
Fast Change Detection for Camera-based Surveillance Systems

Matthias Michael1 Christian Feist2 Florian Schuller2 Marc Tschentscher1

Abstract— Many parking garages and open parking spaces
today are already equipped with surveillance cameras to
increase the security of pedestrians or to record potentially
illegal actions. An additional use case for such multi-camera
surveillance systems is the automatic extraction of 3D-positions
of objects and pedestrians. The safety of autonomous vehicles
could benefit from this information in cases where the on-
board sensors might be unable to detect potentially dangerous
situations due to occlusion. Since the used cameras are installed
statically, change detection is often employed as the first
operation and all subsequent processing steps rely on its quality.
Different scenarios impose specific challenges to the respective
algorithms. In this paper we present an efficient algorithm for
change detection which is tailored to the difficulties arising in
an indoor surveillance scenario and demonstrate its applica-
bility by adapting an existing pipeline and improving overall
performance.

I. INTRODUCTION

Modern surveillance systems have the task of inferring in-

formation about the environment they are monitoring. These

information can range from simply extracting the location of

movable objects and persons in the environment up to more

complex statements like the detection of potentially danger-

ous situations e.g., in the context of autonomously driving

vehicles. Often a multi-stage processing pipeline is necessary

regardless of the system’s ultimate purpose. The first step of

such a pipeline often consists of identifying moving objects

and areas in the camera images. Since surveillance cameras

are usually installed permanently and statically, methods

of change detection (also known as background/foreground

segmentation or background subtraction) can be utilized for

this task without additional knowledge about the objects in

the scene.

The basic idea of change detection is to build a represen-

tation of the static elements in a scene. New camera images

can then be compared to this representation which allows the

detection of changes with respect to the static model. Areas

that display changes are then denoted as foreground. This

concept is visualized in Fig. 1.

Since only those areas that are identified as foreground

are considered for further processing, change detection is

a crucial step and the performance of the entire system

depends on its quality. If the algorithm fails to identify

moving areas, the rest of the pipeline might be missing

decisive information. On the other hand, if too many pixels

are segmented erroneously the rest of the system is getting

irrelevant information as input. It would need to be capable

of identifying that these areas should not be considered

1 University of Bochum, Institute for Neural Computation
{firstname.lastname}@ini.rub.de

2 AUDI AG, Ingolstadt, Germany
{firstname.lastname}@audi.de

for generating statements about the scene which in turn

might slow processing down significantly, simply because

larger areas of the image have to be processed. Overall, a

functioning change detection allows for a more simple and

streamlined design of the pipeline.

Even though the identification of moving areas is a com-

mon task in computer vision and many algorithms attempt

to solve it, no decisive state-of-the-art has been established.

This is most likely due to the various problems like mov-

ing background, moving camera, and shadows, which are

different in each specific scenario. It is very difficult for a

single algorithm to address all possible aspects at the same

time while maintaining a reasonable processing speed – es-

pecially when real-time requirements are present. Therefore

a promising approach is to identify the challenges specific

to the scenario at hand and choose or design a specialized

algorithm.

In this paper we present a change detection algorithm that

is tuned for indoor surveillance systems in an urban envi-

ronment with a non-moving camera. In Sec. II the specific

challenges of this scenario are identified and the performance

of existing algorithms is examined. Section III describes

the concept of the algorithm with Sec. IV investigating

its performance on a popular benchmark. Besides standard

performance measures like precision and recall, it is also

important to evaluate performance with respect to an existing

surveillance system. Therefore we adapt the system presented

in [2] which is a multi-camera surveillance system designed

for localizing arbitrary objects in an indoor parking garage.

We substitute their change detection step with our method

and adjust a few other details. The entire pipeline as well as

our changes are described in Sec. V with a conclusion being

given in Sec. VI.

