
Finding Optimal Parameters for Neural Gas
Networks Using Evolutionary Algorithms

Schriftliche Prüfungsarbeit
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Erstprüfer: Rolf Würtz
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Abstract

The parameter values used for the Growing Neural Gas (GNG)
algorithm are generally determined empirically. This requires long
calculation times and may lead to values which are not optimized for
the data set they are being used with. The present work proposes the
use of Evolutionary Algorithms to optimize these parameter values.
During the optimization process, GNG networks are created with the
parameter values stored in individuals from the Evolutionary Algo-
rithm, and trained with object features extracted from images of the
ETH-80 database. An individual’s fitness is calculated according to
three different functions which assess the performance of the trained
GNG networks. A feature-based object recognition and categoriza-
tion model defined by a taxonomic hierarchy of self-organized GNG
networks is trained and tested using the parameter values obtained
from the optimizer, and with the same data sets employed during the
optimization process. The categorization and recognition rates of the
obtained models are compared to the ones achieved with the empiri-
cally set parameter values. The results suggest that the optimization
of parameter values significantly increases the model’s performance
when using the constrained initial values for the individuals in the
first parent population of the Evolutionary Algorithm. Using uncon-
strained initial values seems to lead to parameter values that, when
used in the GNG algorithm, create unstable networks, which are inca-
pable of learning. This is likely caused by the existence of local optima
throughout the parameter search space.

1 Introduction

Machine learning algorithms often have a high number of parameters that
determine their performance. The Growing Neural Gas for example, is an al-
gorithm capable of adapting the nodes of an undirected graph to the topology
of an arbitrary probability distribution. However, depending on the setup
of its parameters, it could contain too many nodes, or too few, thus not
correctly learning the topology of the input distribution.

Currently, the values of these parameters are set empirically, often by
applying prior knowledge about the nature of the data to be learned. Not
only is finding the parameter values for a specific data set time consuming,
but it is also possible that the values found are unoptimized. Therefore, the
present work proposes the use of Evolutionary Algorithms for performing this
task. These algorithms are based on the Darwinian principles of evolution
and evolve possible solutions for a problem by encoding them into a genome,
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which, over many generations, is mutated and recombined to form an optimal
solution.

The present work focuses on optimizing the parameter values of the Grow-
ing Neural Gas algorithm trained with features extracted from images of the
ETH-80 database [Leibe and Schiele, 2003]. This database is also used to
train and test a feature-based object recognition and categorization model
introduced by Guillermo S. Donatti (manuscript in preparation, 2008); this
model is defined by a taxonomic hierarchy of Growing Neural Gas networks,
and therefore can be used to evaluate the effect of the optimized parameter
values on the model’s performance.

In the Evolutionary Algorithm, Growing Neural Gas networks are trained
using the parameter values provided by the Evolutionary Algorithm, and
their performance is evaluated with three different fitness functions. Based on
these fitness values, the Evolutionary Algorithm selects individuals (i.e., the
parameter value combinations) that survive onto the next generation. Hence,
these fitness functions greatly influence the quality of the parameter values
(i.e., the capability of networks created with them to learn the distribution
of the input samples) resulting from the optimization process.

Results obtained using optimized parameter values in the feature-based
object recognition and categorization model suggest that the method pro-
posed in the present work is capable of improving parameter values, as long
as the initial values used for the optimization process are restricted. In this
case, the model’s object recognition and categorization rates can be improved
significantly.

2 Neural Gas Algorithms

2.1 Introduction

Neural Gas [Martinetz and Schulten, 1991] is an algorithm that adapts the
structure of an undirected graph to the topology of an arbitrarily structured
input manifold. During this process, input samples are generated from this
manifold and presented to the algorithm. For each input sample, a config-
urable number of the network’s closest nodes is adapted by moving them
towards it. In the initial iterations, many nodes are moved towards the in-
put sample. With each input sample, the amount of nodes influenced by it
decreases. During the execution of the algorithm the number of nodes in the
Neural Gas network stays constant, while the edges are adapted according
to a learning rule similar to Competitive Hebbian Learning: each time an
input sample is presented, a new connection is created between its two closest
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nodes.
The Growing Neural Gas algorithm [Fritzke, 1995] extends the Neural

Gas algorithm by adding a local error measure for each node. This error is
accumulated based on the node’s distance to the input samples presented to
the network. Regularly, a new node is inserted between the two nodes that
have accumulated the largest amount of error. The underlying graph of the
Growing Neural Gas network starts with two nodes, and expands until it
reaches a predefined maximum number of nodes. Therefore, the number of
nodes in the Growing Neural Gas network is no longer fixed as it is in the
Neural Gas algorithm.

A second addition proposed by [Fritzke, 1997] is the utility measure. It
is used to determine the usefulness of each node by estimating the increase
of the global network error if the node would not be present. Based on their
utility value, the nodes that contribute little to reducing the global network
error can be removed.

