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Abstract. Traditional neural models of the human brain fail to reproduce
its complex behavior. In contrast to these models, neural dynamics define
their state not only depending on current inputs, but also on previous ones,

providing a framework that is able to model these properties more accurately.
Neural fields describe the distribution of the activation of neuron populations
in cortical tissue based on neural dynamics. Its neurons are positioned along
a continuous feature dimension that can be used to solve tasks in computer
vision. The computational requirements of neural fields are high, and applying
them to the high-dimensional features used by many other computer vision
algorithms is infeasible. The aim of the present work is to develop and analyze

a model based on neural fields that can be used in connection with such high-
dimensional data, the so-called neural field graph model. Its basis is a graph
structure that can represent a clustering of such a high-dimensional feature
space. The graph’s nodes are assigned an activation value that is governed

by the same principles as the neurons in the neural field. Several challenges
arise from this approach. The synaptic interactions among the neurons in a
neural field graph are influenced by the topology of the graph structure, and
a method for balancing these interactions is given. Methods for the detection

of the centers of active regions in the graph are provided. The limitations of
these methods are examined, and experiments indicate that they fulfill their
purpose in most cases. The neural field model appears to present a successful
approach to applying neural dynamics on a graph structure. Some limitations
remain that should be overcome in future work.
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Notation

In the present work, vectors are printed in bold-face lower case letters (e.g.,
y = (y1, y2, . . . , yn)

T ). Special vectors are the 1-vector with 1i = 1 and the analo-
gously defined 0-vector.

Matrices are denoted by bold, capital letters (e.g., M), and their elements are
indexed as (M)r,c, with r being the row index and c being the column index. In
some cases it is necessary to index a whole row- or column-vector of a matrix. For
the k-th row of a matrix A, this is given by (A)k,·, and for the k-th column it is

denoted by (A)·,k. Diagonal matrices are given by

diag (x1, x2, . . . , xn) =









x1 0 · · · 0

0 x2
. . .

...
...

. . .
. . . 0

0 · · · 0 xn









.

The identity matrix is given as I = diag (1, 1, . . . , 1).
The identifier R is used to denote the set of real numbers, and R+ is used to

denote a real number in the interval (0,∞). Similarly, the set N denotes the set of
natural numbers. For any element c = a + i · b in the set of complex numbers C,
the real and imaginary parts are denoted as a = R (c) and b = I (c), respectively.

When dealing with differential equations, we usually specify them in the form
ẋ = f(x). In the present work, x is often a function depending on a time scale
(i.e., x(t)), leading to the notation ẋ(t) = f(x(t)). Given such a function, its first

derivate evaluated at a is denoted as f ′(a) = df(x(t))
dx(t)

∣
∣
∣
x(t)=a

.
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Introduction

Cognitive processes in the human brain have a number of time-dependent prop-
erties. Some of these properties can be characterized as incorporating the history
of the cognitive system (i.e., previous states influence the current one). Humans,
for instance, are capable of perceiving motion when presented with static images
in rapid succession. This capacity is called the perception of apparent motion, and
the motion quartet is a psychophysical experiment examining this phenomenon. In
it, two dots are positioned on the diagonally opposing sides of an imaginary rectan-
gle. In rapid succession, the dots change their positions to the free corners of the
rectangle, causing motion to be perceived in either horizontal or vertical direction.
The determination of the perceived direction is influenced by a number of factors
(e.g., the aspect ratio of the rectangle, previous stimuli, etc.). However, once a
detection is established, it usually stays stable for longer periods of time, even if
the decision is ambiguous.

Classical models of human cognition, such as artificial neural networks, cannot
reproduce the time-dependent properties of the human brain. Neural dynamics
are more suited for this task because they are based on dynamical systems that
describe the state of a system by specifying its change over time. They are used
in the neural field model developed by Amari (1977). In this model, neurons are
positioned along a continuous feature dimension and assigned to layers based on
their type. The neurons interact with their neighbors with a strength that depends
on an interaction kernel, describing the weight of the connection between them
based on the difference of two neurons’ positions, and a nonlinearity that allows only
active neurons to influence others. The neural field model can be used to reproduce
several capabilities that are advantageous for models of cognition inspired by the
human brain, including the time-dependent ones. Nevertheless, there is a downside
to neural fields: their simulation. This process is computationally complex, in
particular when the dimensionality of the input data is high. Many computer vision
algorithms that use a different approach, such as Slow Feature Analysis (Wiskott,
2003), or Elastic Bunch Graph Matching (Wiskott et al., 1997, 1999), use high-
dimensional feature sets to represent objects. Solutions for dealing with the high
dimensionality are often either inherent to such algorithms, or the problem is solved
in another way (e.g., in Slow Feature Analysis, a hierarchical structure can be used
to greatly reduce the impact of dimensionality (Wiskott and Sejnowski, 2002)).

Another possible solution to the problem of dimensionality is to sub-sample
the feature space and subsequently only model relevant parts of it. One method
of achieving this is to use an algorithm like the Growing Neural Gas (Fritzke,
1995). The output of this algorithm is a graph structure that clusters the input
space while preserving its topology. Based on the success of these approaches, the
present work aims to replace the continuous feature space in neural fields with a
graph structure. The derived model is called the neural field graph model. Instead
of directly using the information from the feature space for modeling interaction
between neurons, it relies on the information encoded in the underlying graph’s
topology by determining the strength of the interaction based on the distance of
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CHAPTER 0. INTRODUCTION

neurons in the graph. Several concerns arise from this approach. One is that the
topology around each neuron may be different due to the way the feature space
is clustered, and neurons may behave differently based on their location in the
graph structure. Depending on the purpose of the neural field graph, this may
be undesirable. A method for correcting this imbalance is proposed based on the
number of influences each neuron receives. Another problem is the detection of the
centers of active regions (peaks) in the neural field graph. In neural fields, peak
centers can be detected by using information about the active neurons’ locations
in the feature space. Because this information is missing in neural field graphs,
different methods are devised. Similar to the neural interaction, these solutions are
based on information encoded in the neural field graph. One method selects peak
centers based on the minimum of the neurons’ distance sums in an active cluster,
the other two use maxima in the activation values.

After the formalization of the model and the proposed solutions to these prob-
lems in Section 1–6 of Chapter 4, the model is examined analytically in Section 7
of the same chapter, and empirically in Part 4. A goal of the examination in Chap-
ter 5 is to determine what properties of the neural field model are still present in
the neural field graph model. Additionally, the proposed methods for balancing
synaptic weights and detecting peak centers are tested in Chapter 7 to determine
whether or not they fulfill their intended purpose.
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CHAPTER 1

Dynamical Systems

Classic models of cortical and neuronal information processing, such as neural
networks (e.g., the multi-layer perceptron introduced by Rosenblatt (1958)), are
not dependent on a time scale and usually calculate their output instantaneously.1

As argued in the following sections, however, human cognition takes place over time
(Schöner, 2007; Schneegans and Schöner, 2008; Erlhagen and Jancke, 2004). There-
fore, models of neuronal information processing that incorporate time-dependent
properties, such as the history of the cognitive system (i.e., its previous states and
detection decisions) are desirable in various research fields concerned with modeling
processes in the human brain (Erlhagen and Bicho, 2009).

Dynamical systems offer a framework for creating models that incorporate these
properties. In Chapter 1, this fact is exploited to develop a simplified model of the
cognitive information processing involved in the detection of motion conveyed by
visual stimuli. This model is intended as an example used as a basis for intro-
ducing the concepts of dynamical systems. Furthermore, it is developed with the
aim of solving the motion correspondence problem introduced in Section 1. An
instance of the motion correspondence problem is given by the motion quartet, a
psychophysical experiment that investigates special properties of human percep-
tion (Gilroy et al., 2001). The results of these experiments reveal a number of the
time-dependent properties of human perception and cognitive processes that are not
replicated in classical models. These properties form the requirements for the model
of motion perception developed in Section 7. Building towards the formalization
of this model, the basic concepts of dynamical systems, a theoretical framework
often used in physics for describing the state changes of a physical system over
time, are discussed in Section 2–6. Basic concepts of dynamical systems include
the analysis of a system’s stability and of a process called bifurcation, in which the
nature of this stability changes either qualitatively or quantitatively. Bifurcations,
also called instabilities, play an important role in the use of dynamical systems for
cognition because they can be used to describe how a system reacts to a change in
its input. Finally, Section 7 details the model that solves a simplified version of the
motion correspondence problem, showing an example of how dynamical systems
and the concepts presented in the previous sections can be applied to model human
cognitive processes with some of the desired time-dependent properties.

1. The Motion Correspondence Problem

The formal definition of the motion correspondence problem (Hibbard et al.,
2000) is the following:

Definition 1.1 (Motion correspondence problem). Given two successive visual
stimuli, establish motion paths that consistently link image features in one stimulus
to image features in the other one if they originate from the same physical object
in space.

1The time needed for calculating the output is disregarded here, because it differs conceptu-
ally from a time scale.
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CHAPTER 1. DYNAMICAL SYSTEMS 1. THE MOTION CORRESPONDENCE PROBLEM

Figure 1.1 The two frames of the motion quartet are shown in Figure 1.1a and
Figure 1.1b (the superimposed rectangle is not shown during the experiments).
These frames are presented to participants in rapid succession over longer periods
of time, inducing a perceived motion of the dots in either horizontal or vertical
direction. dh and dv indicate the horizontal and vertical distance between the
corners of the imaginary rectangle and are used to calculate its aspect ratio as dh

dv
.

dh

dv

(a) First frame. (b) Second frame.

One instance of the motion correspondence problem, called stroboscopic alter-
native motion, is introduced by von Schiller (1933). In experiments on the motion
quartet (Gilroy et al., 2001) — an experiment also proposed as part of the original
work on stroboscopic alternative motion — participants are presented with two
dots on the diagonally opposing sides of an (imaginary) rectangle. In rapid suc-
cession, the dots change their places to the empty corners of the rectangle, leading
to a perceived motion in either horizontal or vertical direction. The motion quar-
tet is illustrated in Figure 1.1. After alternating presentation of the two frames
comprising the motion quartet over a prolonged period of time, the test subjects
are asked to specify which motion direction they perceived during the trial. The
results derived from their responses expose several properties of human perception
and the cognitive processes involved in solving the motion correspondence problem
in the human brain.

One result of this experiment is that the perceived motion direction depends on
the aspect ratio of the imaginary rectangle. The motion direction that is perceived
by the test subjects usually adheres to the minimal mapping solution introduced by
Ullman (1979). This solution entails selecting those motion paths that minimize the
distance traversed by the percepts (i.e., the dots in the motion quartet). However,
the minimal mapping solution does not always accurately model human responses,
as shown by further experiments detailed by Gilroy et al. (2001), during which the

aspect ratio of the rectangle (i.e., the ratio of horizontal to vertical distance dh

dv
) is

gradually changed over time, going either from being significantly greater than one
to being less or vice versa.2 When the aspect ratio changes, a phenomenon called
hysteresis (Hock et al., 1993) can be observed. If the aspect ratio of the initial
stimulus induces horizontal motion to be perceived and is subsequently varied by
an increase of the horizontal distance between the dots, then horizontal motion is

2Note that due to effects of the vertical-horizontal illusion (Fineman, 1996) causing horizontal

distances to be perceived shorter than vertical ones, the point of perceived equidistance is not
actually the one where dh = dv . However, this effect is disregarded in the text.
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CHAPTER 1. DYNAMICAL SYSTEMS 2. MODELING NEURAL ACTIVITY WITH DYNAMICAL SYSTEMS

perceived even when the vertical distance is slightly (but perceivably) smaller than
the horizontal distance, thus violating the minimal mapping solution. To effect a
change of the perceived motion direction, the difference between the two distances
has to be increased significantly beyond the point of equidistance.

Another property of the cognitive processes involved in solving the motion cor-
respondence problem is the stability of the solution. Once a solution is established,
random switches (i.e., a sudden switch of the perceived motion direction) can occur
for a stimulus with an unchanged aspect ratio (Gilroy et al., 2001). However, they
occur infrequently and the solution is usually stable over periods of time stretching
significantly more than a single successive presentation of the two frames.

These observations indicate that the cognitive processes involved in solving the
motion correspondence problem depend on the history of the system (preference
to perceive the motion direction selected before) as well as the present stimulus
and thus are not instantaneous. The minimal mapping solution fails to take these
properties into account, therefore, a different model that does account for such
time-dependent properties is desirable.

2. Modeling Neural Activity with Dynamical Systems

Dynamical systems provide a theoretical framework that is frequently used in
physics to model the state of systems that change over time based on their current
and previous state, such as a swinging pendulum or the location and movement
of a rigid body in space (Schneegans and Schöner, 2008). They are also a well-
studied field in mathematics, providing tools for analyzing their stability, as well as
the derivation and stability of their corresponding numerical solutions (Ascher and
Petzold, 1998). Dynamical systems are therefore well suited for creating models of
human cognition with an emphasis on time dependent properties (Spencer et al., in
press, 2010). The general concepts behind dynamical systems are introduced over
the course of the following sections, followed by an investigation of a solution of the
motion correspondence problem based on them in Section 7.

Following Ascher and Petzold (1998), dynamical systems model the state of a
system at a given time3 t ∈ T ⊆ R, with n (n ∈ N, n > 0) dynamic variables de-
scribed by u : T 7→ Rn. The state of the system at time t, denoted by u(t), depends
on its previous states. Therefore, instead of directly specifying the relationship for
u(t), a dynamical system is characterized by a rate of change that depends on the
system’s current state, denoted by u̇(t) = d

dtu(t) and given in the form

τ u̇(t) = f
(
u(t)

)
, (1.1)

where f : Rn 7→ Rn and τ ∈ R+, with τ > 0, is a timescale that determines how
fast (or slow) the state of the system changes in relation to the time t. In the
present work, Equation 1.1 and similar equations describing the rate of change of
a dynamical system are also referred to as the system’s dynamics. In addition to
these dynamics, the initial state (also known as the initial value) of the system, from
which all subsequent states arise has to be specified. Without loss of generality,4

we assume that T ⊂ [0,∞), henceforth referring to the initial state of a dynamical
system as u(0) ∈ Rn.

In some cases, it is possible to derive an equation for u(t) independent of the
rate of change from a system’s dynamics. This is called the solution of the system

3In general, the variable the dynamical system depends on is not necessarily time, but for

the purpose of the present work it is more descriptive to think of it in this way (see also Ascher
and Petzold, 1998).

4An existing time interval can be transformed to one starting from zero by means of an offset.
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CHAPTER 1. DYNAMICAL SYSTEMS 3. APPROXIMATING SOLUTIONS

and, as an example, the solution for the dynamical system described by

τ u̇(t) = −u(t) , (1.2)

together with an initial value u(0) = λ can be derived using an integrating factor
as given in (Bronstein et al., 2008). In order to apply this method, Equation 1.2 is
rewritten to the standard form

du(t)

dt
+

1

τ
u(t) = 0 . (1.3)

This leads to the integrating factor µ for a constant c1,

µ = e
∫

1
τ
dt = e

t
τ
+c1 . (1.4)

Inserting this factor into the equation provided by Bronstein et al. (2008), the
general solution for the system given by Equation 1.2 is found to be

u(t) =
1

µ
· c2 = c2 · e−

t
τ e−c1 . (1.5)

Empirical data is fitted by setting c1 = 0 and c2 = λ (e.g., the one presented in
Figure 1.4b), thus a solution of the system is given as

u(t) = λ · e− t
τ . (1.6)

3. Approximating Solutions of Dynamics

In practice, solutions for dynamical systems are often hard or even impossible to
determine analytically. Therefore, they are usually approximated using numerical
methods. This section provides a brief overview of two such numerical solvers, the
forward and the backward Euler methods. In the remainder of the present work,
applying one of these methods for the numerical solution of a dynamical system is
also referred to as its simulation.

