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Activation dynamics

activation, u(t), whose time course emerges from 
a neural dynamics
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Neural dynamics

has a stable fixed point (attractor) at all times

to which activation relaxes
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Neuronal dynamics

inputs are contributions 
to the rate of change

positive: excitatory

negative: inhibitory

that shift the attractor

a shift which activation 
then tracks

⌧ u̇(t) = �u(t) + h + inputs(t)
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Inputs: coding

Where do “inputs” come from…? 

from sensory systems

from other neurons 
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is uniquely represented by a particular rate of neural firing. In general, however, the map is 
invertible, so that a many-to-one mapping may result. This is the case, for instance, when dif-
ferent patterns of input are mapped onto the same “response.” Still, information-theoretical 
terms are sometimes used to characterize such networks by saying that the output neurons 
“encode” particular patterns of input, perhaps with a certain degree of invariance, so that a 
set of changes in the input pattern do not affect the output. A whole field of connectionism or 
neural network theory is devoted to finding ways of how to learn these forward mappings from 
examples. An important part of that theory is the proof that certain classes of learning meth-
ods make such networks universal approximators; that is, they are capable of instantiating any 
reasonably behaved mapping from one space to another (Haykin, 2008). In this characterization 
of a feed-forward neural network, time does not matter. Any time course of the input pattern 
will be reflected in a corresponding time course in the output pattern. The output depends only 
on the current input, not on past inputs or on past levels of the output or the hidden neurons.

A recurrent network such as the one illustrated in Figure 1.3 cannot be characterized by 
such an input–output mapping. In a recurrent network, loops of connectivity can be found so 
that one particular neuron (e.g., u4 in the figure) may provide input to other neurons (e.g., u6), 
but also conversely receive input from those other neurons either directly (u6) or through some 
other intermediate steps (e.g., through u6 and u5 or through the chain from u6 to u5 to u2 to u4).  
The output cannot be computed from the input value because it depends on itself! Recurrence 
of this kind is common in the central nervous system, as shown empirically through methods 
of quantitative neuroanatomy (Braitenberg and Schüz, 1991).

To make sense of recurrent neural networks, the notion of time is needed, at least in some 
rudimentary form. For instance, neural processing in such a network may be thought of as 
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FIGURE 1.2: In this sketch of a feed-forward neural network, activation variables, u1 to u6 , are symbolized by the 
circles. Inputs from the sensory surface, s1 to s3, are represented by arrows. Arrows also represent connections where 
the output of one activation variable is input to another. Connections are ordered such that there are no closed loops 
in the network.
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FIGURE 1.3: Same sketch as in Figure 1.2, but now with additional connections that create loops of connectivity, 
making this a recurrent neural network.
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Coding

is about how stuff outside the organism/
nervous system is “represented” by inside 
the nervous system 



neuronal recording

e.g., extra-cellular recording from trigeminal 
ganglion cell in rat 

as tooth is tapped

as whisker is bent 

credit: http://faculty.washington.edu/chudler/
introb.html



coding as dependence

=> neuroscientists look for the dependence 
of measured neural activity with external 
states (stimuli or movements) 



firing rate



rate code example

spike rates of 23 neurons in 
mouse barrel cortex as a 
function of the frequency of 
stimulation of a whisker 

within 20 –100 ms (Simons, 1985). It was suggested that this feed-
forward, within-barrel column inhibition leads to the short,
stimulus-locked volleys of neural activity (Simons, 1978; Ito,
1985; Armstrong-James and Fox, 1987) that resemble the peri-

odic spiking Mountcastle et al. (1969) observed in the macaque
primary somatic sensory cortex with vibrotactile stimulation of
the glabrous skin. These authors noted that the periodicity of
neural discharge closely matched the interstimulus interval and
concluded that the frequency of stimulation is most likely directly
encoded in the temporal sequence of the action potentials.

Under this hypothesis, the resolution of high stimulus fre-
quencies in a temporal code requires coincidence detection at
high resolution. Fulfilling this requirement, disynaptic intracor-
tical inhibition appears to balance neural excitation, narrowing
the window for spike output to !2–10 ms (Agmon and Connors,
1992; Swadlow and Gusev, 2000; Porter et al., 2001; Gabernet et
al., 2005; Higley and Contreras, 2006). Alternatively, high-
frequency stimulation of cortical neurons in brain slices has been
shown to depress excitatory corticocortical synapses more than
inhibitory synapses (Galarreta and Hestrin, 1998; Varela et al.,
1999), and a reduction in amplitude of EPSPs may ultimately
enhance the effect of inhibition underlying the sensory adapta-
tion we observed. However, our findings suggest that, in awake
rat barrel cortex, the balance between excitation and inhibition
may be shifted toward excitation, because septum column neu-
rons succeeded in keeping their response efficacy steady at high
stimulus frequencies.