II. RELATED WORK

There are a few general approaches that can be seen

standard due to the fact that they are relatively simple to

implement and produce acceptable results in a short amount

Fig. 1. Left: Single frame of a video sequence. Center: Representation of
the static elements of the scene – here displayed by an image of the scene
without moving objects. Right: Ground-truth mask of moving areas. White
pixel denote movement while black pixel belong to non-moving background.
(Images taken from [1]; Dataset Baseline – Highway.)

of time. Examples are calculating the mean [3] or median [4]

of each pixel over a certain amount of time and comparing it

to a new observation. Gaussian mixture models [5] represent

another popular approach.

However, these algorithms are typically not able to handle

more complex situations like dynamically changing back-

grounds or shadows. Since our approach is aimed at urban

surveillance scenarios with a focus on moving and parking

cars, the most common challenges that occur in typical

scenes are identified as listed below.

a) Global Changes in Lighting: Our algorithm will

most likely be incorporated in a system installed in an

indoor parking garage which is an environment with rather

controlled lighting conditions. Yet it cannot be guaranteed

that the illumination of the monitored scene will always be

constant. Lights might be switched on and off depending on

the time of day and opening and closing doors and gates

might introduce additional variation to the lighting. If the

parking garage is not build underground the illumination is

also influenced by the weather and the time of day.

b) Headlights and Shadows: Many elements can lead

to a local change in the image without being related to an

actual moving object in the scene. Focussed lighting emitted

by the headlights of a car or cast shadows are the most

prominent example for this - especially since it is mandatory

to switch the lights on when entering a parking garage. A

rather severe example of such changes is given in Fig. 2. Here

Fig. 2. The headlights of the car cast distinctive light cones onto the ground.
Even though this leads to drastic changes in the image, a change detection
algorithm should be able to detect, that this change does not correspond to
an actual moving object.

an algorithm should be able to distinguish between pixels

that are deviating from the background representation due

to actual moving object and pixels that are just temporarily

exposed to different illumination.

c) Long-term changes in the scene: This challenging

situation is actually divided in two different types of changes.

The first type occurs, when a moving object that has been

identified as such stops its movement and becomes stationary.

An example is a car that parks in a parking spot. In

such a case the object should probably become part of the

background representation. However, a decision has to be

made regarding the time frame after which an object should

become part of the background. If it only stops moving for

a few seconds it should remain part of the foreground. The

second type of change concerns the opposite sequence of

Fig. 3. Left: The initial situation. The white car is parked, part of
the background representation and therefore not segmented as foreground.
Right: After the car moves, it is still part of the background representation
at its initial position. Therefore the pixels at its old location are classified
as changed and, thus, designated as part of the foreground.

action: An object that was stationary before and therefore

part of the background suddenly starts to move and leaves

its former position. An example would be a car that has

been parked overnight and leaves its place in the morning.

In this case the car itself would be (correctly) identified as

foreground, however, the pixels at its former position would

also display change since they do not correspond to the

background model which still contains a representation of

the parked car. Such a situation is shown in Fig. 3. In any

case, the background representation of a suitable algorithm

needs to be adaptable to permanent changes in the scene.

An overview as well as a benchmark of current algorithms

for change detection is given in [1]. Prominent examples

of advanced non-parametrized algorithms are ViBe (Visual

Background Extractor) [6] and ViBe+ [7]. ViBe uses a

sample-based background model and a voting scheme to-

gether with randomized updates of the background model

to differentiate between foreground and background pixels.

However, the voting is solely based on the absolute distance

of gray values an therefore not able to account for shadows

and global changes in lighting. ViBe+ mainly introduced

methods of post processing to close holes in segmented

regions as well as the option to detect blinking pixels and

exclude them from the update of the background model

which is not as relevant in the context of indoor parking

garages.

The Pixel-based Adaptive Segmenter (PBAS) [8] improves

on the ideas of ViBe by extending the distance measure to

incorporate the local gradient. It also adjusts the update rate

for the background model of each pixel individually which

has not been proven useful in our target scenario.