For the description of these numerical methods, the dynamical system being
solved is given in the more general form presented by Ascher and Petzold (1998),

du(t)

dt
= f(t,u(t)) , (1.7)

where u(t) ∈ Rn, with n ∈ N and n > 0, represents the dynamic variables and
t ∈ R, with 0 ≤ t ≤ s ∈ R and f : T ×Rn 7→ Rn. It is also assumed that the initial
value of the dynamical system is known to be u(0) = c. In terms of the real-time
simulation of a dynamical system, s is the time step (i.e., the length of time for
which to simulate the system).

3.1. The Forward Euler Method. In this method, the time step s is divided
into N sub-steps

0 < t0 < t1 < . . . < tN−1 , (1.8)

with tN−1 = s. Given these time steps, the dynamical system is approximated
using the values

u0,u1, . . . ,uN−1 , (1.9)

where ui ∈ Rn, ui ≈ u(ti), and u0 = c. Given the Taylor series of the dynamics
u(t) about the point ti−1 with ti − ti−1 = hi for i ∈ {1, . . . , N − 1}

u(ti) = u(ti−1) + hi
d

dt
u(ti−1) +

1

2
h2
i

d2

dt2
u(ti−1) + . . . , (1.10)

the terms of quadratic and higher order are dropped, leading to the equation

u(tn) ≈ u(ti−1) + hi
d

dt
u(ti−1) , (1.11)
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CHAPTER 1. DYNAMICAL SYSTEMS 3. APPROXIMATING SOLUTIONS

Figure 1.2 Two examples for the forward Euler approximation. The plots show
the approximation of the dynamics d

dtf(t) = λf(t) and a plot of the solution f(t)

of the dynamics, f(t) = ceλt. The dots mark the substeps un of the forward Euler
method that is used for approximating the dynamics.
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in which d
dtu(ti−1) can be substituted using Equation 1.7, yielding

u(ti) ≈ ui−1 + hif(ti−1,ui−1) . (1.12)

Equation 1.12 can then be used to iteratively calculate the values for ui, finally
resulting in the approximation uN−1 ≈ u(s). Two numerical examples for approx-
imations with the forward Euler method are shown in Figure 1.2.

3.2. The Backward Euler Method. Geometrically speaking, the forward
Euler method (Ascher and Petzold, 1998) uses the slope of the dynamics at the
point ti−1 and follows the resulting tangent to estimate the value for u(ti). In the
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CHAPTER 1. DYNAMICAL SYSTEMS 4. STABILITY OF DYNAMICAL SYSTEMS

backward Euler method, the slope is determined directly at the point ti. Thus,
Equation 1.12 is rewritten to

ui = u(ti) ≈ ui−1 + hif(tn,ui) . (1.13)

In contrast to the forward Euler method, the values for the ui in Equation 1.13
cannot be calculated directly because the unknown variable appears on both sides
of the equation. Instead, the result is determined by solving the nonlinear system

g(ui) = ui − ui−1 − hif(ti,ui) = 0 . (1.14)

This system can be solved by using Newton’s method (Bronstein et al., 2008) to
calculate

uν+1
i = uν

i −
(

I − hi
∂

∂u
f(ti,u

ν
i )

)−1
(
uν
i − ui−1 − hif(ti,u

ν
i )
)

(1.15)

iteratively for ν = 1, 2, . . ., starting from an initial guess, e.g., u0
i = ui−1. This

iteration continues until, for some νmax, the system satisfies

|uνmax

i − uνmax−1
i | ≤ ε , (1.16)

for a given ε ∈ R+. Examples of approximations using the backward Euler method
are shown in Figure 1.3.

4. Stability of Dynamical Systems

Inspired by models in (Schöner, 2007), we can now use dynamical systems to
create an exemplary model of a neuron’s activation u(t) ∈ R as

τ u̇(t) = −u(t) + h+ s(t) , (1.17)

where s : T 7→ R is the neuron’s input and h ∈ R, with h ≤ 0, is called the resting
level. Figure 1.4 shows a plot of the system’s dynamics and records of its state
taken during simulations5 starting from different initial values, in the absence of
input (i.e., s = 0) and for h = 0. Figure 1.5 shows the behavior of the system
during simulations with varying input and resting levels.

Figure 1.4b suggests that the state of the dynamical system specified by Equa-
tion 1.17 converges to a certain state, in this case 0. Figure 1.5 further indicates
that the state to which the system converges is dependent on its resting level and
the input. These states are called fixed points (Weisstein, 2010b) or stationary
points. In a fixed point, the rate of change u̇(t) is zero, causing the system to stay
in it until an outside influence is applied. Thus, according to Spencer and Schöner
(2003), fixed points are those system states that satisfy

u̇(t) = 0 . (1.18)

In the case of the dynamical system specified by Equation 1.17, the fixed points
can be determined as the zero crossings of the dynamics plot given in Figure 1.4a.
Accordingly, they can be calculated as

− u0(t) + h+ s(t) = 0⇔ u0(t) = h+ s(t) , (1.19)

where u0(t) is the system’s state representing a fixed point. Equation 1.19 confirms
the initial observations that the point to which the system converges (i.e., the
fixed point) depends on the input and the resting level. By means of such fixed
points that relocate depending on the input level, dynamical systems can “react” to
external stimuli, making them available as tools for the modeling of, among other
things, cognitive processes.

5Details on how to simulate dynamical systems by approximating their solutions are given
in Section 3; a forward Euler approach is used in all simulations as a default method.
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CHAPTER 1. DYNAMICAL SYSTEMS 4. STABILITY OF DYNAMICAL SYSTEMS

Figure 1.3 Two examples for the backward Euler approximation. The plots,
like in Figure 1.2, show the solution f(t) = ceλt and the approximation for the
corresponding dynamics d

dtf(t) = λf(t) (see Figure 1.2). The approximation is
generated with the backward Euler method using Newton’s method (see Section 3.2)
for solving the nonlinear system. The dots mark the sub-steps of the approximation
of the dynamics.
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Consider now the dynamical system characterized by the following rate of
change:

τ u̇(t) = u(t)− u3(t) (1.20)

The system’s fixed points can again be calculated as described above, leading to
the three different fixed points marked in Figure 1.6a:

u0,1 = 0, u0,2 = 1 and u0,3 = −1 . (1.21)
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CHAPTER 1. DYNAMICAL SYSTEMS 4. STABILITY OF DYNAMICAL SYSTEMS

Figure 1.4 Plots for the dynamical system τ u̇(t) = −u(t) + h + s(t) given in
Equation 1.17 for h = 0 and s(t) = 0.
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(a) The plot of the system’s dynamics. The timescale is selected to be
τ = 1.
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(b) The time course of the system’s state in simulations starting from
different states. The timescale used for the simulation is τ = 100.

The plot of the system’s behavior from different initial states is shown in Fig-
ure 1.6b. On the one hand, it indicates that the states of systems that start close
to the fixed point u0,1 converge to one of the other fixed points, despite being sig-
nificantly closer to u0,1. On the other hand, the system’s state seems to always
converge to either u0,2 or u0,3, depending on which one is closer. This behavior
suggests that there are different kinds of fixed points. The first kind (which u0,1

belongs to) is called repellor, and the second kind (which u0,2 and u0,3 belong to)
is called attractor (Milnor, 2006).
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Figure 1.5 Simulation of the dynamical system given by Equation 1.17 with vary-
ing input s(t) and resting level h. The plot suggests that the point to which the
system’s state converges over time depends on the input and resting level.
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Attractors are stable solutions of a dynamical system, meaning two things (cf.
Lyapunov stable attracting set in (Auslander et al., 1964; Milnor, 2006; Spencer and
Schöner, 2003)):

(1) If a system’s state is in the attractor region, it remains in that region as
long as the parameters of the system do not change.

(2) Systems with a state close to the attractor region converge into it over
time.

Note, that in most — if not all — cases investigated in the present work, the
attractor region is reduced to a single point. All fixed points that are not stable
by the definitions above are considered unstable. The union of all system states
that fall into case 1 and 2 (i.e., those regions from which all solutions converge to
a given stable fixed point) are also called the attractor’s basin of attraction (Ott,
2006).

How can we tell if a fixed point is an attractor or a repellor for a given dynamical
system? The answer for the general case of dynamical systems with more than
one variable is non-trivial; one method involves the linearization of the dynamics
around the fixed points (Murray et al., 1994) and is used in Part 3, Section 7.
However, a formal discussion exceeds the scope of the present work and therefore
an intuitive description is given below for the case of dynamical systems restricted
to one variable.

In the previous example (Equation 1.20), the slope of the dynamics is given by

d

du
u̇(t) =

d

du

(
u(t)− (u(t))3

)
= 1− 3(u(t))2 . (1.22)

At the fixed points, this equation yields

du̇(t)

du

∣
∣
∣
∣
u0,1

= 1,
du̇(t)

du

∣
∣
∣
∣
u0,2

= −2 and
du̇(t)

du

∣
∣
∣
∣
u0,3

= −2 . (1.23)
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Figure 1.6 Plots for the dynamical system τ u̇(t) = u(t)−(u(t))3. The fixed points
u0,1 = 0, u0,2 = 1 and u0,3 = −1 are marked in the dynamics plot (Figure 1.6a).
Figure 1.6b shows several simulations of the system, indicating that the states of
systems with u(0) ≈ u0,1 and u(0) 6= u0,1 are “pushed away” from the fixed point.
Only the system starting with u(0) = u0,1 remains in the fixed point.
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(a) A plot of the dynamics. The fixed points are marked with dots.
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(b) The development of the system’s state recorded over time starting

from several initial values.

Here, the repellor u0,1 has a positive slope, while the attractors u0,2 and u0,3 have
negative slopes. This is no coincidence: A negative slope at an attractor a means
that system states with u(t) < a undergo a positive rate of change, i.e., u(t′) =
u(t) + δ with δ ∈ R+ and t′ > t, thereby decreasing the difference between the
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fixed point and the system’s state (because a − u(t′) = a − (u(t) + δ) < a− u(t)),
while systems with u(t) > a undergo a negative change, also reducing the distance
a − u(t), which asymptotically leads to a distance of a − u(t) ≈ 0. For repellors,
the situation is exactly the opposite (i.e., the difference between the system state
and the repellor increases, leading to the behavior observed in Figure 1.6b).

5. Bifurcations

Bifurcations – also called instabilities (Schöner, 2007) – are described by a
change of the parameters of a dynamical system, leading to a subsequent change in
the markup of the system’s fixed point states (Blanchard et al., 2006). They can be
subdivided into two categories: quantitative and qualitative changes (Simmering
and Spencer, 2008; Spencer and Schöner, 2003). The former either results in the
formation of new fixed points or the disappearance of existing ones when one or more
parameters of the dynamical system are changed gradually, while the latter means
that an attractor becomes a repellor (or vice versa) when the system undergoes
similar changes of the parameters.

Bifurcations can play an important role in models of cognitive processing de-
scribed by dynamical systems (Spencer and Schöner, 2003). For instance, switches
in the perception of horizontal or vertical motion during the presentation of the
motion quartet (see Section 1) can be thought of as bifurcations: when the aspect
ratio of the imaginary rectangle is changed sufficiently, a model could be adjusted so
that an attractor for the opposite motion direction vanishes (quantitative change),
or goes from being stable to being unstable (qualitative change), leading to the
detection of the correct motion direction (Hock et al., 2003).

In Section 5.1 and Section 5.2, qualitative and quantitative changes are dis-
cussed briefly based on a subset of the different normal forms of bifurcations given
in Guckenheimer and Holmes (1997).

5.1. Quantitative Changes: the Saddle-Node Bifurcation. Consider
the dynamical system

u̇(t) = f(u(t)) = µ− (u(t))2 , (1.24)

with the parameter µ ∈ R, representing the normal form of the saddle-node bifur-
cation. With the methods introduced previously, the fixed points can be calculated
with respect to µ as

u0,1 =
√
µ and u0,2 = −√µ , (1.25)

for values of µ > 0. For µ = 0 only one fixed point is present:

u0,3 = 0 . (1.26)

To examine the stability of the fixed points, the slope of the dynamics at the
fixed points is calculated as well

f ′(u) = d
du(t)f(u(t)) = −2u(t) ,

⇒ f ′(u0,1) = −2u0,1 = −2√µ ,
f ′(u0,2) = −2u0,2 = 2

√
µ ,

f ′(u0,3) = 0 .

(1.27)

Equation 1.27 and Equation 1.25 show that there are two fixed points for µ > 0,
the attractor u0,1 and the repellor u0,2. However, for µ = 0, only the unstable fixed
point u0,3 is present, and for µ < 0, no more fixed points exist. This is illustrated in
Figure 1.7. When simulating the system over time, bifurcations, or more specifically,
a quantitative change of the fixed points, may occur if the parameter µ is varied.
For example, if µ starts out greater than zero and is then gradually decreased, the
two fixed points that are initially present would move closer to each other. When
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Figure 1.7 Stability plot for the saddle-node bifurcation. The system exhibits an
attractor and a repellor for µ > 0. For µ = 0, only one fixed point exists, and none
are present for µ < 0. A system for which the parameter µ is varied over time thus
displays a bifurcation if µ gradually goes from being greater than zero to being less
than zero, or vice versa.
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µ reaches zero, the attractor and repellor both merge into one fixed point that
vanishes once µ becomes less than zero.

5.2. Qualitative Change: the Transcritical Bifurcation. Another ex-
ample of a bifurcation is the transcritical bifurcation. It can be observed in the
dynamical system given by the following equation:

u̇(t) = f(u(t)) = µu(t)− (u(t))2 , (1.28)

where µ ∈ R. An analysis similar to the one performed in Section 5.1 reveals the
following fixed points

u0,1 = 0 and u0,2 = µ (1.29)

for µ 6= 0, and a single fixed point

u0,3 = 0 (1.30)

for µ = 0. In order to determe the stability of the fixed points, we find that

f ′(u0,1) = µ , f ′(u0,2) = −µ and f ′(u0,3) = 0 . (1.31)

Therefore, u0,1 is stable for µ < 0 and instable for µ > 0 (i.e., a qualitative change of
the dynamics occurs during the bifurcation). For u0,2, a qualitative change occurs
as well, with conditions opposite to those of u0,1, while u0,3 is unstable. Figure 1.8
shows a plot of the fixed points depending on the parameter µ.

6. Noise

Consider again the time course for the dynamical system τ u̇(t) = u(t)− (u(t))2

shown in Figure 1.6b. It indicates that the system with the initial value 0 remains
in the repellor. This behavior is grounded in the fact that the system’s rate of
change in this state is u̇(t) = 0. Therefore, it does not leave the fixed point.
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Figure 1.8 Stability plot for the transcritical bifurcation. Two fixed points are
present in all cases but µ = 0, in which they overlap and form a single fixed point.
Their stability depends on the selection of µ and can change, e.g., if µ changes from
being greater than zero to a negative value.
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However, when designing a dynamical system for cognitive information processing,
one usually wishes it to converge to an attractor and prevent it from lingering in
an unstable state. Therefore, in many cases a noise term is added to a system.
Following the example in Section 5.2, the system would be

τ u̇(t) = u(t)− (u(t))2 + η , (1.32)

where η is a random variable with η ∼ N (0, σ2). The value σ2 depends on the
design of the dynamical system and is usually determined empirically. The noise
term may also be present in the system already when an input is inherently noisy,
in which case an additional noise term may not be necessary. The simulation of the
system in Equation 1.32, shown in Figure 1.9, demonstrates that systems starting in
the repellor no longer remain there, due to the rates of change around the repellor
leading the system’s state away from it. However, the state of the systems still
converges to one of the attractors.6 Which attractor is finally reached by those
systems depends on the values of the random variable.