Cortico-subcortical interactions
In addition to intracortical inhibition, the observed sensory ad-
aptation may be in part the result of suppression at peripheral or
subcortical synapses, because the peak response at short latency,
i.e., the response to thalamocortical input, was considerably di-
minished at stimulus frequencies "9 apps. Neurons in the so-
matic sensory thalamus but not in the brainstem (Sosnik et al.,
2001) show decrements in response similar to cortical neurons
(Ahissar et al., 2001), suggesting a partially thalamic origin of
sensory adaptation. Consistent with this contention, stimulation
of thalamocortical afferents produced a greater response in barrel
neurons than stimulation of intracortical afferents (Gil et al.,
1999). Furthermore, the frequency of stimulation of intracortical
inputs needed to be four times greater than that of thalamocor-
tical inputs to suppress barrel neuron excitability (Contreras and
Llinas, 2001). Therefore, as an alternative to intracortical inhibi-
tion, thalamocortical afferents may be depressed presynaptically
(Chung et al., 2002) via inhibitory corticothalamic feedback
(Ahissar et al., 2000), leading to the diminution of input effect
that Higley and Contreras (2005) describe as “disfacilitation.”

Because the thalamic response to brainstem input is influ-
enced by cortical activity (Diamond et al., 1992a; Ghazanfar et al.,
2001; Li and Ebner, 2006), corticothalamic feedback may dynam-
ically modulate the balance between excitation and inhibition in
barrel cortex regulating neural responsiveness commensurate
with stimulus frequency. Septum cells receive tactile input via a
pathway separate from the lemniscal route to barrel neurons.
This paralemniscal pathway originates in the spinal trigeminal
sensory brainstem nucleus and projects to cortex via the medial
division of the thalamic posterior nucleus (POm) (Lu and Lin,
1993; Kim and Ebner, 1999). Diamond et al. (1992b) observed a
stimulus frequency-related decrease in neural response efficacy
in POm similar to our finding in the septum column. However,
the rats were anesthetized. At 10 stimuli/s, the response efficacy
decreased to half that of the septum column cells in the present
study, and responses to higher frequencies were not examined.

The persistent response efficacy of septum column neurons
we observed in the awake animals may be based on the peculiarity
that neural responses in POm are constantly inhibited by affer-

Figure 4. Grand average population responses. Response efficacy ! and spike rate " are
plotted against stimulus frequency f for the 23 barrel column neurons (filled squares and black
lines), the six septum column neurons (brown triangles and lines), and the total population of
barrel cortex neurons (unfilled squares and dashed lines). ! peaked at 1 apps and then declined
continuously (a), although the neural spike rate " tended to grow logarithmically with increas-
ing f (b). However, plotting " and f logarithmically reveals that septum column neurons
achieve linear growth up to 18 apps (c). The values at f " 9 apps were slightly displaced to
dissociate the symbols. The bars through the means represent #1 SD.

Melzer et al. • Responses in Awake Rat Barrel Cortex J. Neurosci., November 22, 2006 • 26(47):12198 –12205 • 12203

[from: Melzer, EtAl, J.Neurosci. (2006)]



rate code

input (in units of activation) as a monotonic 
function of a physical intensity



Inputs: networks

Where do “inputs” come from…? 

from sensory systems

from other neurons 

 Neural Dynamics 11

is uniquely represented by a particular rate of neural firing. In general, however, the map is 
invertible, so that a many-to-one mapping may result. This is the case, for instance, when dif-
ferent patterns of input are mapped onto the same “response.” Still, information-theoretical 
terms are sometimes used to characterize such networks by saying that the output neurons 
“encode” particular patterns of input, perhaps with a certain degree of invariance, so that a 
set of changes in the input pattern do not affect the output. A whole field of connectionism or 
neural network theory is devoted to finding ways of how to learn these forward mappings from 
examples. An important part of that theory is the proof that certain classes of learning meth-
ods make such networks universal approximators; that is, they are capable of instantiating any 
reasonably behaved mapping from one space to another (Haykin, 2008). In this characterization 
of a feed-forward neural network, time does not matter. Any time course of the input pattern 
will be reflected in a corresponding time course in the output pattern. The output depends only 
on the current input, not on past inputs or on past levels of the output or the hidden neurons.

