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solutions and instabilities

input driven solution (sub-threshold) vs. self-stabilized 
solution (peak, supra-threshold)

detection instability

reverse detection instability

selection

selection instability 

memory instability 

detection instability from boost
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the detection instability helps 
stabilize decisions

threshold piercing detection instability
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the detection instability helps 
stabilize decisions

self-stabilized peaks are macroscopic neuronal 
states, capable of impacting on down-stream 
neuronal systems

(unlike the microscopic neuronal activation that 
just exceeds a threshold)



emergence of time-discrete events

the detection instability also explains how a 
time-continuous neuronal dynamics may create 
macroscopic, time-discrete events



behavioral signatures of  
detection decisions

detection in psychophysical paradigms is rife with 
hysteresis

but: minimize response bias



Detection instability

in the detection 
of Generalized 
Apparent 
Motion

Generalized Apparent Motion

(Johansson, 1950)
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Detection instability

varying 
BRLC



Detection instability

hysteresis of motion detection as BRLC is varied

(while response bias is minimized)

184 H. S. Hock, G. Schöner / Seeing and Perceiving 23 (2010) 173–195

Figure 5. Hysteresis effect observed by gradually increasing or gradually decreasing the background
relative luminance contrast (BRLC) for a participant in Hock et al.’s (1997) third experiment. The
proportion of trials with switches from the perception of motion to the perception of nonmotion, and
vice versa, are graphed as a function of the BRLC value at which each ascending or descending
sequence of BRLC values ends. (Note the inversion of the axis on the right.)

which there were switches during trials with a particular end-point BRLC value
was different, depending on whether that aspect ratio was preceded by an ascend-
ing (vertical axis on the left side of the graph) or a descending sequence of BRLC
values (the inverted vertical axis on the right side of the graph). For example, when
the end-point BRLC value was 0.5, motion continued to be perceived without a
switch to non-motion for 90% of the descending trials, and non-motion continued
to be perceived without a switch to motion for 58% of the ascending trials. Percep-
tion therefore was bistable for this BRLC value and other BRLC values near it; both
motion and non-motion could be perceived for the same stimulus, the proportion of
each depending on the direction of parameter change. It was thus confirmed that
the hysteresis effect obtained for single-element apparent motion was indicative of
perceptual hysteresis, and was not an artifact of ‘inferences from trial duration’.

7. Near-Threshold Neural Dynamics

The perceptual hysteresis effect described above indicates that there are two stable
activation states possible for the motion detectors stimulated by generalized ap-
parent motion stimuli, one suprathreshold (motion is perceived) and the other sub-
threshold (motion is not perceived). Because of this stabilization of near-threshold
activation, motion and non-motion percepts both can occur for the same stimu-
lus (bistability), and both can resist random fluctuations and stimulus changes that
would result in frequent switches between them.

7.1. Why Stabilization Is Necessary

Whether an individual detector is activated by a stimulus or not, a random per-
turbation will with equal probability increase or decrease its activation. Assume it



overcoming fixation
detection can be like selection: initiating an action 
means terminating the non-action=fixation or 
posture 

example: saccade initiation 
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Fig. 1. Psychophysical set-up for double-target stimuli in direction (a) or
eccentricity paradigms (b). In direction paradigms, the visual targets (black
dots) lie on an imaginary line (vertical here), that is offset against the initial
fixation point (cross). The whole arrangement may also be rotated by ±90⇥. We
denote the dimension separating different visual targets by x , and the dimension
separating the fixation position from the line of visual targets by y (see dashed
lines). In the eccentricity paradigm, fixation signal and visual targets all lie on
the same imaginary line (horizontal here). We denote the associated dimension
by x .