7. Dynamics and the Motion Quartet

With the devices introduced in sections Section 2–6, we can once again turn
our attention towards the initial problem posed by the motion quartet. This section
develops a less complex version of the model for solving the motion correspondence
problem presented in (Hock et al., 2003).

This model solves a simplified motion correspondence problem: it contains
only two neurons, one for perceived motion in horizontal direction and another
for vertical one. Additional properties of the perceived stimulus are dropped to
reduce the model’s complexity (e.g., the starting point and the exact direction of

6Due to the zero-mean noise term, convergence means that the expected value of a system
converging to an attractor a is given by E{u(t)} = a for some t > tconv .
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Figure 1.9 Simulations of the system detailed in Figure 1.6 with an additive noise
term η ∼ N (0, 5). With this addition, systems with an initial value of 0 randomly
converge to one of the attractors. Without the noise terms, these systems would
remain in their initial state, the repellor (see Figure 1.6b).

t

u
(t

)

 

 
u( ) =

u( ) =
u( ) =

u( ) =
u( ) = −0

00
00
00

0

0

0

5

5
5

−5
1000

the perceived motion). Each neuron’s activation is modeled as a dynamical system
described by the dynamics

τ u̇h(t) = −uh(t) + r + ς · sh(t)− whv · f(uv(t)) + η1 , and
τ u̇v(t) = −uv(t) + r + ς · sv(t)− wvh · f(uh(t)) + η2 ,

(1.33)

where uh is the dynamic variable for the horizontal motion and uv the one for
vertical motion. r ∈ R < 0 is the resting level, while whv, wvh ∈ R, ς ∈ R+ and
f : R 7→ R is the sigmoidal function (described in detail in Section 2.1 of Chapter 2).
η1 and η2 are normally distributed noise terms as described in Section 6. The input
is determined based on the aspect ratio of the motion quartet presented to the
system: let dh(t) be the horizontal distance between the dots in the motion quartet
at any given time and dv(t) the vertical distance. Then the inputs are defined
according to

sh(t) =
dv(t)

dh(t)
, sv(t) =

dh(t)

dv(t)
. (1.34)

The model’s output is a detection of either no, horizontal, or vertical motion. Mo-
tion in one direction is perceived if the state of one of the dynamical systems in
the model exceeds a threshold, while no motion is perceived if none of the systems’
states are above threshold. A detection of both motion directions at the same time
would indicate a failure of the model to solve the (simplified) motion correspon-
dence problem, while the detection of no motion should only occur briefly during
an initial reaction time when a change of the stimulus occurs.

Figure 1.10 shows exemplary plots of the dynamic field given different inputs,
and Figure 1.11 shows a simulation of the system. The simulation suggests that the
(simplified) motion correspondence problem is indeed solved by this system: at most
one perceived motion is selected at any time during the simulation. Additionally,
properties of human perception, including those introduced in Section 1, can be
observed: in r1, a reaction time can be observed (i.e., the detection of the motion
does not happen at the same time the stimulus is presented). Due to a smaller
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Figure 1.10 Dynamics of the model of the motion-correspondence solution given
by Equation 1.33. The parameters for the system are chosen as follows: r = −5,
τ = 100, whv = 9, wvh = 9, β = 1 and ς = 10. The components in the vectors,
displayed as arrows, indicate the rate of change starting from the arrow’s origin.
The horizontal component of the vectors indicates the rate of change of uh and the
vertical component of uv.
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(a) Vector field of the dynamics for a stimulus with an aspect ratio of 1.
The system exhibits two fixed point attractors, one in the second quad-
rant and one in the fourth, where the length of the vectors approaches
zero.
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(b) Vector field of the dynamics for a stimulus with greater horizontal
distance. Only the fixed point in the second quadrant remains, the fixed

point in the fourth quadrant has vanished (i.e., a bifurcation occurred).
However, the rate of change near the vanished fixed point still shows

remnants of its influence, indicated by the reduced length of the vectors

in that region.
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Figure 1.11 Simulation of the model of the motion-correspondence solution given
by Equation 1.33. The parameters for the system are detailed in Figure 1.10. The
colored bars at the bottom mark which motion direction is perceived by the system.
No bar symbolizes that no motion direction was detected. The threshold for the
detection of motion is set to 1.
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vertical distance, the neuron for vertical motion reaches above-threshold activation
eventually. In r3, hysteresis appears to be present: the vertical distance is now
greater than the horizontal one. However, instead of a change in the perceived
motion, there is only a decay of the activation uv that is not sufficient to move the
activation below the threshold. Only when there is a stronger change in the aspect
ratio in r6 does the detection change.
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CHAPTER 2

Neural Fields

Section 7 in Chapter 1 demonstrates how a model for two neurons with mutual
interaction can be realized using dynamical systems. The same principles can be
extended to a continuous space in which neurons are identified by their spatial
coordinate x ∈ X, with X ⊆ Rn. Their activation is consequently given as a
function u : X × T 7→ R, and the connections between the neurons (i.e., the
equivalent to whv and wvh in the motion detection model) could be realized as a
convolution with an interaction kernel described by another continuous function.

The neural field model, introduced by Amari (1977), is such a model. Its
original purpose is to describe the behavior of neurons in cortical tissue from the
human brain. However, it is also used in the fields of autonomous robotics and
embodied cognition and for models of cognitive processes (Bicho et al., 2000; Jancke
et al., 1999; Erlhagen and Schöner, 2002). It is based on organizing the different
types of neurons into m layers, each of which contains only neurons of the same
type. Neurons in the layers are characterized by their spatial location x,1 along a
continuous feature dimension as introduced above, as well as their activation u at
time t. The change of the activation is specified by means of a dynamical system,
similar to the one used for the model given in Equation 1.33. For a neuron in layer
i, this dynamical system can be divided into the following additive components:

τi
∂

∂t
ui(x, t) = −ui(x, t) + interactioni(x, t) + resting leveli + input(x, t) , (2.1)

where τi is the timescale associated with the neuron’s layer, interactioni (described
in detail in Section 2) specifies how the activations of neurons in the field influence
those of others, and the resting leveli (see Section 1) specifies the activation level
in the absence of input (also described in Section 1). A neuron in this model is
usually considered active when its activation exceeds a preset threshold. In the
present work this threshold is set to zero, unless stated otherwise.

Over the course of the following sections, the components of Equation 2.1 are
explained based on the work in Amari (1977). Finally, the complete equation is
presented in Section 3, followed by some exemplary neural fields that highlight some
of the capabilities of the neural field model.

1. Resting Level and Input

The input of a neuron at the position x can change over time. In the absence
of any interaction, the field equation approximately2 reduces to the neuron model
u̇(t) = −u+h+ s(t) (described by Equation 1.17 in Section 4 of Chapter 1). While

1The model given by Amari (1977) does not explicitly specify the feature dimension as
a vector. In practice, multidimensional fields are often composed of one-layer networks with

activations and features represented as vectors, rather than having one layer for each feature
dimension (Erlhagen and Schöner, 2002). Even in Amari (1977), neurons are depicted on a two-
dimensional plane.

2As is detailed in Section 2, a sigmoidal function is used for the interaction. Therefore, there

is always some residual interaction in the neural field, but it approaches zero fast and is thus
disregarded in the discussion.
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positive input raises the activation level of the field, negative input lowers it. For
neural fields, the input of a neuron x is denoted as s(x, t) and usually satisfies
s(x, t) ≥ 0, where s(x, t) = 0 means no input.

The resting level, denoted by hi ∈ R, specifies the level of activation to which
the neurons relax in the absence of any input or interaction. The value of hi is
usually selected to be negative to avoid above-threshold activation in a field when
no input is present.

2. Interaction

The model for solving the motion correspondence problem presented in Chap-
ter 1 already contains an instance of interaction between neurons: the term −whv ·
f(uv(t)) in Equation 1.33 influences the rate of change of uh(t) if f(uv(t)) is suf-
ficiently different from zero. Depending on the selection of whv, this interaction
can shift the attractor of the system below the threshold, thereby suppressing the
activation of the neuron. In the motion-correspondence problem, this interaction
behavior called inhibition plays an important role: with appropriate selection of the
weights whv and wvh, inhibition can induce that at most one neuron is active at any
given time. Along with inhibition, neural fields also contain the opposite form of
interaction called excitation. Excitation, in the above example, would mean a pos-
itive influence on the activation of uh(t) (i.e., instead of uh(t) being lowered when
uv(t) is active, it would be raised). The realization of the concepts of excitation
and inhibition in neural fields are described in Section 2.1–Section 2.3.3.

2.1. The Nonlinearity. Only active neurons interact with other neurons. In
the previous example (see Section 7), a sigmoidal function is used to determine if a
neuron is active. However, other possibilities exist, and the function determining the
strength of the interaction based on a neuron’s activity is termed the nonlinearity.
Throughout the present work, the nonlinearity in the neural field is denoted by f .
Usually, it f maps from a real value representing the activation of a neuron to the
interval [0, 1], where 0 (or value close to it) is assigned to activation values that
are considered inactive, while 1 (or a slightly smaller value) is assigned to values
considered active.

Amari (1977) suggests using the step function as nonlinearity:

f(u) =

{
0 : u ≤ 0
1 : u > 0

. (2.2)

With the step function, neurons are considered to fire at their maximum rate if
their activation reaches a value greater than zero. Otherwise, they are considered
completely inactive (see Figure 2.1a).

Another possibility for the nonlinearity is the sigmoidal function shown in Equa-
tion 2.3.

f(u) =
1

1 + e−βu
. (2.3)

The parameter β ∈ R, with β > 0, controls the steepness of the transition, with
higher values resulting in a steeper transition, as is demonstrated by Figure 2.1b.
Asymptotically, this function behaves similar to the step function, but when the
activation of a neuron is close to the threshold value, there is a continuous transition
from inactivity to the full firing rate (or vice versa).

2.2. Inhibition and Excitation. Inhibition and excitation in neural fields
are modeled with an interaction kernel. This kernel describes the influence of a
neuron x in layer i on another neuron x′ in layer j and takes the form of a function
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Figure 2.1 The two different nonlinearities introduced in Section 2.1 are shown in
Figures 2.1a and 2.1b.
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(a) A plot for the step function introduced in Equation 2.2.
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(b) Plot for the sigmoidal function described by Equation 2.3. Different
values for β are used, indicating that a higher value for β results in a

steeper slope around u = 0.

wi,j(x,x
′; t − t′). Thus, the interaction component of the neural field equation is

given by

interactioni(x, t) =

m∑

j=1

∫

wi,j(x,x
′; t− t′)f

(
uj(x

′, t′)
)
dx′dt′ , (2.4)
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Figure 2.2 Plot for the one-dimensional Gaussian interaction kernel for different
values of σ.
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where f represents the nonlinearity as described in Section 2.1 and m denotes the
number of layers present in the neural field. The time difference t − t′ is used to
model the time that activation takes to spread in cortical tissue.

As with the weights −whv and −wvh of the model described in Section 7 of
Chapter 1, negative values in the interaction kernel lead to inhibition by lowering
the activation level of the attractor. Positive values have the opposite effect; they
raise the attractor level and consequently lead to excitation. Note that neurons
can also influence themselves in the case where i = j and x = x′; this is called
self-excitation: once a neuron becomes active, it further raises its own activation.

2.3. Interaction Kernels. Neural fields used in the present work are assumed
to be homogeneous, meaning that the interaction between two neurons no longer
depends on their exact positions, but only on their difference. The interaction kernel
is also assumed to be symmetric and the activation of neurons is taken to spread
instantaneously throughout the neural field (i.e., t − t′ = 0). These assumptions
allow for a simplification of Equation 2.4 to:

interaction′
i(x, t) =

m∑

j=1

∫

wi,j(x− x′)f
(
uj(x

′, t)
)
dx′ . (2.5)

2.3.1. The One-Dimensional Gaussian Interaction Kernel. This kernel is de-
fined by the probability density function of a normal distribution with mean zero
and variance σ2 (Bronstein et al., 2008):

wi,j(x) = ϕµ=0,σ(x) =
1

σ
√
2π

e
−x2

2σ2 . (2.6)

Since the Gaussian interaction kernel only generates values of zero or greater (see
Figure 2.2), it has no inherent inhibition. However, inhibition can be achieved by
subtracting a scalar value as described in Section 2.3.4.

2.3.2. The Mexican Hat Interaction Kernel. Often, interaction kernels have
positive values near 0 and negative values further away, meaning that neurons close
to each other have an excitatory connection while neurons further away have an
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Figure 2.3 Plot for the Mexican hat interaction kernel for different σ1 and σ2.
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Figure 2.4 Plot for the modified wizard-hat interaction kernel for different values
of σ.
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inhibitory one. An interaction kernel that realizes these properties is the Mexican
hat interaction kernel, introduced by Amari (1977). It is modeled after typical
interactions found in cortical tissues (Coombes, 2006). The kernel is given by

wi,j(x) = ϕ0,σ1
(x)− ϕ0,σ2

(x) , (2.7)

where σ1 < σ2. The two parameters can be used to adapt the reach of the in-
hibitory (σ1) and excitatory (σ2) connections among the neurons. Equation 2.7 is
plotted in Figure 2.3 for different values of σ1 and σ2.

26



CHAPTER 2. NEURAL FIELDS 3. THE NEURAL FIELD EQUATION

2.3.3. The Wizard-Hat. An interaction kernel called wizard-hat is proposed by
Coombes and Schmidt (2010). It is given by

wi,j(x) = (1− |x|)e−|x| . (2.8)

In the present work, a slightly modified version of Equation 2.8 is used that allows
for scaling of the width of the interaction kernel with the parameter σ ∈ R+:

wi,j(x) = (1− |σx|) e−|σx| . (2.9)

A plot of this function is shown in Figure 2.4.
2.3.4. Global Inhibition. When it is present, all neurons receive inhibitory in-

fluence in addition to the influence given by the interaction kernel. This is realized
by substituting the function for the interaction kernel with

w′
i,j(d) = wi,j(d)− γ , (2.10)

where γ ∈ R+ represents the strength of the global inhibition and wi,j(d) is an
interaction kernel that is usually zero (or very close to zero) outside of a region
[−σI , σI ]. When some neurons in a neural field with global inhibition become
active, the activity levels of all other neurons are lowered. If the amount of global
inhibition is chosen appropriately, only a small region of the neural field becomes
active, even if other regions receive a similar amount of input.

3. The Neural Field Equation

Summing up the concepts introduced in Section 1–2, the complete dynamical
system for a neuron x in layer i ∈ {1, . . . ,m} of a neural field is given by (Amari,
1977):

τi
∂ui(x, t)

∂t
= −ui(x, t) +

m∑

j=1

∫

wi,j(x− x′)f
(
uj(x

′, t)
)
dx′ + hi + s(x, t) . (2.11)

In Figure 2.5a, the capability to form so-called peaks (i.e., regions of above-
threshold activation, can be seen). Multiple peaks in the neural field’s activation
level u form based on peaks in the input. These input peaks could represent objects
tracked along a feature dimension, while the center of the peak in the activation of
the field represents the estimated position of an object in the feature space. Despite
the fact that one of the input peaks is broader and the other one stronger, both
result in peaks in the neural field’s actiation that show only small differences in
width due to the inhibitory sections of the wizard-hat interaction kernel.

Figure 2.5b shows properties called merging and self-sustained peaks. The for-
mer occurs when two input peaks overlap: instead of two peaks in the field’s ac-
tivation level, only one peak forms. The latter is the residue of a previous input
peak: even though no more input is present, a peak may still remain active and
stable.