SuBSENSE (Self-balanced Sensitivity Segmenter) [9] in-

troduced the idea of using Local Binary Similarity Patterns

for change detection to reduce the impact of shadows, how-

ever, the exact distance function incorporating gray values

and LBSPs is not mentioned in the original work. While

the update rate of each pixel is refined further, the problem

of long term changes and the resulting wrong segmentation

remains largely unregarded.

III. ALGORITHM

Our algorithm attempts to solve the problems identified

in Sec. II by combining several aspects of PBAS [8] and

SuBSENSE [9] with other techniques like an optional static

background model. It consists of two distinct steps: The

decision which pixels belong to the foreground and the

update of the background model depending on the computed

foreground mask. Both steps however require an existing

background model which will be explained first.

A. Background Model

Our algorithm follows a sample-based approach. For

each pixel there exists a database of observations that

represent samples of the background. This is in contrast

to parametrized approaches where the characteristics of a

background pixel are modelled by a pre-defined probability

distribution of which the parameters need to be estimated.

In our case the background model consists of a three-

dimensional matrix of the size W×H×(Ns+Nd) where W

and H are the width and the height of the image, respectively.

Ns is the size of the static part of the model for each pixel

and Nd is the size of the dynamic part. This amounts to

(Ns +Nd) entries stored for each pixel.

A single entry consists of a gray value gix and a Local

Binary Similarity Pattern (LBSP) pix where x is the position

of the related pixel in the image and i is the index in the

database for the pixel at position x.

The static part is completely optional – as mentioned

before – and can be used to circumvent the problem of long-

term object changes identified in Sec. II e.g., segmenting

parking spaces after the parked cars have left. It can be

initialized by capturing images of the empty scene. This can

be done right before processing starts, however most times it

is easier to capture images off-line during the physical set-up

of the system when the environment is not currently in use.

The usefulness of the static model can be increased when

images are captured in different lighting conditions.

The static background model is initialized based on the Ns

previously captured images by computing an entry (gix, p
i
x)

for each pixel x and each image i. gix is just the simple gray

value and no further computation is necessary. The process

to compute the LBSP pix is illustrated in Fig. 4. A 5 × 5
mask is placed on every possible image location x and a

vector with 16 binary elements is allocated for the result.

According to the sequence shown in Fig. 4 the gray value at

x is compared with its neighbours. If the difference between

the values is larger than a threshold tlbsp the element in the

vector is set to 1, otherwise it is set to 0. The actual order of

comparison is arbitrary, however it is important that the same

order is applied every time the pattern is computed. In this

case the neighbours are sorted according to their euclidean

distance to x.

The dynamic model can be initialized in the same way

using the first captured frame after processing starts. Nd

2

entries are computed from the pixel at location x while the

rest is taken from random pixels in the neighbourhood of x

to increase the robustness of the segmentation in the first few

frames.

Large values of Nd allow for a background model with

large variance since more samples can be stored but also

lead to a longer processing time for each frame since more

1

2

3

4

5 6

78

9

10

11

12

13 14

1516

1 2 3 4 5 6 7 8 9 10111213141516

0 0 0 0 0 0 0 0 01 1 1 1 1 1 1

Fig. 4. Illustration of the calculation of Local Binary Similarity Patterns
at 5 × 5 image location. Top: The access pattern in which sequence the
pixels are compared with the center pixel. Middle: The pixel values stored
in a linear array according to the sequence. Bottom: The final LBSP with
16 elements. If the difference between a gray value and the center pixel is
larger than a certain threshold, the bit at this location in the array is set to
1, otherwise it is set to 0.

comparisons need to be made. In practice values between 10

and 20 seem sufficient.