2. Model

Information about upcoming movements is represented by
distributions of population activation in cortical structures
such as the frontal eye fields and subcortical structures such
as the superior colliculus. When distributions of population
activation are characterized by a strong overlap between
information coded by neighboring neurons with similar tuning
curves information processing in such neural networks can
be described by continuous neural fields. This approximation
was first proposed based on the anatomy of cortical areas
by Amari (1972, 1977) and Wilson and Cowan (1973). The
link to population coding has been established more recently
(Bastian, Schöner, & Riehle, 2003; Erlhagen, Bastian, Jancke,
Riehle, & Schöner, 1999; Jancke et al., 1999). We follow the
mathematical formalization by Amari and Arbib (1977) and the
conceptual framework of Dynamic Field Theory by Erlhagen
and Schöner (2002), Kopecz and Schöner (1995) and Schöner
et al. (1997), which we briefly review now by describing how
the model of the selection system is constructed.

The first step is to define the metric dimensions that span
the space of possible eye movements. These are clearly the two
dimensions of visual space in retinal coordinates, representing
possible saccadic end-points. To simplify the modelling,

Fig. 2. The Dynamic Field Model of saccadic decision making consists of an
initiation level and a selection level. During the fixation period, a single peak
of activation in the initiation level at the foveal position reflects the active state
of fixation. (a) In the absence of a visual target, activation is negative at the
selection level, and the fixation peak remains stable. (b) At target onset, input
to the selection level generates a self-stabilized activation peak there, which
provides extra-foveal input to the initiation level, and competes with the fixation
peak and ultimately wins, inducing a movement-related peak in that level.

we exploit that typical paradigms probing saccadic decision
making sample this space in specific ways. Fig. 1 illustrates the
direction (top) and eccentricity (bottom) paradigms. In the first,
the initial fixation lies off an imaginary line, along which two
targets are presented. For selection, it is sufficient in this case
to model representations along the dimension, x , separating
different possible targets (vertical in the figure). For initiation,
it is sufficient to model representations that separate initial
fixation from the shared component of the two visual targets
along a perpendicular dimension, y (horizontal in the figure).
In eccentricity paradigms, initial fixation position and visual
targets are all lined up, so the same linear dimension, x , can be
used for both initiation and selection processes. To generalize
this account to two dimensions of selection and initiation
does not require any new mathematics, but is numerically
considerably more costly (Erlhagen & Schöner, 2002; Wilimzig
& Schöner, 2005).

An activation variable u(x) is assigned to each site along
this dimension. The level of activation u(x) represents the
degree to which this particular value is currently specified.
High levels of activation drive neuronal processes down-stream
from the activation field, low levels of activation do not.
When, for instance, no saccadic end-point is specified in the
absence of sensory information, the field is flat at negative
levels u(x) = constant < 0 (Fig. 2(a)). A localized peak of
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Fig. 4. Time course of activation in the initiation level. Positive activation is
depicted in grey scales as a function of retinal position and time. At time = 0
the target is switched on and the fixation input is switched off. Movement
initiation according to our criteria occurs at the time marked by the dashed
line.

⌅v,iniv̇ini(t) = �vini(t) +
⇥

wini fu[uini(y⇥, t)]dy⇥ + hv,ini. (6)

This field receives only foveal input, Sfix(y, t), while visual
structure at other locations does not directly generate input.
Instead, extra-foveal input is provided from the selection field.
In the presence of a fixation signal, there is typically a self-
stabilized peak at the origin representing a fixation state (both
panels of Fig. 2). When the selection field provides extra-foveal
input, competition between activation at the fovea and at the
specified location leads to the suppression of the fixation peak
and the generation of a peak at the specified saccadic end-
point (see Fig. 4). If we map positive levels of activation onto
elevated firing rates and negative levels of activation onto lower
than spontaneous firing rates, then this mechanism in the model
matches neurophysiological results, which show that saccade
initiation correlates with an increased discharge rate in saccade-
related neurons and at the same time with a decreased discharge
rate in fixation neurons (Dorris and Munoz (1998) and Dorris,
Pare, and Munoz (1997), see review by Schall (2004a)).