Figure 2.6 illustrates the effects of global inhibition: even though two peaks
similar in shape and strength are present in the input, only one of them generates
above-threshold activation in the corresponding neurons. Global inhibition lowers
the other peak (and the activation of most other neurons), resulting in the field
“selecting” one of the two peaks.
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Figure 2.5 Plots of a one-layer neural field using the modified wizard-hat interac-
tion kernel. The parameters for the neural field varied during the experiments are
the timescale τ , the slope of the sigmoidal function β, the resting level of the field,
h, the global inhibition γ and the width of the interaction kernel σ.
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(a) Two input peaks are also present in the neural field’s activation. Despite the fact that
their widths are different, both exhibit only a small difference in their width in the neural field’s

activation. The parameters for the neural field are: τ = 10, β = 1, h = −4, γ = 0.001 and σ = 1.
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(b) Due to the selection of the field’s parameters, an input peak which is no longer present,
leaves a residual self-sustained peak in the neural field’s activation u. Two overlapping input
peaks are merged into one peak in the neural field. Its parameters are τ = 10, β = 1.8841,
h = −4.3448, γ = 0.001, and σ = 1.
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Figure 2.6 Plots displaying the ability of neural fields to perform selection. The
setup and parameters of the field are the same as described in Figure 2.5. The
main influence in selection is the global inhibition which suppresses other peaks if
an above-threshold peak is already present in the field’s activation u.
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(a) Selection with τ = 10, β = 1.8841, h = −4.3448, γ = 0.038204 and σ = 1.
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(b) Selection with the parameters τ = 10, β = 1.8841, h = −4.3448, γ = 0.11812 and σ = 1.
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CHAPTER 3

Conventions and Definitions

Although the reader is assumed to be familiar with the basic concepts of graph
theory, some are briefly described in this section in order to present the notation
used throughout the present work. For more in-depth information about the topic,
various sources can be found in the references (Bondy and Murty, 1976; Chartrand,
1985; Diestel, 2006).

1. Nodes, Edges and Graphs

Definition 3.1 (Directed graph). Following Chartrand (1985) and Seidel (1992), a
directed graph is defined as a pairing G = (V,E) where V is called the set of nodes
given as V = {n1, n2, . . . , nN}, and E is the relation E ⊆ V 2, where V 2 = V × V .
The elements in E are called edges, and each one describes a connection between
two nodes. In contrast to the literature, E may be reflexive for some of the graphs
in the present work (i.e., edges of the form (v, v) with v ∈ V are allowed).

Definition 3.2 (Undirected graph). A graphG = (V,E) is undirected if the relation
E is symmetric (i.e., (u, v) ∈ E ⇔ (v, u) ∈ E). In this case, (u, v) ∈ E ∨ (v, u) ∈ E
is shortened to {u, v} ∈ E or uv ∈ E.

Definition 3.3 (Subgraph). Let G = (V,E) be a graph as defined above. Then
G′ = (V ′, E′) is a subgraph of G if and only if G′ is a graph and V ′ ⊆ V ∧E′ ⊆ E.

Definition 3.4 (Incident edges, incident nodes and indegree). Let n be a node in
a directed graph G = (V,E). Then, the incident edges of the node n are given by
ζ(n) = {(u, n) ∈ E}. The size of this set, indeg(n) = |ζ(n)|, is called the indegree of
the node n. Similarly, the incident nodes of n are given as Γin(n) =

{
u
∣
∣(u, n) ∈ E

}
.

Definition 3.5 (Neighborhood). The neighborhood ΓG(n), or for short Γ(n), of a
node n in the graph G = (V,E) is defined as all nodes connected to it with an edge:
Γ(n) =

{
nj

∣
∣(n, nj) ∈ E ∨ (nj , n) ∈ E

}
.

2. Graphs with Associated Costs

In some graphs, costs are associated with the edges. For example, These costs
can represent the time it takes for a cargo to traverse the route between two points in
a transport network, where the points are represented as the nodes of the graph and
the possible routes between them are represented as edges. A graph with associated
costs is given in the form G = (V,E, c), where c : V 2 7→ R is the cost function.
In the present work, any (i, j) /∈ E is assigned the cost c(i, j) = ∞ by convention,
while for any v ∈ V , if (v, v) ∈ E, the cost is given as c(v, v) = 0.

3. Paths

Definition 3.6 (Path). Given a graph G = (V,E), a path is defined as a subgraph
P = (VP , EP ), with VP = {n1, . . . , nk} ⊆ V and EP ⊆ E of the form EP =
{n1n2, n2n3, . . . nk−1nk}, with ni ∈ VP . The node n1 is called the origin of the
path while nk is called the terminus (Bondy and Murty, 1976).
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The path P in Definition 3.6 is also denoted by P = 〈n1, n2, . . . , nk〉 specifying
only the ordered vertices of the path, implying an edge between the first and second
node, the second and third, and so on. Alternatively, if the intermediate nodes are
undetermined, the path is denoted by n1 −P→ nk.

Definition 3.7 (Costs of a path). According to Cormen et al. (2001), the costs
c(P ) of a path P = 〈n1, n2, . . . , nk〉 on a graph G = (V,E, c) with associated costs c

are defined as c(P ) =
k∑

i=2

c(ni−1, ni). If no cost function is associated with a graph,

the implicit cost function

c(u, v) =







0 : (v, v) ∈ E
1 : (u, v) ∈ E, u 6= v
∞ : (u, v) /∈ E

(3.1)

is assumed.

Definition 3.8 (Cycle and negative Cycle). A path C in a graph G with C =
〈n1, n2, . . . , nk, n1〉 and k ≥ 3 is called a cycle. If the costs of the path C are
negative, it is also called a negative cycle.

3.1. Shortest Paths.

Definition 3.9 (Shortest path costs). The shortest path costs for two nodes u, v
in a graph G are defined as

δ(u, v) =

{
min

{
c(P )

∣
∣u−P→ v

}
: there is a path from u to v in G

∞ : otherwise.
(3.2)

There are two forms of the problem of finding shortest paths (Cormen et al.,
2001): for a single source and target, or for all pairs in the graph.

Definition 3.10 (Single-source shortest path). For a graph G = (V,E), find a path
P ∗ with costs c(P ∗) that fulfills u−P ∗→ v and c(P ∗) = δ(u, v) for two given nodes
u, v ∈ V .

Definition 3.11 (all-pairs shortest paths). In a graph G = (V,E), find all paths
P ∗
uv with costs c(P ∗

uv), such that u −P ∗
uv→ v and c(P ∗

uv) = δ(u, v) for all pairs of
nodes u, v ∈ V .

There are various algorithms for solving the single-source shortest path problem
(e.g., Dijkstra’s algorithm, or the Bellman-Ford algorithm). In the present work,
only the all-pairs shortest paths problem is of relevance. Therefore, these algorithms
are not discussed further.

3.2. The Floyd-Warshall Algorithm. The all-pairs shortest paths problem
on a directed graph with associated costs G = (V,E, c) is often solved by means of
the Floyd-Warshall algorithm. This algorithm runs in O

(
|V |3

)
time and is known

to be correct for all graphs that do not contain negative cycles (Cormen et al., 2001).
The basis for the algorithm is a recursive restatement of the all-pairs shortest paths
problem.

First, the intermediate vertices of a path P = 〈v1, v2, . . . , vl−1, vl〉 are defined
as all vertices on the path except the origin and the terminus (i.e., all vertices in
the set {v2, . . . , vl−1} are the intermediate vertices of P ). Assuming, without loss of
generality, that V = {1, . . . , n}, the all-pairs shortest paths problem can be solved
by iteratively calculating Equation 3.3 for all pairs i, j, k ∈ V :

(D)
(k)
i,j =

{
c(i, j) : k = 0

min
{

(D)
(k−1)
i,j , (D)

(k−1)
i,k + (D)

(k−1)
k,j

}

: k ≥ 1
, (3.3)
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where D(k) is a matrix of path costs (or lengths), and each element (D)
(k)
i,j specifies

the length of the shortest path leading from the node i to the node j using only

the intermediate vertices {1, . . . , k}. Thus, D(n), also referred to as the distance
matrix, specifies the shortest path costs for all pairs of nodes.
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CHAPTER 4

The Neural Field Graph Model

This model contains two main components: the first one is an undirected graph
obtained by sub-sampling an input space or clustering a high-dimensional data set
using an algorithm like the Growing Neural Gas (Fritzke, 1995). The second one
is an activation value associated with each node in the graph. The change of
the activation values over time is modeled with a dynamical system based on an
adapted version of the one used by the neural field model presented in Chapter 2.
However, the interaction component of the adapted dynamical system is no longer
determined by the distance in a feature space, as is the case in the neural field
equation, but rather by the topology of the graph, coupled with a weight function
that is based on sampling an interaction kernel. From such a neural field graph,
an extended one is constructed on which all calculations for the simulation of the
dynamics are performed in order to reduce the computational complexity.

This chapter begins with the formalization of these concepts, followed by a
description of the process of sampling the synaptic weights from the edges of the
neural field graph, and adapting them to the potential imbalance caused by differ-
ences in the topology surrounding each neuron. Here, the concept of the extended
neural field graph is formalized, including a more efficient version of the equation
used for the update of the activation values.

Once the model is established, its asymptotic stability is analyzed, starting with
the general case. Only a few general statements are found, therefore, some more
specific cases are examined in order to generate an understanding of the influence
and effects of the parameters of the model, comprised mainly by the weights between
neurons, the global inhibition and the input and resting level.

Finally, efficient versions of the algorithms involved in constructing and simu-
lating neural field graph and its extended counterpart are specified, together with
an analysis of their complexity.

1. Adaptation of the Neural Field Equation

Definition 4.1 (Neural field graph). Let G = (V,E) be an undirected graph and
u : V × T 7→ R. Then a neural field graph is given as F = (G, u). The graph
nodes are given as V = {vi1,1, vi2,2, . . . , viN ,N}, with in ∈ {1, . . . ,m} = M and
n ∈ {1, . . . , N}. The set E represents the edges in the graph according to the
definition in Chapter 3.

The function u specifies the activation state of a node at time t. Each node
together with its activation value forms a neuron in the neural field graph, thus
edges in a neural field graph are also referred to as synapses. The first index i ∈M
of a neuron vi,j specifies its layer, while the second index j ∈ {1, . . . , N} identifies
the neuron. For notational convenience, the following definition is made

layer(vi,j) = i. (4.1)

Formally, a layer in a neural field graph is defined as follows:
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Figure 4.1 Demonstration of implicit symmetry. The three neurons in the neural
field graph depicted below represent features located at x1, x, and x2 (such a
relation of neurons to features is not generally present, nevertheless, it is assumed
to be known for this example). In a neural field, the interaction kernel would be
sampled for negative and positive values when the interaction between x and x1 and
between x and x2 is determined. In the neural field graph, only positive distances
occur. Therefore, the neurons corresponding to x1 and x2 would both produce
interaction sampled from positive feature difference values due to the definition of
the sampling in Equation 4.3.

feature dimension

x1 − x < 0 x2 − x > 0

δ = 1 δ = 1

x1 x x2

graph structure

Definition 4.2 (Layer). Given a neural field graph F = (G, u), a layer is a sub-
graph Lm = (Vm, Em) of G = (V,E), where m ∈ M , Vm =

{
v ∈ V

∣
∣layer(v) = m

}

and Em =
{
{k, l} ⊆ E

∣
∣k, l ∈ Vm

}
.

Then, the neural field equation presented in Chapter 2 can be restated for the
activation of a neuron v on layer i in the neural field graph as

τi
∂

∂t
u (v, t) = −u (v, t) +

m∑

l=1

∑

v′∈Vl

ŵi,l(v
′, v)f

(
u (v′, t)

)
+ hv + s (v, t) , (4.2)

where ŵi,l : V × V 7→ R is the function used for sampling the interaction kernel
(detailed in Section 2) and f is the nonlinearity. Similar to the model presented
by Amari (1977), hv represents the resting level of the neuron v, while s (v, t)
denotes its input at time t. In the present work, the nonlinearity is assumed to be
a sigmoidal function because of its analytical properties, but other functions with
similar behavior may be used instead.

2. Sampling the Interaction Kernel

The interaction kernel wi,j is sampled to determine the strength of the connec-
tion between two neurons. In the neural field model (see Chapter 2), the strength
depends on the difference between the positions of the neurons in the feature space.
Such a space is no longer present in the neural field graph model. Consequently,
it does not rely on a feature difference, but rather on the distance of neurons in
the graph’s topology. Formally, the weight between two neurons v1 and v2 with
layer(v1) = i and layer(v2) = j is determined as

ŵi,j(v1, v2) = ŵi,j(δ(v1, v2)) = µ · wi,j(σ · δ(v1, v2)), (4.3)

where σ ∈ R+ scales the interval between samples, µ ∈ R+, and δ describes the costs
of the shortest path in accordance with Definition 3.9. Note, that the cost function
for the graph is assumed to be the implicit cost function described by Equation 3.1.
Because δ ≥ 0, it follows that only the positive side of the interaction kernel is
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sampled. Implicitly, this is similar to the assumption of a symmetric interaction
kernel made by Amari (1977), as explained in Figure 4.1.

The factor µ is introduced to compensate for the loss of interaction due to the
proposed sampling method. For example, if a Gaussian kernel is used, then it is
known that

∞∫

−∞

wi,j(x)dx = 1 . (4.4)

Thus, µ might be selected so that the following equation is fulfilled:

µ · wi,j(0) + 2 ·
∞∑

d=1

µ · wi,j(σ · d) = 1. (4.5)

3. Global Inhibition

Recall that in neural fields, global inhibition is achieved by substituting the
interaction kernel with w′(x) = w(x) − γ. Similarly, global inhibition in a neural
field graph is realized by setting ŵ′

i,j(v1, v2) = ŵi,j(v1, v2)− γ. For the interaction
component of Equation 4.2, this means that the following restatement can be made
for a neuron v on layer i:

interactioni(v) =
m∑

l=1

∑

v′∈Vl

ŵ′
i,j(v

′, v)f
(
u (v′, t)

)

=
m∑

l=1

∑

v′∈Vl

(

ŵi,l(v
′, v)− γ

)

f
(
u (v′, t)

)

=

m∑

l=1

∑

v′∈Vl

(

ŵi,l(v
′, v)f

(
u (v′, t)

)
− γf

(
u (v′, t)

))

=

m∑

l=1

∑

v′∈Vl

ŵi,l(v
′, v)f

(
u (v′, t)

)
−

m∑

l′=1

∑

v′∈Vl′

γf
(
u (v′, t)

)

︸ ︷︷ ︸

global inhibition term γi(t)

. (4.6)

Because each neuron in the neural field graph is assigned to exactly one layer, and
both sums in the global inhibition term iterate over each neuron in every layer, it
follows that the sums iterate over all neurons. Additionally, the terms in the sums
do not depend on the layer, but only on the current neuron of the iteration. Thus,
the global inhibition term γi(t) in Equation 4.6 can further be simplified to

γi(t) = −
m∑

l′=1

∑

v′∈Vl′

γf
(
u (v′, t)

)

= −γ
∑

v∈V

f
(
u (v, t)

)
. (4.7)

Because γi(t) no longer depends on the layer i, a global term γg(t) = γi(t) is
defined. During the update of the activation of a neuron in the neural field graph,
the interaction no longer needs to be calculated by sampling the weight function
for all neurons in the graph, but instead only for the ones that have a distance less
than a predetermined δmax selected according to

δmax = argmin
d∈N

{|ŵi,j(d
′)| < ε ∀ d′ > d} (4.8)

for a given small, positive value ε ≈ 0. Thus, the global inhibition can be calculated
separately from the general interaction with Equation 4.7.
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4. Constructing Extended Neural Field Graphs

From a given neural field graph F = (G, u) with G = (V,E), an extended neural
field graph F e (or extended graph) is constructed in order to lower the computational
requirements of the simulation of the graph’s dynamics. It is defined as

F e =
(
Ge, u, w

)
, (4.9)

where

Ge = (V,Ee) (4.10)

is a directed graph extending G and u : V × T 7→ R. As before, u represents the
activation of the neurons. The extended set of synapses is constructed as

Ee =
{
(v2, v1)

∣
∣v1, v2 ∈ V ∧ δ(v1, v2) ≤ δmax

}
, (4.11)

where δ(v1, v2) is the length of the shortest path between v1 and v2 in G (see
Chapter 3) and δmax limits the distance for the spread of activity (barring the
spread via global inhibition). The function w : Ee 7→ R stores the extended synaptic
weights between two neurons which is calculated according to the sampling method
described in Section 2:

w(vj,l2 , vi,l1) = ŵl1,l2(vi,l1 , vj,l2) . (4.12)

The global inhibition is not included here and is calculated separately with the
method given in Section 3.