B. Segmentation

When a new frame is captured, a decision between back-

ground and foreground must be made for each pixel x. For

this all gray values gx and LBSPs px are computed. These

values are compared with all entries in the background model

(gix, p
i
x). For gx the absolute difference is applied while the

hamming distance h(·, ·) is used for px. According to [8]

a voting scheme can be applied to determine the actual

affiliation of a pixel. For each i ∈ [1, Ns+Nd] it is checked

if

|gx − gix| < tg (1)

∨ h(px, p
i
x) < tp, (2)

where tg and tp are configurable thresholds for the respective

distances. It is important to notice that the values for tp and

tlbsp can (and in most cases should) be different. If one of

these conditions is met for a certain i, a voting counter cx is

increased. As soon as cx exceeds a voting threshold tv, the

pixel at x is added to the background and processing can be

stopped. It is also feasible to immediately stop processing

with a positive result if an entry in the static model votes

for the new sample since the static entries are definitive

representations of the background. If the entire background

model is traversed without reaching the threshold, x is seen

as foreground since it does not match enough samples of

previous backgrounds. Since the calculation of the LBSPs is

rather costly in time, processing can be sped up by triggering

its calculation only when the comparison of gx yields a

negative result.

The voting scheme is only one possibility to determine

a pixel’s affiliation to fore- or background. Another one –

which is better suited for parallel processing hardware like

GPUs – is a weighted distance to all samples. However,

this method is not as robust when it comes to multi-modal

backgrounds.

tg tp tlbsp tv r Nd

Value 15 3 10 2 92 10

TABLE I

THE CHOSEN PARAMETER VALUES FOR EVALUATION ON THE

CHANGEDETECTION.NET BENCHMARK.

C. Background Update

As soon as long-term changes are expected in the scene

that should not lead to a permanent classification as fore-

ground, the background model needs to be adaptable. For

sample-based approaches adaptation can be achieved by

replacing samples in the database for each pixel. When

a pixel is classified as background, its model is updated

with probability 1

r
where r is the configurable update rate.

If an update is performed, the entry (gix, p
i
x) at a random

location i is replaced with the new entry (gx, px). Due to

the randomized update the chance of it still being present in

the k-th update step is
(

Nd−1

Nd

)k

.

In order to include objects in the background model after

they have stopped moving, another update is necessary. If a

regular update has taken place, a random pixel x′ next to

x is updated with the same probability 1

r
. The update can

be made either with (gx, px) or with (gx′ , px′). We argue to

update location x′ with a newly computed entry (gx′ , px′)
at its location. Otherwise objects that differ greatly from

their surrounding background would always remain in the

foreground.

D. Post Processing

The LBSPs are able to detect if an image region is just

a color-scaled version of another region due to lighting,

since the ratios between neighbouring pixels remain sim-

ilar. However, depending on the threshold tlbsp they are

sensitive to stronger noise to a point where a pixel is

erroneously classified as foreground if the gray values differ

too much. These outliers can be removed by an opening of

the segmentation which, however, also might remove some

correctly segmented pixels. In general, an opening leads to

an improved precision while decreasing the recall.

Another aspect is, that a pixel is only classified as fore-

ground if it differs in color and structure from the back-

ground. This means that areas with different color but nearly

identical structures (e.g., the surface of a black car in front of

a light gray wall) are classified as background and only the

areas at the edges of objects are assigned to the foreground.

In the intended use case this does not negatively impact per-

formance. Since the segmentation primarily contains edges

and contours, bounding boxes of the corresponding objects

can easily be generated.

In cases where a full segmentation of a moving object

is required, a clustering can be used to identify segmented

regions belonging to a single object. Then it is possible to

find and fill small non-segmented areas inside of the convex

hull of the cluster.

E. Extensibility

The presented algorithm offers great extensibility. Ad-

ditional features can be added to the decision function.

Currently only gray-scale images are processed, but color

information can be added as an additional feature. Haar-

Features or other image descriptors are also conceivable.

The decision function itself is also variable. The or-

function combined with the voting scheme held optimal

results for our scenarios. Other distance measures between

feature vector and a database of feature vectors are also

applicable.