Stochastic variability is represented in the model through
fluctuations of the level of activation. These are caused by
stochastic inputs, modelled in the simplest form as independent
gaussian white noise at each field site (with zero mean
�⇥(x, t) = 0 and variance, q: �⇥(x, t)⇥(x ⇥, t ⇥) = q�(t �
t ⇥)�(x � x ⇥). These approximate the influence of other
neuronal processes, unrelated to the task as well as intrinsic
neuronal variability. Spatially uncorrelated noise is the weakest
possible stochastic perturbation. To model variance in the
countermanding paradigm we introduce variability from trial-
to-trial in the strength of fixation inputs, which models random
variations of unspecific factors such as attention or pretrial
effects.

Finally, we need to specify how activation patterns in the
model drive saccadic eye movements. In earlier work, we
showed how a self-stabilized peak of saccade-related activation

may set a new stable state for the motor control system of the
eyes (Kopecz & Schöner, 1995). Although the details were not
realistic, the conceptual issue was that the transition from a
peak-less state to a state with a self-stabilized peak may induce
a related transition in the motor control system from a fixation
state to a movement state. In reality, the motor control system
has considerably more complex structure, including horizontal
and vertical burst generators which are transiently activated
(review, Lefèvre, Quaia, and Optican (1998), Robinson (1986)).
Here we seek a way to simplify the problem by replacing the
entire motor control system with a simple rule that determines
the time of initiation of a saccade as well as its metrics. Saccade
latency was determined as the time interval from stimulus
presentation to the moment in time when the activation within
the fixation peak

F(t) =
⇥ ⇤fix

�⇤fix

fu[uini(y⇥, t)]dy⇥ (7)

fell below a criterion level Fthresh. To this time we added 70 ms
to account for an estimated 40 ms afferent and 30 ms efferent
delay (e.g. Smit and van Gisbergen (1989)). The metrics of
the saccades were characterized by the center of gravity of the
activation distribution in the selection field:

xc =
⇥

R⇥
x ⇥ fu[u(x ⇥)]dx ⇥

� ⇥

R⇥
fu[u(x ⇥)]dx ⇥. (8)

Thus, the read out of saccadic end-point is done within the
selection level while the fixation level solves the release of the
fixation activity and the building of a new activation peak at
the location of the target within the coordinates of the fixation
level. To decide whether movement cancellation was successful
in countermanding trials we observed whether a peak was
generated at the target site of the field by looking for positive
activation there.

3. Results

3.1. Overcoming fixation and countermanding

In the model, a saccade is initiated when extra-foveal
activation in the initiation level induced by input from the
selection level inhibits the fixation peak. How much time this
takes depends on the amount of foveal fixation activation, which
in turn, depends on the fixation stimulus. This can be illustrated
by simulating the gap-step-overlap paradigm (Fig. 5), in which
the fixation signal is extinguished either before (gap), at the
same time (step), or after (overlap) the visual target appears.
The mean latency of saccade initiation increases from gap
to step to overlap conditions, matching the experimentally
established effect (panel (b) of the figure) and reproducing
Kopecz’s (1995) earlier modelling results. While Kopecz did
not model variance, the stochastic inputs included in our model
enables us to generate histograms of latencies (panel (a) of
the figure) that can be compared to experimental assessments
of variability (Gezeck & Timmer, 1998). In the model, the
compact, sharp histograms in the gap and step condition
are in contrast with the broader, noisier histogram in the

[Wilimzig, Schneider, Schöner, 2006]



initiation vs. fixation
such models account for the gap-step-overlap 
effect

[Kopecz, 95]
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stabilizing selection decisions



behavioral signatures 
of selection decisions

in most experimental situations, the correct 
selection decision is cued by an “imperative signal” 
leaving no actual freedom of “choice” to the 
participant (only the freedom of “error”)

reasons are experimental 

when performance approaches chance level, then 
close to “free choice” 

because task set plays a major role in such tasks, I 
will discuss these only a little later



one system of “free choice”

selecting a new saccadic location

Analysis of the eye movement trace may allow us to understand why
changes are so hard to detect and what is the origin of the difference between
the Central and Marginal Interest cases.