Finally, the dynamical system for the activation of a neuron v on the layer i is
given by

τi
∂

∂t
u (v, t) = −u (v, t) +

∑

v′∈Γin(v)

w(v′, v)f
(
u (v′, t)

)
+ hv + s (v, t) + γg(t) . (4.13)

Note, that with this dynamical system only the incident neighbors Γin(v) of a
neuron v in Ge have to be considered. Additionally, the term γg(t) is always the
same across all neurons, and therefore only has to be calculated once for each
update. If δmax =∞, then it is equivalent to the one in Equation 4.2.

5. Balancing the Weights

Consider two nodes na and nb in an extended neural field graph; let na be
influenced by six inhibitory connections from other nodes and nb only by three.
Additionally, let the synaptic weights of all those influences have the same value w.
If all neurons influencing na and nb were active, this would create an imbalance:
na would receive inhibition of strength 6 ·w (neglecting for a moment that it would
actually be a little less due to the sigmoidal nonlinearity), while nb would receive
only 3 · w. Depending on the purpose of the neural field graph, this may either be
desired or lead to inappropriate behavior. For example, if the selection of a neuron
is desired and all neurons should react to input in the same manner, then the latter
is the case: neurons with a higher amount of inhibitory connections would be at a
disadvantage (i.e., they would potentially need more input to be selected as opposed
to those with fewer connections of this kind).

This imbalance may be corrected by modifying the weights accordingly. Con-
tinuing the above example, the inhibition passed to nb should be doubled in order
to achieve equal amounts of inhibition for both neurons. To formalize this concept
for cases with more than two neurons, the weight-based indegree of a neuron v1 for
any given weight class ω is defined as

indegω,l1(v1) =
∣
∣
{
(v2, v1) ∈ Ee

∣
∣w(v2, v1) = ω ∧ layer(v2) = l1

}∣
∣ , (4.14)
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and the upper limit of the weight-based indegree between layers l1 and l2 as

λω,l1,l2 = max
{
indegω,l2(v)

∣
∣v ∈ V, layer(v) = l1

}
. (4.15)

Then the synaptic imbalance of a neuron v on the layer lv, stemming from neurons
on layer l, can be determined as

aω,l(v) =
indegω,l(v)

λω,lv,l
(4.16)

for a given weight class ω. Each weight in the extended graph can then be balanced
by setting

w′(v1, v2) =
w(v1, v2)

aw(v1,v2),l1(v2)
=

w(v1, v2) · λw(v1,v2),l1,l2

indegw(v1,v2),l1(v2)
(4.17)

as the synaptic weight for all (v1, v2) ∈ Ee. Equation 4.17 requires that the con-
dition indegω,l(v) 6= 0 is fulfilled, which is true because at least one synapse that
meets the prerequisites exists, namely the one being balanced.

6. Peak Detection

In neural fields, peaks in the activation and their centers can be detected using
information on the location of neurons in the feature space. For the neural field
graph model, such information is not present. Instead, it uses the information
encoded in the neural field graph’s topology. Therefore, the concept of an active
subgraph is introduced in order to delimit connected regions in the graph that are
considered a peak.

Definition 4.3 (Active subgraph). Let F = (G, u) be a neural field graph with
the neurons V and the synapses E. An active subgraph FA of F is defined as a
subgraph FA = (VA, EA) of G with

VA =
{
v ∈ V

∣
∣u(v) > 0

}
(4.18)

and

EA =
{
(v1, v2) ∈ E

∣
∣v1, v2 ∈ VA

}
. (4.19)

An active subgraph can be divided further into one or more connected com-
ponents.1 Each component is denoted by F i

A with i ∈ {1, . . . , na} and represents
at least one peak. The first two peak detection methods presented below further
restrict this by assuming that each component of the active subgraph represents
exactly one peak in the activation function.

Given the preceding definitions, the following criteria can be used to find the
neurons pi representing the center of the peaks described by the component F i

A of
an active subgraph FA.

6.1. Distance-Minimizing Center. For this criterion, the neuron pi is se-
lected according to

pi = argmin
p∈F i

A

{
i∑

v∈FA

δ(p, v)

}

. (4.20)

For each component of the active subgraph, this criterion selects the neuron mini-
mizing the distance to all other neurons within the same component.

1The case in which no neurons are active is disregarded here because no peaks need to be
detected in it.
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6.2. Activity-Maximum. This criterion selects the neuron pi as the one with
the maximum activation inside the component of the active subgraph:

pi = argmax
p∈F i

A

{u (p, t)} . (4.21)

6.3. Local Activity Maximum. The criteria described in Section 6.1 and
Section 6.2 both select exactly one neuron per component of the active subgraph.
However, experiments described in Part 4 suggest that this is not always desirable.
Therefore, a third criterion is introduced in this section.

Rather than searching for the global optimum in each component like the
activity-maximum criterion, the local activity maximum criterion is inspired by
the notion of local maxima in analysis. It operates on all neurons of the active
subgraph and does not distinguish between its components. Let n be an active
neuron. Then n is considered a peak center (or part thereof) exactly if

u(n, t) ≤ u(n′, t) ∀ n′ ∈ ΓG(n) . (4.22)

Note that the equality is allowed here because otherwise plateaus (i.e., neurons for
which one or more neighbors have the same activation value while the remaining
neighbors have a smaller value) would not be selected. However, this also means
that in such a case, all neurons in this plateau are selected as peak centers. If this is
not desired, then the distance-minimizing center (see Section 6.1) could be selected
among all the neurons that are part of a plateau.

7. Stability Analysis

Let N = |V | be the number of neurons in a given extended neural field graph,
and the neurons be numbered arbitrarily as {1, . . . , N}. For the stability analysis,
the dynamical systems used for the update of the neurons’ activation values are
rewritten to one system in vector form:

τ ◦ ∂u(t)
∂t

= −u(t) +W · f
(
u(t)

)
+ h+ s(t) . (4.23)

In Equation 4.23, u(t) = (u1(t), . . . , uN (t))T contains the activation value for each
neuron, h = (h1, . . . , hN )T represents the resting levels, the function f represents
the component-wise application of the nonlinearity and τ = (τ1, . . . , τN )T denotes
the time scales. Note, that the time scales in this form are given per neuron instead
of per layer, thus they have to be mapped accordingly. For example, for a neuron
v assigned to the index i, the corresponding entry in the vector of time scales is
τi = τl, where τl is the timescale of layer l = layer(v) in the neural field graph.
Furthermore, the entries of the weight matrix are given as

(W )i,j = w(vj , vi)− γ, (4.24)

with w(j, i) being the (possibly balanced) synaptic weight between the neurons
assigned the indices j and i, and as before, the global inhibition strength γ. On
the left-hand side of Equation 4.23, component-wise multiplication is used for the
time scale:

(x ◦ y)i = xi · yi. (4.25)

For the analysis, the input is assumed to be constant over time (i.e., s(t) = s),
and c = h+ s, leading to the basic system equation

τ ◦ ∂u(t)
∂t

= −u(t) +W · f
(
u(t)

)
+ c . (4.26)
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7.1. Properties of the Sigmoidal Function. The derivative of the nonlin-
earity is required for discussing the solutions of the system given by Equation 4.26
and their stability. Because the sigmoidal function is used, it is given by

d

dx
f(x) =

d

dx

1

1 + e−βx

=
βe−βx

1 + 2e−βx + e−2βx

=
βe−βx

e−βx · (eβx + 2 + e−βx)

=
β

1 + eβx
︸ ︷︷ ︸

1/f(−x)

+1 + e−βx

︸ ︷︷ ︸

1/f(x)

. (4.27)

The sigmoidal function is also symmetric:

f(−x) = 1

1 + eβx
=

1

(1 + e−βx)eβx

=
e−βx

1 + e−βx
=

1 + e−βx − 1

1 + e−βx

=
1 + e−βx

1 + e−βx
︸ ︷︷ ︸

1

− 1

1 + e−βx
︸ ︷︷ ︸

f(x)

⇔ f(−x) = 1− f(x) . (4.28)

With this result, Equation 4.27 can be rewritten further:

d

dx
f(x) =

β
1

f(−x) +
1

f(x)

=
β

1
1−f(x) +

1
f(x)

=
β

f(x)+(1−f(x))
(1−f(x))·f(x)

= β(1− f(x))f(x) . (4.29)

This solution is also shift-invariant (Oppenheim and Schafer, 1975):

d

dx
f(x+ a) =

df(x)

dx

∣
∣
∣
∣
x=x+a

·
(

d

dx
(x+ a)

)

= βf(x+ a)(1− f(x+ a)) , (4.30)

where a ∈ R is the parameter representing the shift.

7.2. Stationary Solutions. To determine the stationary solution u0(t), zero
change in all dimensions is assumed for Equation 4.26:

τ ◦ ∂u0(t)

∂t
= 0

⇒ 0 = −u0(t) +W · f(u0(t)) + c

⇔ u0(t) = W · f(u0(t)) + c . (4.31)

During the present work, Equation 4.31 is also referred to as the basic fixed point
equation of the neural field graph model.
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According to Equation 4.31, the space of possible fixed points is limited by the
following considerations: f always maps to values in the interval [0, 1]. Thus, values
of f(u0) are contained in an N -dimensional hypercube given by

Pf (v) =

N∑

j=1

vj · ej , (4.32)

with vectors v ∈ [0, 1]N and ej ∈ RN defined as

(ej)k =

{
1 : j = k
0 : j 6= k

. (4.33)

Therefore, any stationary point u0 that satisfies Equation 4.31 is always located
inside the linearly transformed hypercube offset by c:

P ′
f (v) =

N∑

j=1

vj ·W · ej + c = W · v + c . (4.34)

7.3. Stability of a Stationary Point. Suppose that u0(t) = u0 is a station-
ary point.2 Then, we can look at small deviations from u0 given by

ξ(t) = u(t)− u0 ⇔ u(t) = ξ(t) + u0 . (4.35)

The derivative of ξ(t) with respect to t is

∂

∂t
ξ(t) =

∂

∂t
u(t) . (4.36)

Inserting Equation 4.35 and 4.36 into Equation 4.26 shows that

τ ◦ ∂

∂t
u(t) = −ξ(t)− u0 +W · f(u0 + ξ(t)) + c

︸ ︷︷ ︸

g(ξ(t))

. (4.37)

A Taylor expansion of g around ξ(t) = 0 yields

g(ξ(t)) = g(0) + Jg(0) · ξ(t) +O(ξ2(t)), (4.38)

where Jg(0) is the Jacobian matrix of g evaluated at 0. Because u0 fulfills Equa-
tion 4.31, W · f(u0) can be derived from the equation as

W · f(u0) = u0 − c . (4.39)

Thus, g(0) is

g(0) = −u0 +W · f(u0) + c

= −u0 + (u0 − c) + c

= 0 . (4.40)

According to McMillen (2008), the entries of the Jacobian matrix in Equation 4.38
are given by

(Jg)i,j =
∂gi

∂ξj(t)
. (4.41)

2Although it is possible that the stationary point changes over time (e.g., if bifurcations and

other transient states occur because of changing input), these cases are not treated here because
they exceed the scope of the present work.
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For i = j, Equation 4.41 becomes

(Jg)i,i =
∂gi

∂ξi(t)

= −1 + ∂

∂ξi(t)

l∑

k=1

(W )i,l · f
(
u0,l + ξl(t)

)
. (4.42)

Using the shift-invariance of the derivative of the sigmoidal function, this result can
further be derived as

(Jg)i,i = −1 + β · (W )i,i · f
(
u0,i + ξi(t)

)
·
(

1− f
(
u0,i + ξi(t)

))

︸ ︷︷ ︸

=µi,i(u0,ξ)

. (4.43)

Similarly, for i 6= j

(Jg)i,j =
∂gi

∂ξj(t)

=
∂

∂ξj(t)

l∑

k=1

(W )i,l · f
(
u0,l + ξl(t)

)

= β · (W )i,j · f
(
u0,j + ξj(t)

)
·
(

1− f
(
u0,j + ξj(t)

))

︸ ︷︷ ︸

=µi,j(u0,ξ)

. (4.44)

Thus, µi,j in Equation 4.43 and 4.44 is defined as

µi,j(u0, ξ(t)) = β (W )i,j f
(
u0,j + ξj(t)

)(
1− f(u0,j + ξj(t))

)
− δi,j , (4.45)

where δi,j = 1 for i = j, and δi,j = 0 otherwise, is the Kronecker delta (Bronstein
et al., 2008). Because the Jacobian matrix is evaluated at ξ(t) = 0, the same is
applied to µi,j , yielding

µi,j(u0,0) = β (W )i,j f
(
u0,j

)(
1− f(u0,j)

)
− δi,j . (4.46)

Thus, the matrix M(u0) ∈ RN×N is defined as

(M(u0))i,j = µi,j(u0,0) . (4.47)

Dropping all terms of quadratic or higher order and inserting Equation 4.40 into
Equation 4.38, the Taylor expansion is approximated by

g(ξ(t)) = M(u0) · ξ(t)

⇒ τ ◦ ∂

∂t
ξ(t) = M(u0) · ξ(t)

⇔ ∂

∂t
· ξ(t) = 1

τ
◦M(u0)

︸ ︷︷ ︸

=A(u0)

·ξ(t) . (4.48)

The entries in the matrix A(u0), hereafter also referred to as the stability matrix,
are given by

(A(u0))i,j =
1

τi
· (M(u0))i,j =

1

τi
· µi,j(u0,0), (4.49)

in accordance with the definition for the componentwise multiplication given in the
Appendix. As shown in Jetschke (1989), the stability of the system now depends
on the real parts of the N (not necessarily different) Eigenvalues λ1, . . . , λN of the
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matrix cA(u0), the complexification of the matrix A(u0). The conditions for a
stable point of the system are

R (λi) ≤ 0 ∀1 ≤ i ≤ N

⇒ lim
t→∞

τ ◦ ∂ξ(t)
∂t

= 0. (4.50)

Likewise, for an unstable point, they are

∃λi : R (λi) > 0

⇒ lim
t→∞

∣
∣
∣
∣
τ ◦ ∂ξ(t)

∂t

∣
∣
∣
∣
=∞ . (4.51)

7.4. A Subset of Fixed Points and Networks. General statements about
stationary solutions of the basic fixed point equation seem difficult because they
depend on the actual properties of a neural field graph (i.e., the weight matrix,
input, resting levels and time scales must be known). However, some properties can
be derived given certain restrictions. These properties, along with the restrictions
they require, are introduced in the following sections.