A recurrent network such as the one illustrated in Figure 1.3 cannot be characterized by 
such an input–output mapping. In a recurrent network, loops of connectivity can be found so 
that one particular neuron (e.g., u4 in the figure) may provide input to other neurons (e.g., u6), 
but also conversely receive input from those other neurons either directly (u6) or through some 
other intermediate steps (e.g., through u6 and u5 or through the chain from u6 to u5 to u2 to u4).  
The output cannot be computed from the input value because it depends on itself! Recurrence 
of this kind is common in the central nervous system, as shown empirically through methods 
of quantitative neuroanatomy (Braitenberg and Schüz, 1991).

To make sense of recurrent neural networks, the notion of time is needed, at least in some 
rudimentary form. For instance, neural processing in such a network may be thought of as 
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FIGURE 1.2: In this sketch of a feed-forward neural network, activation variables, u1 to u6 , are symbolized by the 
circles. Inputs from the sensory surface, s1 to s3, are represented by arrows. Arrows also represent connections where 
the output of one activation variable is input to another. Connections are ordered such that there are no closed loops 
in the network.
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FIGURE 1.3: Same sketch as in Figure 1.2, but now with additional connections that create loops of connectivity, 
making this a recurrent neural network.
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⇥ u̇(t) = �u(t) + h + S(t) + c�(u(t))

Neuronal dynamics with self-excitation

stimulus

input
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self-excitationu c
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⇥ u̇(t) = �u(t) + h + S(t) + c�(u(t))

Neuronal dynamics with self-excitation
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=> this is nonlinear dynamics!

Neuronal dynamics with self-excitation

u 

du/dt 

resting
level, h

⇥ u̇(t) = �u(t) + h + S(t) + c�(u(t))



stimulus input

Neuronal dynamics with self-excitation
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⇥ u̇(t) = �u(t) + h + S(t) + c�(u(t))



at intermediate stimulus strength: bistable=> 
essential nonlinearity

Neuronal dynamics with self-excitation
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time, t
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⇥ u̇(t) = �u(t) + h + S(t) + c�(u(t))



with varying input strength system goes through two 
instabilities: the detection and the reverse detection 
instability

Neuronal dynamics with self-excitation
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with varying input strength system goes through two 
instabilities: the detection and the reverse detection 
instability

Neuronal dynamics with self-excitation
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detection instability
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Neuronal dynamics with self-excitation



with varying input strength system goes through two 
instabilities: the detection and the reverse detection 
instability

Neuronal dynamics with self-excitation
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reverse detection instability
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du/dt fixed point 
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Neuronal dynamics with self-excitation



signature of instabilities: hysteresis
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Neuronal dynamics with self-excitation



=> simulation



Neuronal dynamics with competition

stimulus

input

output

u1
inhibitory coupling

output

u2

⌧ u̇1(t) = �u1(t) + h� �(u2(t)) + S1

⌧ u̇2(t) = �u2(t) + h� �(u1(t)) + S2



interaction: the rate of change of activation at one 
site depends on the level of activation at the other 
site

mutual inhibition

⌧ u̇1(t) = �u1(t) + h� �(u2(t)) + S1

⌧ u̇2(t) = �u2(t) + h� �(u1(t)) + S2

sigmoidal nonlinearity

Neuronal dynamics with competition



to visualize, assume that u_2 
has been activated by input 
to positive level

=> then u_1 is suppressed
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Neuronal dynamics with competition



why would u_2 be positive 
before u_1 is? E.g., it grew 
faster than u_1 because its 
inputs are stronger/inputs 
match better

=> input advantage translates 
into time advantage which 
translates into competitive 
advantage
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Neuronal dynamics with competition



vector-field in the 
absence of input
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Neuronal dynamics with competition



vector-field (without 
interaction) when both 
neurons receive input

0

0

u 1

stimulus determined state

st
im

ul
us

 d
et

er
m

in
ed

 s
ta

te u 
2

1D cut 
through 
vector-

field

du/dt = f(u)

u

activated
level

input

Neuronal dynamics with competition



only activated neurons participate in interaction!
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Neuronal dynamics with competition



vector-field with strong
mutual inhibition: 

bistable
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Neuronal dynamics with competition
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=>biased competition
stronger input to site 1: 

attractor with activated u_1 stronger, 
attractor with activated u_2 weaker, may become unstable
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Neuronal dynamics with competition
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=> simulation



Outlook

Where do activation variables come from? How 
does an activation variable come to “stand” for a 
behavior or percept ?

How do discrete activation variables reflect 
continuous behaviors? 

=> DFT lecture


