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Activation dynamics

M activation, u(t), whose time course emerges from
a neural dynamics

du(t)
dt

—u(t) = —ult)+h  (h<0)

A du/dt = f(u)
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Neural dynamics

B has a stable fixed point (attractor) at all times

®mto which activation relaxes
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Neuronal dynamics
Tu(t) = —u(t) + h + inputs(t)

A du/dt
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Inputs: coding

®Where do “inputs” come from...?

B from sensory systems

B from other neurons




Coding

B is about how stuff outside the organism/
nervous system is “‘represented” by inside
the nervous system



neuronal recording

B e.g., extra-cellular recording from trigeminal
ganglion cell in rat

B as tooth is tapped
B as whisker is bent

B credit: http://faculty.washington.edu/chudler/
introb.html



coding as dependence

B => neuroscientists look for the dependence
of measured neural activity with external
states (stimuli or movements)
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rate code example

C10.01

M spike rates of 23 neurons in
mouse barrel cortex as a
function of the frequency of
stimulation of a whisker 0 i o 4100

Frequency of stimulation f [apps]

v [spikes/s]
o

[from: Melzer, EtAl, J.Neurosci. (2006)]



rate code

Minput (in units of activation) as a monotonic
function of a physical intensity



Inputs: networks

®Where do “inputs” come from...?

B from sensory systems

B from other neurons



Neuronal dynamics with self-excitation

self-excitation C QO

output

Tu(t) = —u(t) + h + S(t) + co(u(t))



Neuronal dynamics with self-excitation
A du/dt
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level, h




Neuronal dynamics with self-excitation

Bm=> this is nonlinear dynamics!

resting
level, h

TU(t)

—u(t) + h+ S(t) 4+ co(u(t))



Neuronal dynamics with self-excitation

Bstimulus input

A du/dt
A input strength
U
resting
level, h

Tu(t) = —u(t) + h + S(t) + co(u(t))



Neuronal dynamics with self-excitation

Mat intermediate stimulus strength: bistable=>

essential nonlinearity
A du/dt
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time, t
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Neuronal dynamics with self-excitation

Bwith varying input strength system goes through two
instabilities: the detection and the reverse detection
instability

A du/dt
A input strength
u
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Neuronal dynamics with self-excitation

Bwith varying input strength system goes through two
instabilities: the detection and the reverse detection
instability
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Neuronal dynamics with self-excitation

BMdetection instability

, du/dt A fixed point
\/ unstable
A u stimulus
| > > strength
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Neuronal dynamics with self-excitation

Bwith varying input strength system goes through two
instabilities: the detection and the reverse detection
instability

A du/dt

A input strength
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Neuronal dynamics with self-excitation

Hreverse detection instability

stimulus
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Neuronal dynamics with self-excitation

Msignature of instabilities: hysteresis
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B => simulation



Neuronal dynamics with competition
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TUD (t)

—u1(t) +h —o(ua(t)) + 51
—ug(t) +h —o(uy(t)) + 52



Neuronal dynamics with competition

minteraction: the rate of change of activation at one
site depends on the level of activation at the other
site

Bmutual inhibition
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Neuronal dynamics with competition
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Neuronal dynamics with competition

#@why would u_2 be positive
before u_| is? E.g,, it grew
faster than u | because its
inputs are stronger/inputs
match better

®m=> jnput advantage translates
into time advantage which
translates into competitive
advantage
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Neuronal dynamics with competition

vector-field in the
absence of input
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Neuronal dynamics with competition

vector-field (without
interaction) when both
neurons receive input

stimulus determined state
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Neuronal dynamics with competition

®only activated neurons participate in interaction!




Neuronal dynamics with competition

mvector-field of mutual inhibition

site | inhibits site 2 site 2 inhibits site | interaction combined
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Neuronal dynamics with competition

vector-field with strong
mutual inhibition:
bistable

input interaction total
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Neuronal dynamics with competition

before input is presented after input is presented
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Neuronal dynamics with competition

=>biased competition

stronger input to site |:
attractor with activated u_ | stronger,
attractor with activated u_2 weaker, may become unstable

input interaction total
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Neuronal dynamics with competition

=>biased competition

before input is presented
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B => simulation



Outlook

BWhere do activation variables come from? How
does an activation variable come to “‘stand’ for a
behavior or percept ?

B How do discrete activation variables reflect
continuous behaviors?

m=> DFT lecture