The Growing Neural Gas algorithm is an unsupervised learning algo-
rithm, because it only takes an input sample, but no associated target out-
put. [Bolder, 2005] proposes a method to extend the Growing Neural Gas to
a supervised algorithm capable of solving classification problems: each node
stores a matrix, the local linear mapping, used for mapping from the input
space to the output space. Inputs for this version consist of an input sample
and a target output. This mapping can also be reversed by storing a second
matrix in the nodes, leading to a bidirectional mapping.

[Bolder, 2005] also introduces Bootstrapping, a method that inserts nodes
at the positions of the input samples of a subset of the training samples pre-
sented to the network. This method can significantly increase the learning
speed of the Growing Neural Gas algorithm, because the topological infor-
mation from the input samples of the subset is preserved. It would otherwise
be lost, because the initial two nodes of the network would only move in the
general direction of the input samples.

2.2 Neural Gas

[Martinetz and Schulten, 1991] propose the Neural Gas network, an unsu-
pervised neural network based on the self organizing feature map model in-
troduced by [Kohonen, 1982]. Neural Gas is a method for adapting the
structure of an undirected graph to the topology of an arbitrarily structured
manifold. It minimizes the vector quantization1 error of a set of reference

1Vector quantization is the process of finding a set of reference vectors R = {xi ∈ RdI}
(where dI is the dimension of the input space) that represent a potentially infinite data
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vectors X = {xi|i ∈ {0 · · ·N}} extracted from the manifold M . These ref-
erence vectors are associated with the nodes of the network, and when fully
trained, they preserve the topology of the input manifold.

For every input sample generated from M , the structure of the Neural Gas
network is adapted by moving a number of the nodes closest to it (i.e., with
the lowest distance values) towards the input sample. In initial iterations,
a large number of nodes is moved. In subsequent iterations this number
decreases until only a few nodes are adapted.

The amount by which the nodes are moved depends on their distance
to the input sample. This is calculated using a distance measure d, and by
applying a learning rule similar to Hebbian Learning combined with a time-
decay of the centers xi (i.e., the reference vectors) of the nodes from the
previous iteration:

∆xi = ε(t) · fi(Dv) · (v − xi) (2.1)

where ε(t) ∈ [0, 1] is a step width decreasing with each input sample
presented, and fi(Dv) is a function calculating the excitation of the node i
with the set of distances Dv induced by the input sample v.

The excitation of each node is based on its rank in the list of nodes
sorted according to their distance from the current input sample. Each node
is assigned a rank ik, meaning there are k nodes closer to the input sample.
Thus, i0 is the node closest to the input, hereafter also referred to as the best-
matching or winning node. Similarly, i1 is also referred to as the second-best
node.

In addition to adapting the nodes of the network, the algorithm develops
connections (i.e., edges in the graph) between the nodes. These edges are
stored in a connection matrix Cij, which asymptotically approximates the
neighborhood relationships of the Voronoi-Polygons2 described by the nodes.
Similar to Competitive Hebbian Learning3, for each input presented, the best
matching and second best matching nodes are connected by adding a new
edge between them. These edges age over time and are removed if they

set in a submanifold Msub ⊆M (with M being a manifold). These reference vectors have
to be selected to compress the dataset but allow for its reconstruction with a minimum
amount of error. [Martinetz and Schulten, 1991]

2A Voronoi Polygon Pr describes the region of a space in which all vectors lie closer to
a reference point r than to any other in a given set R of reference vectors. [Martinetz and
Schulten, 1991]

3Competitive Hebbian Learning is a learning rule that finds connections between a set of
centers C in Rn that represent the topology of a data distribution P (ξ) in the input space
by inserting a connection between the centers closest and second closest to the current
input sample[Fritzke, 1995].
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exceed a maximum age. For a large number of input samples the algorithm
described above results in a minimization of the vector quantization error and
the modification of the topology of the network to approximate a subgraph
of the Delaunay triangulation4 called the induced Delaunay triangulation5.
According to [Fritzke, 1995], this subgraph optimally preserves the topology
of the input manifold for all areas in the input space where P (ξ) > 0 (with
P (ξ) being the probability distribution of the input samples).

Like any vector quantization method, Neural Gas can also serve to de-
termine a clustering of the distribution describing the manifold. Therefore,
another important application of the Neural Gas algorithm is classification.
In this context, the nodes represent the different classes, and the class for an
input sample is found by determining its closest node.

2.2.1 The Neural Gas Algorithm

The formalized version of the Neural Gas algorithm is described as follows:

1. Initially, the centers xi of all nodes are set to random values and all
connection ages Tij as well as all connections Cij are set to zero:

Tij = 0, Cij = 0 ∀i, j ∈ {0, . . . , N} (2.2)

where N is the number of nodes in the network.

2. An input vector v is generated from the submanifold Msub ⊆M .

3. The nodes are sorted according to the distance measure by generating
the sequence of indices ranking = (i0, i1, . . . , iN−1) with

d(v, xi0) < d(v, xi1) < . . . < d(v, xiN−1
) (2.3)

where d is the distance measure.