IV. EXPERIMENTS

For the evaluation of our algorithm we chose the bench-

mark presented in [1]. It provides 53 labelled sequences in

11 categories highlighting different challenges for change

detection algorithms like shadows and moving cameras. We

chose evaluation categories according to the design goals

identified in Sec. II to determine whether these goals have

been met by the algorithm. The chosen categories are bad-

Weather, baseline, intermittentObjectMotion, lowFramerate,

and shadow. The other were omitted since they contain

challenges the algorithm was not designed to solve.

We executed the algorithm as described in Sec. III with the

parameters displayed in Tab. I on each sequence in the chosen

categories. An opening was employed as post processing

to remove outliers that occurred due to camera noise and

compression artefacts in the input images. The resulting

mean values for precision and recall for each category are

shown in Tab. II. Overall a mean precision of 0.90 could be

achieved with 10 out of 24 sequences yielding a precision of

over 0.95. Since we aimed at minimizing the false positive

rate, the results for the recall are not as good with a mean

value of 0.25. This outcome can be explained by the distance

function incorporating LBSPs. An input pixel needs to differ

in both gray value and local structure from the samples in the

background model to be regarded as foreground. Therefore a

white pixel on the uniform surface of a car might be classified

as background if the real background consists of darker pixels

on the uniform surface of the road.

This behaviour makes it possible to exclude shadows and

illuminated regions from the segmentation. However, in most

cases different gray values and colors can be found at object

boarders – either of the object in the foreground or objects in

the background – which is sufficient to identify the moving

object itself. These structural differences also occur at hard

edges of shadows, but the center region as well as fading

shadows can successfully be removed from the segmentation

images. An example is given in Fig. 6. On an Intel Core i7-

6820HQ CPU with 2.7 GHz processing of an 1360 × 1024
video requires 30 to 50 ms per frame depending on the

amount of segmented pixels and how many LBSPs need

to be calculated. A 680 × 512 video requires 8 to 13 ms

per frame. An equivalent implementation on an NVIDIA

Quadro M1000M GPU (using a weighted sum instead of

a voting scheme as distance function) requires only 14 ms

for 1360× 1024 pixels.

Precision Recall

badWeather 0.92 0.15

baseline 0.96 0.36

intermittentOM 0.95 0.17

lowFramerate 0.74 0.25

shadow 0.93 0.30

TABLE II

MEAN PRECISION AND RECALL FOR ALL SEQUENCES IN EACH

CATEGORY.

V. PIPELINE

As mentioned in Sec. I we adapted the system of [2] by

exchanging their simpler method of change detection by our

algorithm. In the following we give a quick overview of the

entire pipeline that estimates the pose of objects in a parking

garage. A diagram of all components of the system can be

found in Fig. 5.

The first step is gathering input images from an arbitrary

number of cameras which are calibrated and have a known

position and orientation. The following processing steps are

executed for each camera separately. Our change detection

algorithm including post processing is executed to gain a

mask of moving objects in the foreground. On the camera

image, optical flow is calculated. Here the mask is used (with

a certain amount of padding of the identified foreground

regions) to restrict the search-area for significant points for

flow calculation. This leads to a speed-up of the calculation

and lowers the amount of irrelevant or even wrong flow

vectors.

Foreground regions with associated flow are considered for

object tracking in the image in the next step. Here the image

is divided into rectangular blocks of 30 × 30 pixels. Only

those blocks which contain a certain amount of foreground

pixels are considered for tracking. For each block the mean

orientation of its associated flow vectors is calculated. Since

some blocks (e.g., on uniformly coloured surfaces) might not

contain enough significant points to calculate any flow, the

flow direction is iteratively propagated from blocks with flow

Camera 1

Camera N

...

Map

Lidar

GT

Cluster

Assignment

3D

Tracking

Evaluation

Change

Detection

Change

Detection

Optical

Flow

Optical

Flow

2D

Tracking

2D

Tracking

View Ray

Clusters

Input

...