7.4.1. Strong Activity. One of the restrictions stems from the fact that with
the sigmoidal function as nonlinearity all synapses always have at least a small,
remaining influence on the neurons they are connected to, even if the activations
of the neurons they originate from are far below threshold. In the opposite case,
the interaction is never fully realized because the sigmoidal function never becomes
exactly one, but always stays slightly below it. Aiming at an approximation for the
sigmoidal nonlinearity in these situations, the concept of strong activity is defined.

Definition 4.4 (Strongly active and inactive neuron states, strong activity). A
neuron j is considered strongly active if

f(uj(t)) ≥ 1− ε (4.52)

for some small ε ∈ R+. Conversely, a strongly inactive state is defined by

f(uj(t)) ≤ ε . (4.53)

When a neuron is either strongly active or strongly inactive, this is also referred to
as strong activity.

Substituting uj(t) = uact(t), Equation 4.52 yields that a neuron is strongly
active if

f(uact(t)) ≥ 1− ε

⇔ 1

1 + e−βuact(t)
≥ 1− ε

⇔ 1

1− ε
− 1 ≥ e−βuact(t)

⇔ uact(t) ≥ −
1

β
ln

(
1

1− ε
− 1

)

⇔ uact(t) ≥ −
1

β
ln

(
ε

1− ε

)

⇔ uact(t) ≥ −
1

β

(
ln(ε)− ln(1− ε)

)
. (4.54)
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Conversely, for strong inactivity with uj = uinact(t), Equation 4.53 yields the sym-
metric result

f(uinact(t)) ≤ ε

⇔ 1

1 + e−βuinact(t)
≤ ε

⇔ 1

ε
− 1 ≤ e−βuinact(t)

⇔ uinact(t) ≤ −
1

β
ln

(
1

ε
− 1

)

⇔ uinact(t) ≤ −
1

β
ln

(
1− ε

ε

)

⇔ uinact(t) ≤ −
1

β

(
ln(1− ε)− ln(ε)

)
. (4.55)

As a consequence, whenever a neuron j exhibits strong activity, the slope of
the sigmoidal function at its state can be approximated by

df(uj(t))

duj(t)
= β · f(uj(t)) · (1− f(uj(t))) ≈ 0 , (4.56)

because either f(uj(t)) ≈ 0, or 1− f(uj(t)) ≈ 0, if the value for ε is selected accord-
ingly. The corresponding j-th column in the stability matrix is thus approximated
by

(A)i,j =
1

τi

(

β · (W )i,j ·
df(uj(t))

duj(t)
− δi,j

)

≈ − 1

τi
δi,j ∀i ∈ {1, . . . , N} . (4.57)

If the above approximation holds for all neuron states in an activation vector u and
the vector fulfills the basic fixed point equation (Equation 4.31), it follows that

A(u) ≈ − diag

(
1

τ1
, . . . ,

1

τN

)

. (4.58)

In other words, A(u) can be approximated by a scaling matrix. Thus, its complexi-
fication has the trivial Eigenvalues − 1

τ1
, . . ., − 1

τN
. Therefore, any point that fulfills

the basic fixed point equation and contains only strong activation values is also

stable because, per definition, τi > 0 and thus R
(

− 1
τi

< 0
)

for all i ∈ {1, . . . , N}.
7.4.2. Single Peak Solutions. The goal in this section is to extract the circum-

stances for the existence of a stationary point u for which only one entry is above
the threshold, i.e., a stationary solution u restricted to

ui

{
> 0 : i = k
< 0 : otherwise

(4.59)

for some k ∈ {1, . . . , N}. Furthermore, it is assumed that all neurons described by
u exhibit strong activity, specifically that uk is strongly active and ui is strongly
inactive for i 6= k. Therefore, if u fulfills the basic fixed point equation, it is also a
stable state due to Equation 4.58. From the constraints on the activity, if follows
that

(f(u))i ≈
{

1 : i = k
0 : otherwise.

(4.60)

Inserting this into the basic fixed point equation yields

u = W · f(u) + c

≈W · (0, . . . , 0, 1, 0, . . . , 0)T + c .

= (W )·,k + c . (4.61)

45



CHAPTER 4. THE NEURAL FIELD GRAPH MODEL 7. STABILITY ANALYSIS

Switching to index notation and expanding the definition of c, the following relation
can be derived for u:

ui ≈ (W )i,k + si + hi . (4.62)

From the conditions for the strong inactivity it follows that for i 6= k

(W )i,k + si + hi ≈ ui < −
1

β
(ln(1− ε)− ln(ε)) (4.63)

and

(W )k,k + sk + hk ≈ uk > − 1

β
(ln(ε)− ln(1− ε)) . (4.64)

7.4.3. Maximum-Slope Single Peak Solutions. In Section 7.4.2, the influence of
changes in the activation are negligible because of the assumption of strong activity,
resulting in A(u) being a diagonal matrix as given in Equation 4.58. In the present
case, solutions for which there exists a k such that the value of f ′(u0,k) becomes
maximal are investigated. All other conditions are the same as in Section 7.4.2.

As an analysis of minima and maxima reveals, f ′(u) becomes maximal at u = 0.
The value at this point is

f ′(0) = β · f(0) · (1− f(0)) = β · 1
2
·
(

1− 1

2

)

=
β

4
. (4.65)

Therefore, we assume that u0,k = 0. From the basic fixed point equation if follows
that

u0 = W · f(u0) + c

≈W ·
(

0, · · · , f(uk) = f(0) =
1

2
, · · · , 0

)T

+ c

⇒ u0,i ≈
1

2
(W )i,k + ci ∀ i . (4.66)

Inserting the condition that u0,k = 0 into Equation 4.66 reveals that (W )k,k ≈ −2ck.
The stability matrix becomes

(A)i,j =

{

− δi,j
τi

: j 6= k
β
τi
· (W )i,k · β4 − δi,k = β2

4τi
· (W )i,k −

δi,j
τi

: j = k
(4.67)

To calculate the eigenvalues of cA(u0), the following system of equations needs to
be solved:

(i 6= k) −vi
τi

+

(
β2

4τi
(W )i,k

)

· vk = λ · vi (4.68)

and −vk
τi

+

(
β2

4τk
(W )k,k −

1

τk

)

· vk = λ · vk

⇔ vk ·
(

β2

4τk
(W )k,k −

2

τk

)

= λ · vk . (4.69)

From Equation 4.69 it follows that there are two cases:

vk 6= 0: In this case, Equation 4.69 means that the eigenvalue corresponding to
the eigenvector is

λ =
β2

4τk
(W )k,k −

2

τk
. (4.70)

The remaining vi can then be calculated by inserting the eigenvalue and
vk into Equation 4.68.
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vk = 0: In this case, Equation 4.68 states3 that

λ = − 1

τi
. (4.71)

The real part of the eigenvalue in Equation 4.71 is always negative. Therefore,
because of Equation 4.70, the stability of the fixed point only depends on the value
of (W )k,k ≈ −2ck, β and τk. It follows that

0 < λ =
β2

4τk
(W )k,k −

2

τk
≈ − β2

2τk
ck −

2

τk

⇒ ck < − 4

β2
. (4.72)

Thus, u0 as described above is stable if Equation 4.72 is true.

8. An Efficient Algorithm for the Construction and Update of the

Extended Neural Field Graph

Although no general statements can be made about the structure of the neural
field graphs, graphs containing a large number of neurons and only a small num-
ber of edges likely result in sparse extended graphs when δmax is relatively small.
Therefore, the algorithms presented here are based on graphs stored as adjacency
lists. Although disadvantageous for the construction of the field graph (where an
adjacency matrix has to be constructed from the lists in order to calculate the short-
est path lengths using the Floyd-Warshall algorithm), this type of data structure
allows for iteration of all incident neurons — one of the tasks repeated frequently
during the graph update (see Section 8.2) — in linear time. The construction on
the other hand is only performed once. Therefore, the decrease in performance due
to the adjacency list storage is considered less relevant.

8.1. Direct Weight Balancing. In order to calculate the balanced weights
w′ for synapses in the extended neural field graph without prior knowledge of the
unbalanced weights w, we use that from the definition

w(u, v) = ŵi,j(u, v) = µ · wi,j(σ · δ(v, u)) . (4.73)

it follows that

w(u, v) = w(u′, v′)⇐ δ(v, u) = δ(v′, u′) (4.74)

for neurons u, v, u′, v′ that satisfy i = layer(u) = layer(u′) and j = layer(v) =
layer(v′). Given the reverse mapping of the (possibly non-injective) weight func-
tion,

w−1
i,j (ω) =

{
δ
∣
∣wi,j(δ) = ω

}
, (4.75)

Equation 4.14 can be rewritten to

indegω,l(v) =
∣
∣
{
(u, v) ∈ Ee

∣
∣∀δ(v, u) ∈ w−1

i,j (ω) ∧ layer(u) = l
}∣
∣ . (4.76)

Although Equation 4.76 requires inverting the weight function, this can be done
more efficiently by sampling the weight at the relevant distance values given as
d ∈ {0, . . . , δmax} ⊆ N and calculating the reverse mapping of those values once,
before the construction process. The number of neurons meeting the criterion
can then be counted from the distance matrix D, and λω,l1,l2 can be calculated
accordingly.

3This holds for at least one vi with vi 6= 0. Such a vi always exists because otherwise v

would be 0, and thus by definition not an eigenvector.
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Algorithm 4.1 constructBalancedF ieldGraph(Fin = (Vin, Ein), δmax, µ, σ)

The symbols used are M = {1, . . . ,m}, the set of layers; wi,j , the interaction
kernel between layers i and j.

Require: Vin = (v1, . . . , vn)
1: (D)k,l ← δ(k, l), ∀ k, l ∈ Vin

2: for (k, l) ∈M ×M = M2 do

3: for d = 0 to δmax do

4: ŵk,l,d ← µ · wk,l(σ · d)
5: r, λ← preBalance(ŵ,M, δmax,D)
6: F ← (V = Vin, E = ∅)
7: for all {v} ∈ Vin do

8: connect(v, Fin, F )

Algorithm 4.2 preBalance(ŵ,M, δmax,D)

1: for (i, j) ∈M2 do

2: Wi,j ← ∅
3: for d = 0 to δmax do

4: w ← ŵi,j,d

5: Wi,j ←Wi,j ∪ w
6: ri,j(w)← ri,j(w) ∪ d
7: for (i, j) ∈M2 do

8: for w ∈Wi,j do

9: λw,i,j ← max
∣
∣
∣

{

(k, l) ∈ V 2
∣
∣ (D)k,l ∈ ri,j(w), layer(k) = i, layer(l) = j

}∣
∣
∣

10: return r, λ

Algorithm 4.3 connect(v, Fin = (V,Ein), F = (V,E)). This algorithm is a modi-
fied graph exploration algorithm similar to Breadth First Search.

Require: v ∈ V
1: S ← {v}, H ← ∅
2: repeat

3: u′ ∈ S, S ← S \ u′

4: if u′ ∈ H then

5: continue from line 3
6: else

7: H ← H ∪ {u′}
8: for all u ∈ ΓFin

(u′) do
9: d← (D)v,u

10: if d ≤ δmax then

11: S ← S ∪ u
12: w ← ŵlv,lu,d

13: lv ← layer(v), lu ← layer(u)
14: a← aw,lu(v)
15: w′ ← w

a
16: E ← E ∪ (u, v) with edge weight w′

17: until H = ∅

8.2. Extended Neural Field Graph Construction and Simulation. The
algorithms for the construction and simulation of an extended neural field graph
resulting from the discussions above are given in Algorithm 4.1–4.4.
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Algorithm 4.4 eulerStep(∆t, F e =
(
Ge, u, w

)
shτγ, ŵ)

1: a← 0
2: for all v ∈ V do

3: l← layer(v)
4: du(v)← −u(v) + s(v) + hl

5: fu ← f(u(v))
6: a← a+ ∆t

τl
· fu

7: du(v)← du(v) + ŵl,l,0 · fu
8: for v′ ∈ Γin(v) do
9: du(v)← du(v) + w(v′, v) · f(u(v′))

10: du(v)← ∆t
τl
· du(v)

11: c← 0
12: for all v ∈ V do

13: du(v)← du(v) + γg · a
14: c← c+ |du(v)|
15: u(v)← u(v) + du(v)

8.2.1. Complexity Analysis. The asymptotic complexity of the algorithms in-
troduced above is investigated with regard to the size of the neural field graph.
First, the auxiliary functions connect and preBalance are treated. Afterwards, we
turn our attention to the complexity of the construction of the extended field graph
and the neuron update during runtime.

The preBalance function is dominated by four loops, totaling O
(
|M |2 · δmax

)

iterations.4 Given that δmax does not depend on the size of the source graph, this
can be reduced to O

(
|M |2

)
. The iterations in the first outer loop run in constant

time. Because |M | ≤ N , it runs in O
(
|N |2

)
time. In each iteration of the second

outer loop, the maximum is calculated across all pairs in a subset of neurons.
Iterating over all pairs of layers and in each such pair over all pairs of neurons is
equivalent to iterating over all pairs of neurons. Therefore, the second loop runs in
O
(
N2
)
time, and thus overall, preBalance terminates in O

(
N2
)
steps.

The connect function is essentially a Breadth First Search, modified so that it
only explores the graph until a depth of δmax is reached. Because Breadth First
Search is known to have a runtime of O (|V |+ |Ein|) (Cormen et al., 2001), the
same is assumed for connect.

The construction of the extended neural field graph (Algorithm 4.1) contains
two loops. The first one runs in O

(
|M |2 · δmax

)
= O

(
|M |2

)
= O

(
N2
)
time. The

second loop iterates over all neurons and calls the connect function for each neuron,
thus resulting in a complexity of O (N · (N + |Ein|)) = O

(
N2 +N |Ein|

)
. In addi-

tion to the loops, constructBalancedFieldGraph also contains a call to preBalance
and calculates the shortest paths between all neurons. The latter can be done using
the Floyd-Warshall algorithm presented in Chapter 3, Section 3.2. Thus, consider-
ing that the number of edges in a graph cannot exceed the square of the number of
nodes, the overall complexity of constructBalancedFieldGraph is given by

O( N3
︸︷︷︸

Floyd-Warshall

+ N2
︸︷︷︸

First loop

+ N2
︸︷︷︸

preBalance

+N2 +N |Ein|
︸ ︷︷ ︸

connect calls

) = O
(
N3
)
. (4.77)

The update of the neural field graph contains two iterations over all neurons.
The first one contains another iteration over all incident neighbors of the current

4The second inner loop undergoes |Wi,j | iterations. Because Wi,j is constructed in the first

loop by inserting the synaptic weight corresponding to d into Wi,j , it follows that |Wi,j | ≤ δmax.
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neuron,5 thus its complexity is given by

O
(
∑

v∈V

|Γin(v)|
)

= O (|E|) . (4.78)

The second loop contains only instructions that run in constant time, thus the over-
all complexity of eulerStep is given as O (|V |+ |E|). Given that the construction
of the graph fully connects a node to all of its neighbors up to a certain distance,
the resulting graph contains significantly more edges than the input graph. There-
fore, a pessimistic but more accurate estimate for the number of edges is given by
|E| = O

(
|V |2

)
, and the overall complexity of eulerStep thus becomes O

(
|V |2

)
.

5Because graphs are stored using adjacency lists, the time for the retrieval of the neighbors
is neglected here.
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CHAPTER 5

Neural Field Properties

Chapter 2 demonstrates a number of properties specific to the neural field model
with exemplary instances of neural fields. These properties include the ability to
form input peaks that can merge when they are close together in the input space.
Additional examples show that a neural field is capable of selecting one of two (or
more) peaks in the field’s input. Furthermore, peaks may be self-sustained if the
input disappears. Because dynamical systems are a central part of the neural field
model, it also inherits the property of being dependent on previous states, and thus,
the history of the system.