Eye Movement Measures

Figure 2 shows a typical eye movement scanning pattern for a picture. It is seen
that even though the observer was looking at the picture for 48 sec, and search-
ing actively for possible changes that might occur anywhere in the picture, the
eye continued to follow a surprisingly stereotyped, repetitive, scanpath in
which large areas of the picture are never directly fixated. Similar observations
were made by Yarbus (1967) and other authors, who observed that many por-
tions of a picture are never directly fixated, and that the particular scanpath that
is used depends on what the observer is looking for in the picture.

Could this be the reason why some changes are not noticed? Could it be that
those cases when the change is missed correspond to cases where the scanpath
happens not to include the change location? This hypothesis might explain the
difference between the MI and CI changes: Thus, it might be that MI locations,
being less “interesting” to observers, tend to be less likely to be included in the
scanpath than CI locations.

198 O’REGAN ET AL.

FIG. 2. Typical scanpath while a subject searched for changes. The original picture was in colour. The
change that occurred in this picture was a vertical displacement of the railing in the background to the
level of the man’ s eyes. In this record, the change was detected at the moment that the observer blinked
for the fourth time. The positions of the eye when the blinks occurred are shown as white circles. The
last, “effective” blink, marked “E”, occurred when the eye was in the region of the bar.

[O’Reagan et al., 2000]
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2 layer Amari fields

to comply with Dale’s 
law

and account for 
difference in time 
course of excitation 
(early) and inhibition  
(late)
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[figure: Wilimzig, Schneider, Schöner, Neural Networks, 2006]



2 layer Amari model



time course of selection 

early: input driven

intermediate: dominated by excitatory interaction

late: inhibitory interaction drives 
selection

Wilimzig, Schneider, Schöner, Neural Networks, 2006



=> early fusion, late selection
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studying selection decisions in the 
laboratory

using an imperative signal... 



reaction time (RT) paradigm
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task set

that is the critical factor in most studies of 
selection! 

for example, the classical Hick law, that the number of choices affects 
RT, is based on the task set specifying a number of choices

(although the form in which the imperative signal is 
given is varied as well... )

how do neuronal representations reflect the task 
set? 
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weak preshape 
in selection

specific (imperative) 
input dominates and 
drives detection 
instability

[Wilimzig, Schöner, 2006]

0

500

1000

1500

0

parameter, x

tim
e, 

t

ac
tiv

at
io

n 
u(

x)

specific input + boost
in different conditions

preshape

0

2

4

parameter, x

S(
x)

  -20

  -10

0

10

u(
x)

parameter, x

boost



using preshape to account for 
classical RT data 

Hick’s law: RT increases 
with the number of 
choices
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metric effect

predict faster response 
times for metrically 
close than for 
metrically far choices
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experiment:  
metric effect

[McDowell, Jeka, Schöner ]



boost-induced detection instability
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boost-driven detection instability

inhomogeneities in the field existing prior to a 
signal/stimulus that leads to a macroscopic 
response=“preshape”

the boost-driven detection instability amplifies 
preshape into macroscopic selection decisions



this supports 
categorical 
behavior

when preshape 
dominates

[Wilimzig, Schöner, 2006]



weak preshape 
in selection

specific (imperative) 
input dominates and 
drives detection 
instability

[Wilimzig, Schöner, 2006]
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distance effect

common in categorical tasks

e.g., decide which of two sticks is longer... RT is larger when sticks are 
more similar in length 



interaction metrics-probability 

Wilimzig, Schöner, 2006

opposite to that 
predicted for 
input-driven 
detection 
instabilities: 

metrically close 
choices show 
larger effect of 
probability
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Memory instability
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“space ship” task probing spatial working 
memory

Metric�Working�Memory�Tasks
10 sec delay2000 ms Ready, Set, Go!

+++

-40°

[Schutte, Spencer, JEP:HPP 2009]
1977; Compte et al., 2000, for neural network models that use
similar dynamics).

