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solutions and instabilities

Hinput driven solution (sub-threshold) vs. self-stabilized
solution (peak, supra-threshold)

mdetection instability
Hreverse detection instability
Mselection

Hselection instability
Ememory instability

mdetection instability from boost



Detection
instability
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activation

the detection instability helps
stabilize decisions
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the detection instability helps
stabilize decisions

Mself-stabilized peaks are macroscopic neuronal
states, capable of impacting on down-stream
neuronal systems

M (unlike the microscopic neuronal activation that
just exceeds a threshold)



emergence of time-discrete events

Bthe detection instability also explains how a
time-continuous neuronal dynamics may create
macroscopic, time-discrete events



behavioral signatures of
detection decisions

B detection in psychophysical paradigms is rife with
hysteresis

B but: minimize response bias



Detection instability
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Detection instability

Frame 1
Lm = L1 + L2
2
Bvaryin
ying Frame 2 Background-Relative L1 - L2
BRLC Luminance Change =

(BRLC) Lm - Lb

Frame 3
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Detection instability

M hysteresis of motion detection as BRLC is varied

B (while response bias is minimized)

H. S. Hock, G. Schoner / Seeing and Perceiving 23 (2010) 173195
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overcoming fixation

M detection can be like selection: initiating an action
means terminating the non-action=fixation or
posture

B example: saccade initiation
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[Wilimzig, Schneider, Schoner, 2006]



initiation vs. fixation

B such models account for the gap-step-overlap

effect

[Kopecz, 95]
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instability
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stabilizing selection decisions
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behavioral signatures
of selection decisions

Bin most experimental situations, the correct
selection decision is cued by an “imperative signal”
leaving no actual freedom of “choice” to the
participant (only the freedom of “error”

B reasons are experimental

B when performance approaches chance level, then
close to “free choice”

B because task set plays a major role in such tasks, |
will discuss these only a little later



one system of “free choice”

B selecting a new saccadic location

[O’Reagan et al., 2000]



saccade generation
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2 layer Amari fields

@ excitatory

Bto comply with Dale’s kernel
law

excitatory
M and account for layer
@

difference in time
course of excitation
(early) and inhibition inhibitory
(late) layer

inhibitory
kernel

[figure:Wilimzig, Schneider, Schoner, Neural Networks, 2006]



2 layer Amari model
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time course of selection

intermediate: dominated by excitatory interaction
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late: inhibitory interaction drives
selection

early: input driven

Wilimzig, Schneider, Schoner, Neural Networks, 2006



=> early fusion, late selection

double target paradigm
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fixation and selection
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studying selection decisions in the
laboratory

® using an imperative signal...



reaction time (RT) paradigm
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task set

Bthat is the critical factor in most studies of
selection!

Bfor example, the classical Hick law, that the number of choices affects
RT, is based on the task set specifying a number of choices

M (although the form in which the imperative signal is
given is varied as well...)

Bhow do neuronal representations reflect the task
set!



notion of preshape
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specific input + boost
in different conditions

weak preshape
in selection
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using preshape to account for
classical RT data

31 |
® Hick’s law: RT increases 4A
with the number of T .
choices 2 SM
5
4
1 1 Jr—=3] : §' T f | | |
400 "_ gé_c,,_ -
< R R = 4 J\/\/\/\
- P I ——
Esoo,g—-" --.w:" 4 R
gt VAV VL VRV VY,
200 j~- e i S S AT = parameter, X
[ Q0

10




metric effect
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experiment:

metric effect
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boost-induced detection instability
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boost-driven detection instability

Minhomogeneities in the field existing prior to a
signal/stimulus that leads to a macroscopic
response="preshape”

Mthe boost-driven detection instability amplifies
preshape into macroscopic selection decisions



this supports

categorical
behavior

B when preshape
dominates

[Wilimzig, Schoner, 2006]
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specific input + boost
in different conditions

weak preshape
in selection
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distance effect

Bcommon in categorical tasks

Be.g., decide which of two sticks is longer... RT is larger when sticks are
more similar in length



interaction metrics-probability
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B “space ship” task probing spatial working
memory

2000 ms 10 sec delay Ready, Set, Go!

[Schutte, Spencer, |EP:HPP 2009]



& repulsion from midline/landmarks
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® DFT account of
repulsion:
inhibitory
interaction with
peak
representing
landmark

Acfcivation
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[Simmering, Schutte, Spencer: Brain Research, 2007]



Working memory as sustained peaks

Bimplies metric drift of WM, which is a marginally
stable state (one direction in which it is not
asymptotically stable)

m=> empirically real..



