneegans, 
see Schneegans, Spencer, Schöner,  Chapter 9 of Dynamic Field Theory-A Primer, OUP, 2015]



Scaling

coordinate transforms as bottle-necks



conclusion: multi-dimensional fields

enable new cognitive functions that derive from 
association and cannot be realized by synaptic 
networks

instantaneous association or linkage (referral) enabling 
dimensional cuing

cued recall 

coordinate transforms instantaneous real-time 

representing associations, rules etc. in a manner that can be 
activated/deactivated



conclusions continued

need to span only a limited number of 
dimensions (2 and 3), which are expanded by 
binding through space

span by small number of neurons 



multi-dimensional fields

help us move toward higher cognition