Considered together, the layers in Figure 3 capture the real-time
processes that underlie performance on a single spatial recall trial.
At the start of the trial, the only activation in the perceptual field
is at the location associated with the perceived reference axis (see
highlighted reference input in Figure 3a). This is a weak input and
is not strong enough to generate a self-sustaining peak in the
SWM field, though it does create an activation peak in the
perceptual field (PFobj). Note that this input to the model is
assumed to be generated by relatively low-level neural pro-
cesses that extract symmetry using the visible edges of the task
space (for evidence that symmetry axes are perceived as weak
lines, see Li & Westheimer, 1997). We have not included the
visible edges in simulations of the model because they are quite
far from the target locations probed in our experiments. Given
that neural interactions in the DFT depend on metric separation,
these additional inputs far from the targets would have negli-
gible consequences.

The next event in the simulation in Figure 3a is the target
presentation. This event creates a strong peak in PFobj (see target
input in Figure 3a) which drives up activation at associated sites in
the SWM field (SWMobj). When the target turns off, the target
activation in PFobj dies out, but the target-related peak of activation
remains active in SWMobj. In addition, activation from the refer-
ence axis continues to influence PFobj because the reference axis is
supported by readily available perceptual cues (see peak in PFobj

during the delay).
Central to the DFT account of geometric biases is how the

reference-related perceptual input affects neurons in the working
memory field during the delay. Figure 3c shows a time slice of the
SWMobj field at the end of the delay. As can be seen in the figure,
the working memory peak has slightly lower activation on the left
side. This lower activation is due to the strong inhibition around
midline created by the reference-related peak in PFobj (see high-

lighted reference input in Figures 3a & 3c). The greater inhibition
on the left side of the peak in SWM effectively “pushes” the peak
away from midline during the delay, that is, the maximal activity
in SWM at the end of the trial is shifted to the right of the actual
target location (for additional behavioral signatures of these inhib-
itory interactions, see Simmering et al., 2006). Note that working
memory peaks are not always dominated by inhibition as in Figure
3c. For instance, if the working memory peak were positioned very
close to or aligned with midline (location 0), it would be either
attracted toward or stabilized by the excitatory reference input.
This hints at how the DFT accounts for developmental changes in
geometric biases.

A simulation of the model with “child” parameters is shown in
Figure 3b. This simulation is the same as the adult simulation in
Figure 3a, except the interaction among neurons within each field
and the projections between the fields have been scaled according
to the spatial precision hypothesis: the neural interactions within
the SWMobj and PFobj fields are weaker (relative to the adult
parameters), the widths of the projections between the fields are
broader, and the excitatory and inhibitory projections are
weaker (for a more detailed discussion see below). As can be
seen in Figure 3b, these changes in interaction result in a
broader peak in the SWMobj field. Additionally, the reference
input is broader and weaker to reflect young children’s diffi-
culty with reference frame calibration, that is, their ability to
stably align and realign egocentric and allocentric reference
frames (see Spencer et al., 2007). The result of these changes is
that neural interactions in PFobj are not strong enough to build
a reference-related peak during the delay. Consequently,
SWMobj is only influenced by the broad excitatory input from
detection of midline in the task space and the SWMobj peak
drifts toward the reference axis instead of away from the axis.

The simulations in Figure 3 demonstrate that the spatial preci-
sion hypothesis and the DFT can capture the general pattern of
geometric biases in early development and later development, but

Figure 4. Apparatus used for spaceship task. Inset shows sample target locations relative to the starting point.
Targets are projected onto the table from beneath and responses are recorded using an Optotrak movement
analysis system. Note that the lights in the room are turned on for the photograph. During the experiment the
lights were dimmed, and the table appeared black.

1702 SCHUTTE AND SPENCER



repulsion from midline/landmarks
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DFT account of 
repulsion: 
inhibitory 
interaction with 
peak 
representing 
landmark
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Working memory as sustained peaks

implies metric drift of WM, which is a marginally 
stable state (one direction in which it is not 
asymptotically stable) 

=> empirically real.. 