Fig. 5. The general structure of the processing pipeline to generate object
hypotheses in the environment. For each camera change detection, flow
calculation, 2D tracking, and view ray generation is performed separately.
From this data 3D object hypotheses are generated and tracked over time.
Evaluation can be performed with respect to a Lidar system which provides
almost ground-truth data.

Fig. 6. Left: Frame 141 of the sequence bungalow in the category shadow.
Right: Corresponding segmentation image produced by our algorithm.
Segmentation is mainly present at the edges of the car and where the
structure of the car differs from the structure of the background.

to neighbouring blocks without flow. Based on the image

location and the flow, blocks are clustered together to form

object hypotheses. These hypotheses are classified with an

SVM using orientation histograms as features and are tracked

with an Alpha-Beta filter.

The reasoning behind this procedure is this: Using the

flow as additional information for the clustering allows to

differentiate between a car and a pedestrian moving in front

or behind the car in a different direction or at a different

pace. The classification uses orientation histograms since it

can be expected that a lot more horizontal edges are present

in a camera image of a car, while a pedestrian most likely

will display a larger amount of vertical edges. To exclude

the background from this calculation, the foreground mask

can also be used to limit the area in which the orientation

features are extracted.

After object hypotheses are consolidated, view rays are

created from the center of the camera through the center of

each active block inside of a tracked image region. Based on

the movement direction and appearance of tracked regions

in the image of each camera, view ray clusters are identified

that most likely belong to the same object. All view rays of

clusters that are associated to the same object are intersected.

The intersection points (or the points that are closest to

both view rays) for a single object are transformed into a

2D normal distribution which gives information about the

location and shape of the object. The normal distributions are

also tracked by an Alpha-Beta filter and additional measures

are taken to prevent objects from decaying into multiple

tracks i.e., tracks that are displaying identical movement for

a certain amount of time are merged into a single track.

A Lidar system is used as a ground truth to provide more

accurate measures of the objects’ locations which can be

used as a reference to determine the quality of the results of

the entire system as well as for comparison with the quality

of the previous system. Evaluation of the enhanced system

is performed for a vehicle and a pedestrian where first each

object is moving solely in a scene and for a scene in which

both are acting together. The resulting error graphs can be

found in Fig. 7 for the pedestrian and in Fig. 8 for the vehicle.

It is noteworthy that evaluation can only be performed

when positions estimates from both, the ground truth and

our system are provided. The overall results for our system

for each of the scenes can be found in Tab. III.

However, the change detection algorithm as well as the

subsequent processing pipeline has been changed signifi-

cantly during development which complicates the evaluation

Fig. 7. Top: Evaluation for a single pedestrian moving in the scene. Bottom:

Evaluation for a pedestrian moving together in the scene with a car. A blue
background means that only the Lidar system provides position estimates
while for a red background only our system has an estimate. The green line
shows the error of the estimate relative to the Lidar system in meters.

of the performance regarding earlier instances of the system.

The new approach can handle occlusions, sudden illumina-

tion changes and can be calculated in less than half the time

as before. The trade-off is a slightly worse positioning error

as in the previous work [2]. Considering the localization of

pedestrians, there is a difference of 0.30 m to 0.60 m.

For the scenario in which a car and a pedestrian are

moving simultaneously in a scene there can be seen error

spikes where the position estimate is off by several meters.

These spikes are the results of a wrong matching between

object hypotheses between multiple cameras. This is also not

taken account for in [2] since evaluation is only done for the

movement of one object at a time.

Nevertheless, our aim is to detect potential dangerous

situations like people moving in front of the car since the

car has a very high positioning accuracy itself. Therefore, a

safety margin of about 1.5 m is employed around the detected

person or object, to guarantee that the car can stop with

enough clearance. In summary, we increased efficiency and

reached a better performance and usability for our intended

scenario.

