Prof. Dr. Gregor Schoner November 18, 2016

Exercise 3, November 17, 2016 to be handed in November 24!

This exercise invites you to produce code that numerically approximates the solution
of a simple dynamical system. You should use MATLAB for that. MATLAB is freely
available for students at RUB (follow instructions at
http://it-services.ruhr-uni-bochum.de/software/matlab). You may instead use
OCTAVE, which is a free MATLAB clone

(see http://www.gnu.org/software/octave/).

Please submit your final version of the source code, one or multiple MATLAB *.m
files to jean-stephane. jokeit@ini.ruhr-uni-bochum.de. Include comments in the
code that explain the main steps. Also write a regular report (can be hand-written)
that adresses each exercise and includes figures as requested. You can submit this
report in paper or electronically.

For those of you, who have no or little experience with programming or MATLAB,
a template source code file simplesimulator.m is available on the course web page.
You can work on the basis of that template. Use the help function of MATLAB to
understand function calls (e.g., help plot). You are welcome to redo the simulator,
create your own, or extend it for your convenience. You may usesimulation tools built
into MATLAB like ODE45 (type help ODE45 in MATLAB and follow the links).

1. Write a simulator (or use the template) to numerically solve the differential equa-
tion
U = —Qu.

The simulator should allow you to vary the initial value, u(0), the length of the
time interval over which you integrate, and the model parameter, a. You should
also have some control over numerical precision (in the template code, this is the
time step of the Euler formula).

2. Use your simulator, run a series of experiments, documenting each through a
plot. You may overlay multiple solutions in a plot using hold on/hold off in
the context of a figure command. You will need to store intermediate results in
different vectors.

e Vary the initial condition u(0) to obtain an impression of the flow (you can
overlay multiple solutions in a plot using hold on/hold off in the figure

e Vary the relaxation rate, a.

3. Push the system to the limit of numerical stability. In the Euler procedure of
the template, increase the Euler time step (but adjust the number of time steps
to cover the same time interval). In other methods you may directly control the
largest allowable error of the simulator. Document what happens as you push
the limit.



4. Extend the dynamics by adding a negative constant h < 0 (resting level) to the
right hand side, adding an additive constant, s (input) and a self-excitation term
with a sigmoid (the sample code contains a suggestion for such a function in a
comment). That self-excitation term should have a multiplicative parameter as
well to vary its strength. You may want to plot the right hand side of the equation
to get a feeling what it looks like (you can make a vector of values of variable
using variablevector=[-5:0.1:5] and then plot this against the right hand
side of the equation evaluated at variablevector).

To probe for a bistable regime of the dynamics, start with a large positive value
of activation and contrast that with a large negative initial value. If the dynamics
converges to the same value, you are in a monostable regime, if it converges to
different values, you are in a bistable regime. Increase s to get into a bistable
regime.

Bonus: Try to demonstrate hysteresis by making time courses of s(t) using the
same method for vectors. These should take you through the bistable regime in
either direction..

Bonus (for additional credit of 50%) Examine the numerical treatment of noise. For this
you need the Euler formulation of the integration step (like in simplesimulator.m).
Multiply a normally distributed random number randn with the square root of
the Euler time step and a parameter noise_strength and add at each time step.

First simulate the linear dynamics with noise at a reasonable noise strength,
a which you can still see the expontential time shape, but also have a visual
impression of the level of the induced fluctuations. You may want to extend the
time interval to sample noise arond the attractor. Then decrease the Euler time
step, adjusting the number of steps to simulate the same time interval. Plot these
two solutions on top of each other.

Next modify the code by replacing the square root of the time step with the time
step itself. Go back to your original value of the Euler time step, At, and adjust
the parameter noise_strength so that

VAt * noise_strength )4 = At * noise strengthpeyw

ol

Rerun the simulation: this should yield the same as before. Now again decrease
the value of Euler time step, adjusting the number of times steps. Compare these
last two simulations and observed if the level of fluctuations has changed.

Bonus (for additional credit of 50%). Back in the original code for stochastic dynamics
(with the square root of the time step and the linear dynamics), study the role
of noise. Make long simulations, that you start in the attractor (v = 0, and
observe the level of fluctuations by plotting, but also by computing the standard
deviation of the time series (MATLAB function std).



e Increase the noise strength and observe how the dynamics becomes more
and more stochastic, documenting this by the standard deviation over your
time series.

e Keep noise strength constant, but now reduce a. What happens to the level
of fluctuations?