In the present chapter, the neural field graph model presented in Part 3 is
examined with regard to these properties. Examples are constructed that show that
these characteristics can be replicated in the model if its parameters are selected
accordingly.

Certain parameters are kept constant during most of the experiments. Unless
stated otherwise, the maximum extraction distance δmax is set to 3 and the conver-
gence threshold is selected as ε = 0.0001. The default interaction sampling distance
is set to σ = 0.5, and the sigmoidal function used as nonlinearity is calculated with
β = 4. The activation values of all neurons in the neural field graphs are initialized
to 0, and whenever a Gaussian interaction kernel is used to determine the synaptic
weights between neurons, its standard deviation is set to σ = 1. Many of the ex-
periments use random connected graphs as a basis for the neural field graphs. For
those that do, the graphs are generated with the corresponding algorithm presented
in Section 2 of the Appendix.

1. Peak Formation

The first experiment is performed to find evidence of the successful formation
of peaks. Due to the use of a 15× 15 mesh structure for the neural field graph, this
experiment is closely related to the simulation of a two-dimensional one-layer neural
field. Neurons in the graph are therefore assigned a position in a two-dimensional
input space based on the planar representation of the mesh graph. The strength
of the input is based on the distance from the graph’s center in the input space
(see Figure 5.1a). The extended neural field graph is shown in Figure 5.1b. For
the simulation, a global inhibition factor of γ = 5 is used, as well as a Gaussian
interaction kernel, scaled by a factor of µ = 70. Figure 5.1 indicates that a network
with this setup is capable of forming a stable peak centered around the neuron with
maximal input.

A second experiment is performed to show that a similar result can be achieved
on a different, less regular graph that further deviates from the standard discretized
representation of neural fields. In this case, a random connected graph is used
instead of a mesh graph. The random graph is set to contain 250 nodes and 350
edges. The extended neural field graph constructed from it contains 7342 synapses
(excluding connections from a neuron to itself). Given that the maximum number of
edges (also excluding connections from nodes to themselves) for any directed graph
is 2 · (N · (N − 1)) = 124500, where N is the number of nodes, the expectation that
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CHAPTER 5. NEURAL FIELD PROPERTIES 2. MERGING PEAKS

Figure 5.1 Evidence of peak-formation. Records are taken after the neural field
graph converges with a threshold of ε = 0.0001.

(a) The input of the neural field graph. The
color of the neurons visualizes the value of their

input with black representing the highest value,

in this case 10, and the brightest shade of gray

representing the lowest value of 0.

(b) The extended neural field graph after
convergence. Neurons with an activation

value that lies below threshold are colored

orange, others are shown in blue. The ring

around each neuron represents the its activa-

tion value, black being the highest activation

and light gray the lowest. The bold black ring

represents the peak center, selected based on

the highest activation.

extended neural field graphs with a large number of neurons remain relatively sparse
(see Section 8 of Chapter 4) seems to apply in this case. Additional parameters of
the neural field graph are mostly the same as in the experiment that uses the mesh
graph, only the interaction scale is modified to µ = 30. Results of the experiment
are shown in Figure 5.2. As before, a stable peak appears around one of the neurons
receiving the highest amount of input.1

2. Merging Peaks

The next experiment studies the neural field graph model’s capability for merg-
ing peaks that is also found in neural fields. The basis for the experiments is an
extended neural field graph, created from a random connected graph. This graph
contains 200 neurons and 210 synapses; the extended neural field graph contains
2826 synapses; and the interaction is given by a Gaussian kernel with a scaling
factor of µ = 2. No global inhibition is present (i.e., γ = 0). In order to facil-
itate the movement of the input peaks, the neurons are assigned a position in a
two-dimensional feature space by the algorithm described in (Fruchterman et al.,
1991), and the input strength for each neuron is determined by its distance from two
points in the feature space. During each experiment, the graphs are created with
this setup and simulated until convergence is achieved, and for each experiment,
the points are moved closer together.

The results of these experiments are shown in Figure 5.3. Figure 5.3a indi-
cates that two input peaks that are far apart from each other result in two distinct
components in the active subgraph, corresponding to two peaks in the neural field
graph. In Figure 5.3b, the peaks are closer together, and the two peaks are merged
together because only one component is present in the active subgraph. However,

1In this case, more than one neuron receives the maximum amount of input; in the previously
presented experiment that uses the mesh graph, only one such neuron exists.
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Figure 5.2 Plots demonstrating the ability of the neural field graph model to form
stable peaks on a connected random graph structure.

(a) Superimposition of the neural field graph, generated with the algo-
rithm for random connected graphs described in Section 2 of the Appen-
dix, and the input for each neuron. Each node in the graph represents
a neuron. The darker the node, the higher the input, with black being

an input of 10.0 and (almost) white being an input of 0.0.

active subgraph

(b) The neural field graph after convergence. The active subgraph is

shown in the lower right corner.
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Figure 5.3 Merging of peaks in a neural field graph. The left column shows the
graph structure and the input. As in Figure 5.2a, darker nodes represent stronger
input. The right column highlights the active subgraphs of the converged neural
field graph.

(a) The input peaks are far apart, one at the top of the image, one at the bottom. Two
distinct components are present in the active subgraph.

(b) The bottom input moves upward and approaches the other peak. Both components of
the active subgraph have now merged into one. However, the merged component is stretched
out to include the lower input peak.

(c) Both peaks are now very close together. The active subgraph now looks similar to the
upper component in Figure 5.3a.
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the appearance of the remaining active subgraph is different from the active com-
ponents exhibited in the case in which the input peaks are located further apart.
In Figure 5.3c, the input peaks are close together, and the remaining component of
the active subgraph is similar in structure to the one near the upper input peak in
Figure 5.3a.

3. Self-Sustained Peaks

This experiment is conducted in order to determine whether the neural field
graph model also has the capacity for self-sustained peaks. As described in Part 1,
self-sustained peaks are those peaks in neural fields that remain active even when
the input causing them disappears. This condition is simulated in the neural field
graph by initializing a number of randomly selected neurons with a positive activa-
tion (specifically, with an activation value of one) and setting the input to zero for
each neuron. Furthermore, the neural field graph is balanced and uses a Gaussian
interaction kernel scaled by µ = 5, with a global inhibition factor of γ = 5. The
extended neural field graph is constructed from a random connected graph.

The results of this experiment are shown in Figure 5.4. As the converged neural
field graph in Figure 5.4b suggests, some neurons retain above-threshold activation
even in the absence of input. Because the simulation has converged (i.e., the final
state of the simulation is probably a stable one), this result can be seen as evidence
that the neural field graph model is capable of exhibiting self-sustained peaks.

4. Selection

In neural fields, selection means that only one peak reaches above-threshold
activation, even if more than one peak is present in the input. In order to replicate
this property, a neural field graph based on a random connected graph is created.
The input of the neurons is determined randomly, drawn uniformly from the in-
terval [0, 6]. The interaction is based on a Gaussian kernel scaled by µ = 0.1.
Figure 5.5 allows for the hypothesis that, as with neural fields, global inhibition
plays a central role in performing selection with neural field graphs. This is due to
the fact that in the absence of global inhibition, multiple peaks can form in a neural
field graph, evidenced by the number of active subgraphs (see Figure 5.5c). Once
global inhibition is enabled, all but one peak are suppressed (see Figure 5.5d).
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Figure 5.4 A representation of an extended neural field graph exhibiting a self-
sustained peak. Neurons filled blue are active (above-threshold), the arc around
each neuron represents its normalized activation. Pointing up is zero, meaning that
a clockwise arc indicates positive activation (colored blue), while an counterclock-
wise arc indicates negative activation (colored orange). Connections between neu-
rons are represented by arcs between them, with darker color meaning a stronger
connection. The darkest connections have a strength of approximately 10.6, the
lightest connections have one of approximately 0.65. The ones above the neurons
connect the neuron on the right to the one on the left, and the ones below the
neurons run in the opposite direction. A green circle around a neuron indicates
that it is selected as a peak center.

(a) The initial (instable) state of the neural field graph, before any simulation
takes place. All active neurons are initialized with an activation value of one,
the remainder is initialized with zero activation.

(b) The state of the neural field graph after convergence. The connections

between the neurons are drawn thicker if the neuron from which the con-
nection originates is active.
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Figure 5.5 Plots demonstrating the ability of the neural field graph model to
perform selection. Figure 5.5c and Figure 5.5d show an extended neural field graph
after convergence is achieved. Lines between neurons represent the weight between
them (darker means stronger weight). Orange neurons are inactive (i.e., below
threshold) while blue ones are active. The gray circles around a neuron indicate
the strength of its activation, darker circles once again mean stronger activity. A
second, bold black circle around a neuron indicates that the neuron is detected as
a peak center in its active subgraph. Selection appears to occur when the global
inhibition factor is set to a positive value, thus suppressing any secondary peaks.

(a) Structure of the graph used as a basis for
constructing the extended neural field graph.

(b) Input for each neuron. The darkness of a
neuron indicates the strength of its input, with
input being randomly selected from the range
0 to 6.

(c) The neural field graph fails to perform
selection in the case where global inhibition

is absent (i.e., γ = 0).

(d) This neural field graph has a global inhi-
bition factor of γ = 0.7. Only one component

exists in the active subgraph. Therefore, the
neural field graph seems to successfully perform
selection in this case.
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CHAPTER 6

Fixed Point Search

Two methods are devised in order to determine how the parameters of the neu-
ral field graph model affect its behavior. Both find a large number of fixed points
given an actual instance of an extended neural field graph. The first one uses an
iterative method to find solutions to the model’s basic fixed point equation (Equa-
tion 4.31); the second one simulates the model using a forward Euler approach.
These methods have one thing in common: they need a starting point uc, hence-
forth referred to as candidate solution, from which to iterate or simulate towards a
solution. For the iterative method, this starting point represents the initial guess
for a solution u0 to Equation 4.31; for the simulation of the model, uc represents
the initial activation of the neurons.

1. Methods for Determining Stationary Solutions

Based on the observation that all stationary solutions of a neural field graph
lie inside a linearly transformed hypercube (see Section 7.2), and the fact that the
sigmoidal function maps most values to either approximately zero or one, the set
of candidate solutions S is defined as the set of edges of the hypercube, i.e.,

S =
{
W · e+ c

∣
∣e ∈ {0, 1}N

}
, (6.1)

where W and c are the weight matrix and combined input and resting level as
described for Equation 4.31. However, there is a drawback to this definition. The
number of edges on a N -dimensional cube is given by 2N = |S|. As a consequence,
using any of the methods below with this candidate solution set becomes computa-
tionally infeasible when the number of neurons in the neural field graph increases.

1.1. Iterative Determination of Solutions. To acquire solutions of the
basic fixed point equation of the model, Newton’s method for solving nonlinear
equations is used (Bronstein et al., 2008). For that purpose, Equation 4.31 is
restated to

F
(

u
(µ+1)
0

)

= W · f
(

u
(µ+1)
0

)

+ c− u
(µ+1)
0 = 0 . (6.2)

Then, the Taylor expansion of the left hand side is calculated around u
(µ)
0 , and all

terms of quadratic or higher order are dropped:

F
(

u
(µ)
0

)

+ JF
(

u
(µ)
0

)

·
(

u
(µ+1)
0 − u

(µ)
0

)

︸ ︷︷ ︸

=d(µ)

= 0 , (6.3)

where JF
(

u
(µ)
0

)

is the Jacobi matrix of F evaluated at u
(µ)
0 . By restating the

equation for d(µ), the value of u
(µ+1)
0 can be derived as u

(µ+1)
0 = u

(µ)
0 +d(µ) (i.e., it

can be calculated iteratively if the values for d(µ) are known). Thus, Equation 6.3

is solved for d(µ):

d(µ) = −
(

JF
(

u
(µ)
0

))−1

· F
(

u
(µ)
0

)

. (6.4)
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Substituting, for the sake of notational simplicity, u
(µ)
0 with x, the entries of the

Jacobi matrix can now be calculated as

(JF )i,j =
∂Fi (x)

∂xj

=
∂

∂xj

(
N∑

k=1

(W )i,k · f(xk) + ci − xi

)

= (W )i,j ·
∂

∂xj
f(xj)− δi,j

= (W )i,j · β · f(xj) · (1− f(xj))− δi,j , (6.5)

where δi,j is the Kronecker delta (Bronstein et al., 2008). In matrix-vector notation,
the Jacobi matrix is given as

JF (x) = W · (f ′ (x) · 1T )− I, (6.6)

where f ′ (x) is the componentwise evaluation of the first order derivative of f with
respect to x given by

(f ′ (x))i = f(xi) ·
(
1− f(xi)

)
. (6.7)

The iteration of this method is performed until the change of the candidate
solution falls below a predetermined threshold εNewton, measured by

∣
∣
∣d

(µ)
∣
∣
∣ < εNewton (6.8)

In order to evaluate the quality of a solution u approximated in this manner,
an error measure is defined. It is based on the fact that a solution must fulfill the
basic fixed point equation, rewritten to the target equation

u− (W · f(u) + c) = 0 . (6.9)

Thus, the solution error measures how much an approximated solution û deviates
from this target equation as

e (û) := (û− (W · f(û) + c))
2
. (6.10)

1.2. Determination of Solutions via Simulation. When approximating
fixed points with a simulation, a neural field graph is created with the desired
parameters, and the activation of the neurons is set according to the values stored
in a candidate solution. Thus, if uc is the candidate solution and F the neural field
graph with the neurons V = {1, . . . , N}, then the activation for each neuron is set
to

u (i, 0) = uc,i . (6.11)

The neural field graph is then simulated until the accumulated change falls below
a certain threshold:

h

N∑

n=1

∂

∂t
u (n, t) < εSimulation, (6.12)

where h is the time step of the forward Euler method used for the simulation of the
neural field graph.
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Figure 6.1 Representation of the points recorded from converged simulations with
initial activation values for neurons selected from the set of candidate solutions,
S. The value of each entry pi in a point p = (p1, p2, . . . , pn) is plotted here; the
“dimension” axis represents the index i, the “value” axis represents the activation
value pi of neuron i. Note that the order of the index is arbitrary, and the line is
only used to help identify which values are connected across the dimensions. The
neural field graph used for obtaining these points is constructed from a connected
random graph containing nine neurons that all receive an input of seven. Both
plots contain 2N = 29 = 512 points represented thusly.
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(a) Plot for the neural field graph with a global inhibition factor of γ = 0.
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(b) Plot for a similar neural field graph with the global inhibition factor
increased to γ = 15.

2. Evaluation & Comparison

2.1. Number of Fixed Points. When searching for fixed points with either
of the methods described in Section 1, the resulting points are recorded. For the
iterative determination, the resulting points comprise the points to which Newton’s
method converges for each point in the candidate solution set. For the determi-
nation via simulation, the resulting points are the activation values recorded from
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Figure 6.2 Comparison of solution errors for simulated and approximated fixed
points. The neural field graph is a 3 × 2 mesh graph with µ = 40 and γ = 15.
Three neurons receive an input of 5, the rest receives no input.
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(a) Unbalanced neural field graph.
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(b) Balanced neural field graph. The approx-
imated points reach an error of up to approxi-
mately 31 where the bars exceed the scale, and
0 where no bars are present.

the neurons after convergence of the neural field graph is achieved. Figure 6.1
shows exemplary records of such points. It indicates that the resulting points differ
slightly from each other. This could either suggest that the attractor for the neural
field graph is not a single point, but rather a region, or may be a result of errors
stemming from the numerical approximation. For further analysis, the latter is
assumed due to the relatively small deviations of the result points (this is visible
especially in Figure 6.1b), meaning that multiple points with only small differences
are considered an indication of a single fixed point. In any case, compared to the
size of the candidate solution set, the number of fixed points found seems low. Most
experiments performed exhibited only one fixed point, while the maximum amount
observed is three. Cases resulting in more than one fixed point usually involve a
setup in which all neurons receive the same input, coupled with a relatively high
global inhibition factor.