VI. CONCLUSION

In this paper we developed a general purpose algorithm

for change detection which focuses on a low false positive

segmentation rate and a high precision. It is able to handle

global as well as local illumination changes and provides

an adaptable, sample-based background model. Due to the

incorporation of an optional static background model the

algorithm is also able to handle long-term changes in a

scene without wrong segmentation. It is easy to implement

and provides real-time capability on the GPU as well as

for smaller image sizes (680 × 512) on the CPU and has

been successfully deployed in an existing image processing

Pedestrian Vehicle

Separate 0.78 m 1.19 m

Simultaneous 1.07 m 0.97 m

TABLE III

THE MEAN POSITION ERROR TO THE LIDAR SYSTEM.

Fig. 8. Top: Evaluation for a single vehicle moving in the scene. Bottom:

Evaluation for a vehicle moving together in the scene with a pedestrian.
The same color-coding is used as in Fig. 7.

pipeline for multi-camera object localization.

Improvements can be made regarding the handling of

shadows with hard edges where a segmentation cannot be

fully suppressed. This is most likely not possible based

on local image features but would require a high level

representation of illuminated image regions. The sample-

based background model also allows to change the update

rate for each pixel individually. While not necessary for the

intended scenario this can be used to account for strongly

dynamic backgrounds.

However, most improvements regarding segmentation

quality would negatively impact the required runtime of the

algorithm. In its current state the algorithm can already easily

be integrated in any image processing pipeline that requires

fast and precise change detection.

REFERENCES

[1] N. Goyette, P. Jodoin, F. Porikli, J. Konrad, and P. Ishwar, “Changede-
tection.net: A new change detection benchmark dataset,” in Proceedings

of the IEEE Computer Society Conference on Computer Vision and

Pattern Recognition Workshops, 2012, pp. 1–8.
[2] A. Ibisch, S. Houben, M. Michael, R. Kesten, and F. Schuller, “Arbitrary

object localization and tracking via multiple-camera surveillance system
embedded in a parking garage,” in Proceedings of the Electronic

Imaging Conference, 2015, pp. 9407–9412.
[3] C. Wren, A. Azarbayejani, T. Darrell, and A. Pentland, “Pfinder: Real-

time tracking of the human body,” IEEE Transactions on Pattern

Analysis and Machine Intelligence, vol. 19, pp. 780–785, 1997.
[4] B. Lo and S. Velastin, “Automatic congestion detection system for

underground platforms,” in Proceedings of the International Symposium

on Intelligent Multimedia, Video and Speech Processing, 2001, pp. 158–
161.

[5] C. Stauffer and W. Grimson, “Adaptive background mixture models
for real-time tracking,” in Proceedings of the IEEE Computer Society

Conference on Computer Vision and Pattern Recognition, vol. 2, 1999,
pp. 246–252.

[6] O. Barnich and M. Van Droogenbroeck, “Vibe: A powerful random
technique to estimate the background in video sequences,” in Proceed-

ings of the IEEE International Conference on Acoustics, Speech and

Signal Processing, 2009, pp. 945–948.
[7] M. Van Droogenbroeck and O. Paquot, “Background subtraction: Ex-

periments and improvements for vibe,” in Proceedings of the IEEE

Computer Society Conference on Computer Vision and Pattern Recog-

nition Workshops, 2012, pp. 32–37.
[8] M. Hofmann, P. Tiefenbacher, and G. Rigoll, “Background segmenta-

tion with feedback: The pixel-based adaptive segmenter,” in Proceed-

ings of the IEEE Computer Society Conference on Computer Vision and

Pattern Recognition Workshops, 2012, pp. 38–43.
[9] P.-L. St-Charles and G.-A. Bilodeau, “Flexible background subtraction

with self-balanced local sensitivity,” in Proceedings of the IEEE Com-

puter Society Conference on Computer Vision and Pattern Recognition

Workshops, 2014, pp. 414–419.