2.2. Solution Errors. During the examination of the fixed points of a neural
field graph, the squared solution error (Equation 6.10) is recorded for the fixed
points approximated with the iterative method introduced above. In addition, sim-
ulations are started with the same initial values that are used as the initial guesses
for the iterative method. For the states of the converged neural field graph result-
ing from these simulations, the squared solution errors are calculated in the same
manner. Results of two such experiments are shown in Figure 6.2. These results
indicate that the iterative determination of solutions can sometimes outperform
the simulation: in Figure 6.2a, the approximated solutions always have a slightly
lower error than the simulated solutions. However, the difference is very small
and may be due to noise from restrictions of the numerical precision. On the one
hand, some of the approximated solutions shown in Figure 6.2b even reach an error
measure of 0. On the other hand, Figure 6.2b also shows that in certain cases the
approximation with Newton’s method can fail, generating errors of approximately
31. The simulated solutions show a more steady error value that does not exceed
0.01. Similar observations can also be made in further experiments not detailed
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Table 6.1 Measurements of the deviation of the candidate solution sets for different
experimental setups. The input type column specifies the amount of input the
neurons receive; “3 n.: 6, r. 0” means that three neurons receive an input of 6,
while the remaining neurons receive no input. Values for d(si) are rounded to two
decimal places. The neural field graphs presented here all use a Gaussian interaction
kernel and δmax = 3. The last two rows correspond to the same setups presented
in Figure 6.2.

Setup d(si)
Graph Type N µ γ Balanced? β Input Type Min. Avg. Max.

random 9 1 0 yes 4 all: 7 0 3.98 7.71
random 9 1 0 no 4 all: 7 0 2.8 5.47
random 10 1 15 yes 32 3 n.: 6, r. 0 3.53 229.59 462.68
random 10 1 15 no 32 3 n.: 6, r. 0 3.54 230.57 464.65

mesh (3× 2) 6 10 15 yes 4 all: 40 10.29 27.27 47.4
mesh (3× 2) 6 10 15 no 4 all: 40 11.92 33.5 70.57
mesh (3× 2) 6 1 7 yes 4 all: 7 6.52 42.65 91.4
mesh (3× 2) 6 1 7 no 4 all: 7 6.52 42.93 91.97
mesh (3× 2) 6 40 15 yes 4 3 n.: 5, r. 0 1.51 36.02 59.28
mesh (3× 2) 6 40 15 no 4 3 n.: 5, r. 0 1.56 43.31 82.34

here. In some runs, the iterative method failed to find any solutions with an ac-
ceptable error level. In these cases, the simulations usually converge to solutions
with significantly lower error values.

The low performance of the iterative method may be due to quality of the initial
guesses. It influences the convergence of Newton’s method, and inadequate initial
guesses may lead to non-converging behavior (Bronstein et al., 2008). Therefore, it
is the focus of Section 2.3.

2.3. Deviation of the Candidate Solution Set. In the context of Newton’s
method for solving nonlinear equations that is used for the iterative method, the
candidate solution set represents initial guesses. However, as stated before, the
quality of these guesses greatly influences the quality of the solutions. Therefore,
the following measure is proposed. Let si ∈ S be a candidate solution. Then the
activation of the neurons in a neural field graph are initialized with the values in
si, and the graph is simulated. Once convergence is achieved, the activation values
of all neurons, represented as a vector, are denoted by ti. With this, the deviation
of a candidate solution is defined as

d(si) = ‖si − ti‖ . (6.13)

While this deviation is not a measure of the quality of the solutions,1 it does at
least allow for some observations.

The deviations of the candidate solutions for different experimental setups
presented in Table 6.1 suggest that the deviation of the solutions varies greatly.
Therefore, the candidate solution set proposed may only be adequate for certain
configurations of neural field graphs.

1Using the deviation as a quality measure would assume that both the iterative method
and the simulation converge to the same state when initialized with the same candidate value.
However, this cannot be true in general because the iterative method may also find solutions that

represent an instable state of the neural field graph. The simulation, on the other hand, most
likely only converges to such a state if it starts exactly in it.
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Further Results and Observations

1. Comparison of Peak Detection Methods

To investigate the differences between the distance-minimizing and activity
maximum criteria for the selection of peak centers, two examples are shown in
Figure 7.1. For the experiments, both graphs are constructed with balanced weights
from a Gaussian interaction kernel and use a sigmoidal slope of β = 4.

The neural field graph shown in Figure 7.1a is based on a 15× 15 mesh graph
and constructed with an interaction scale of µ = 0.75. It receives input in the
range [0, 10]. The global inhibition is disabled by setting γ = 0. The second neural
field graph, shown in Figure 7.1b, is based on a random connected graph with 150
nodes and 165 edges. Its interaction is scaled by µ = 5, and a global inhibition
of γ = 1 is present. The results in Figure 7.1a suggest that for this setup, there
is one peak center for each peak in the neurons’ input. However, only the neuron
selected by the maximum activity criterion is located at the center of the input peak.
Therefore, this criterion seems more fitting in this case, although the selection of the
criterion likely depends on the actual application. The selected peak centers shown
in Figure 7.1b both deviate from the actual center in the input space. However,
this may be caused by inadequacies of the topology of the neural field graph in the
region corresponding to the input peak.

One of the results from Section 2 is replicated in Figure 7.2. Figure 7.2a
highlights the two peaks present in the input. Due to the configuration of the
neural field graph, it only contains one active subgraph after convergence (shown in
Figure 7.2b). The activity maximum and distance-minimizing center peak criteria
proposed in the present work only assign one peak center to each active subgraph.
Therefore, the neural field graph model fails to select one neuron for each input peak
in this case. This gives rise to the third peak criterion. The peaks selected by the
local maximum criterion on the same graph are shown in Figure 7.2b. As desired,
this criterion selects two peaks in the same active subgraph, and both centers are
located near the center of the input peaks.

The experiments presented in Figure 7.1 are repeated using the local maximum
peak criterion. In case of the mesh graph, the local maximum criterion selects the
same peak centers as the activity maximum condition. However, for the random
graph, the selection differs (see Figure 7.3). This result suggests that the local
maximum criterion fails to select one neuron per input peak, but this may be due
to the way the input is spread across the graph’s topology in this case. Additionally,
a different configuration of the neural field graph may lead to better results, as is
suggested in Figure 7.3b.

2. Weight Balancing

The goal in this section is to determine if the weight balancing method proposed
in Section 5 fulfills its purpose. Figure 7.4 shows the state of the neurons of a
random connected graph after convergence of the simulation. Due to the neural field
graph’s setup (i.e., equal input and relatively strong global inhibition), the neurons
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Figure 7.1 Peak centers resulting from different criteria. The left column shows
the input of the neural field graph and the underlying source graph. The right
column shows the active subgraphs obtained after convergence, superimposed upon
the graph structure. The neurons shown in white are the peak centers selected
by the maximum-activity criterion, while the neurons shown in black are those
minimizing the distance in the active subgraph.

(a) Peak criteria on a mesh graph with two input peaks.

(b) Peak criteria on a random graph with one input peak.

are expected to converge to the same level of activation. However, as expected, the
unbalanced graph shows different activation levels. As the plot shows, the balanced
graph successfully converges to more balanced states. Some deviation remains that
is likely a result of numerical errors stemming from the forward Euler method used
for the simulation.

Figure 7.5 demonstrates a case in which the proposed weight balancing fails.
The situation is the same as described in the successful case, except the neural field
graph is created with a 3×1 mesh structure. Because the center neuron in the graph
only has neighbors with a distance of one, while its neighbors both have connections
to a neuron with a distance of two, the center neurons cannot be balanced properly.
In practice, these cases seem to be unlikely, though, because with an increasing size
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Figure 7.2 The situation described in Figure 5.3b is replicated here, but the local-
maximum method for detecting peak centers is used instead, leading to a selection
of centers that corresponds more to the actual peaks in the input.

(a) Two distinct peaks are present in the in-
put. Their approximate position is highlighted
by the light gray circles.

(b) Peaks selected by the local maximum crite-
rion are highlighted here with bold, black circles
around the peak centers. With the other meth-
ods, only one peak center would be detected.

Figure 7.3 The bold, black circles around the neurons mark the peak centers
selected by the local maximum method. The neural field graph is the same as the
one presented in Figure 7.1b.

input peak

(a) Peak centers selected by the local maximum
criterion on a neural field graph with the same
configuration given in Figure 7.1b.

input peak

(b) Increasing the global inhibition factor to
γ = 3 leads to a more accurate selection.

of the neural field graph, the likelihood of a neuron not having neighbors with a
distance less than δmax decreases.

66



CHAPTER 7. FURTHER RESULTS AND OBSERVATIONS 3. SPORADIC INPUT

Figure 7.4 Successful balancing of a neural field graph. The neural field graph
is based on a connected random graph with nine neurons. All neurons receive the
same amount of input, and the global inhibition factor is set to γ = 15. The plot
shows the states of the neurons after convergence of a simulation starting from the
candidate solution set S, each line represents one of the resulting 29 = 512 states.
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3. Sporadic Input

This section examines input in the form of isolated spikes. In this case, most
neurons receive an input of zero, while only some neurons that are not directly
connected to each other in the neural field graph receive a positive input. Assum-
ing that at least some of the inputs are strong enough to cause above-threshold
activation in the neurons receiving them, two situations can occur.

The first is that, for the most part, only neurons receiving the input spikes
become active (i.e., the resulting active subgraphs contain only one neuron). This
is the case if the weight of the synapse connecting an active neuron to an inactive
neighbor is not strong enough to raise the neighbor’s activation value above thresh-
old. Notable exceptions from this are neurons that receive excitation from more
than one active neighbor, but in general, sporadic input is expected to result in
equally sporadic activity.

The second situation is the one in which the activity passed along from one
neuron is sufficient to activate its neighbor. In the unbalanced case (and likely also
in the balanced one), this means that the neighbor most likely also activates all of
its neighbors and so on, leading to a fully activated neural field graph.
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Figure 7.5 An example of a situation in which weight balancing fails. The neurons
n1 and n3 both have incident synapses with two different weights: dark, w1 and
bright w2 connections; n2 only has connections of type w1. Due to the lack of w2

connections, n2 is thus never balanced for that weight class by the balancing scheme
proposed in the present work.

n1 n2 n3

(a) Extended neural field graph.

n1 n2 n3

(b) Balanced version of the extended neural
field graph.
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(c) Fixed points determined via simulation.
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CHAPTER 8

Conclusion and Further Research

The present work presents an approach to modeling neural fields on undirected
graphs. Conditions for its stability are analyzed, and experimental results indicate
that it preserves characteristics of its continuous counterpart, the neural field model.
However, properties not examined because they exceed the scope of the present work
include the behavior of neural field graphs in situations equivalent to bifurcations
in neural field graphs.

The method for balancing the synaptic weights proposed in Chapter 4 appears
to successfully overcome the imbalance stemming from the sub-sampling of the
input space for large neural field graphs. Although cases exist in which it fails,
algorithms that may benefit from the neural field graph model likely use larger
graphs, and therefore these cases may not occur in practice.

Another challenge is the peak detection method. Three alternative solutions
are proposed in Section 6 of Chapter 4 that generally seem to yield acceptable
results, but cases in which their selection of peak centers does not correspond to
the actual peaks in the input are known for each one. This may be one of the major
challenges in future work.

The last restriction is the static structure of the neural field graph model.
It does not provide functions for modifying the neural field graph topology once
the extended version is constructed. However, some applications may need such
functionality during runtime. Currently, the only solution available would be re-
constructing the extended neural field graph with the new structure, but this pro-
cedure has high computational requirements. A more efficient solution should be
devised in a future work. Finding such a solution may be difficult for balanced
neural field graphs because the insertion or removal of a neuron may mean that the
whole neural field graph needs to be rebalanced.

The graph structure used for neural field graphs is currently restricted to undi-
rected graphs. The model in its current form may also be extended to allow for
directed graphs, but future research should determine the feasibility of this exten-
sion.

Additionally, the construction algorithm for the extended neural field graph
assumes that an implicit cost function is associated with the graph structure. This
function assigns costs of one to all synapses in the graph, except the reflexive
connections which are assigned costs of zero. However, learning rules like Heb-
bian learning (Hebb, 1949) use different weights between neurons, and using these
weights in the construction of the extended neural field graph is desirable. While
the capacity for this should already be included in the neural field graph model,
some of the assumptions made for the algorithms may not hold in this context.
Specifically, the sampling of the weights at relevant distances (see Algorithm 4.1)
and the calculations made in the preBalance function (Algorithm 4.2) may not be
possible because the weight classes that occur in the neural field graph are not
known beforehand. Furthermore, the weight balancing method may not be appli-
cable in this case because too many different weights may be present in such graphs,
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leading to the same improper balancing discussed in Section 2 of Chapter 7. Thus,
further research in this topic is needed.

The experiments in Part 4 indicate that the parameter selection of the neural
field graph greatly influences its behavior. When aiming for a certain behavior, the
corresponding parameters are currently determined empirically, but a more general
approach is preferable. This may not be limited to the neural field graph model: to
the knowledge of the author, this problem is generally unsolved in neural fields as
well; if a solution is found for one of the models, it may be applicable to the other
one as well.

Most of these challenges are currently only based on the theoretical treatment
of the model given in the present work. Whether they are actual limitations can
probably only be determined based on an application of the neural field graph
model. Most suitable applications are those that use a graph structure for real-
time processing of high-dimensional information. Another possibile application is
given by artificial neural networks, realized with the dynamical model of neural
field graphs. In contrast to their classical realizations, they may have the added
benefit of being able to cope with feed forward architectures as well as recurrent
setups.
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APPENDIX A

Miscellaneous Proofs, Theorems and Algorithms

1. Component Multiplication Operator

The component-wise multiplication x ◦ y of two vectors x,y ∈ Rn is given by

(x ◦ y)i = xi · yi . (1)

For the componentwise multiplication of a matrix A ∈ Rn×m and a vector
v ∈ Rn, R ∈ Rn×m is defined as

R = v ◦A (2)

with

(R)i,j = vi · (A)i,j . (3)

1.1. Associativity. With the definitions given above, proof is given that

(x ◦A) · y = x ◦ (A · y) . (4)

The components of the left-hand side of Equation 4 expand to

((x ◦A) · y)i =
n∑

j=1

(x ◦A)i,j · yj

=

n∑

j=1

xi · (A)i,j · yj . (5)

The right hand side yields

(x ◦ (A · y))i = xi ·
n∑

j=1

(A)i,j · yj � (6)

2. Algorithm for Random Connected Graphs

The following algorithm is used to create an undirected connected graph G =
(V,E) with a random structure and a predetermined number of nodes n and edges
m.

V ← {v1}
E ← ∅
U ← {v2, . . . , vn}
while U 6= ∅ do
randomly select u ∈ U , v ∈ V
E ← E ∪ {u, v}
U ← U \ {u}
V ← V ∪ {u}

while |E| < m do

randomly select u, v ∈ V
E ← E ∪ {u, v}
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After the algorithm finishes, the graph’s nodes are positioned on a two-dimensional
plane using an implementation of the force-directed placement algorithm presented
in Fruchterman et al. (1991).
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Ich erkläre, dass das Thema dieser Arbeit nicht identisch ist mit dem Thema
einer von mir bereits für ein anderes Examen eingereichten Arbeit.
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