4. The centers of all nodes are adapted by moving them towards the in-
put signal. How much they are moved depends on their previously
calculated ranking index:

∆xi = ε · e
−ki
α · (v − x(old)

i ) (2.4)

4The Delaunay triangulation of a set of points is the graph where only those points are
connected which have neighboring Voronoi polygons [Fritzke, 1995].

5The induced Delaunay triangulation is a subgraph of the Delaunay Triangulation
limited to the regions where the distribution of the input samples has a value greater than
zero[Fritzke, 1995].
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where ki is the ranking index of the node i in the ranking (e.g., the node
at i0 has the rank 0); thus, the nodes close to the input are affected

more than the ones that are further away. ε · e
−ki
α is the realization

of the function fi(Dv) from equation 2.1, the excitation of the node
i for a given set of distances. It decreases proportional to the rank
of each node. By using an exponential function, only the nodes with
the highest ranks receive an excitation significant enough to be moved.
The value of α decays over time, leading to a strong excitation for all
nodes when the first input samples are presented but only for nodes
close to input samples presented later.

5. A new connection is created (or, if one already exists, its age is set to
zero) between the nodes i0 and i1:

Ci0i1 := 1, Ti0i1 := 0 (2.5)

6. The connection ages are increased. To improve performance, only the
ages of connections adjacent to i0 are increased:

T ′i0j = Ti0j + 1 ∀j ∈ {j|Ci0j = 1} (2.6)

This reduces the necessary amount of computation, and is equivalent
to incrementing all ages when a large number of training samples is
presented, as long as all nodes have the same probability of being the
winner node [Martinetz and Schulten, 1991].

7. All edges which have an age greater than Tmax are removed

Cij = 1 ∧ Tij > Tmax(t)→ Cij := 0 (2.7)

8. The algorithm is repeated from step 2, until a convergence criterion
(e.g., a maximum number of input samples presented to the network)
is met.

2.3 Growing Neural Gas

The Neural Gas algorithm uses parameters depending on the number of
input samples presented to the network, namely ε, α and Tmax. This makes
continuous learning difficult, because after a certain number of iterations the
network is relatively fixed. Additionally, the number of nodes is the same for
the entire runtime of the algorithm. To eliminate these limitations, [Fritzke,
1995] proposes a modified version of the algorithm, the Growing Neural Gas.
This version uses parameters that are constant over time, and it is capable
of dynamically adding and removing nodes.
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2.3.1 The Local Error Measure

Each node i in the Growing Neural Gas network stores an additional value
ei containing a local error measure used to determine which nodes generate
high errors. The error of the node i0 closest to the current input sample v is
updated according to

∆ei0 := ||xi0 − v||2 (2.8)

where xi0 is the current center in the input space of the node i0. For each
input sample, the error values of all nodes are decreased by a factor αerror.

Regularly, the node q with the maximum accumulated error is determined,
as well as the node s with the highest accumulated error among the neighbors
of q (i.e., the nodes connected to q with an edge). Once they are identified,
a new node r is inserted between q and s. The new center of r lies between
these two nodes:

xr :=
1

2
(xq + xs) (2.9)

The edge between q and s is removed, and edges connecting q and r as
well as r and s are inserted, placing r between the two nodes in the topology
of the network:

Cqr = 1 (2.10)

Crs = 1 (2.11)

Additionally, the error values of q and s are decreased by a factor αgrowth:

eq = αgrowth · e(old)
q (2.12)

es = αgrowth · e(old)
s (2.13)

Therefore, the new node is created in a region in which the current nodes
often lie far from the input samples, thus accumulating a high local error
value. The new node reduces the global error by reducing the sizes of the
Voronoi polygons of the nodes that are already in the network.

2.3.2 Isolated Nodes

Removing an edge (e.g., because it has an age greater than the maximum age)
potentially leaves nodes isolated in the network. In this case, the isolated
nodes are removed as well, as long as the number of nodes in the network
does not fall below the minimum (i.e., two) required for the algorithm.
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2.4 Utility measure

For stationary or slowly changing distributions, the nodes in a network
trained with the Growing Neural Gas algorithm approximate an optimal
set of reference vectors of the input manifold. However, if the distribution
of the input samples changes rapidly over time (this often occurs in natural
processes), the aforementioned network often retains nodes that no longer lie
in areas where P (ξ) > 0 (i.e., areas from which input samples are no longer
generated). These nodes, called “dead units”[Fritzke, 1997], no longer have a
chance to become the winner or second best node. Since only the connections
of the nodes close to the input samples are updated, the dead units will no
longer be updated and are “stranded”. These nodes no longer contribute to
the network and take up network resources (i.e., the possibility of creating a
new node in a region of high error).

To make the Growing Neural Gas adapt to non stationary distributions,
[Fritzke, 1997] introduces a utility measure ui for each node in the network.
The purpose of this measure is to estimate how much the global network
error would increase if the node i would be removed. This error difference is
accumulated in each iteration (i.e., for each input sample v presented to the
network). When the best matching node i0 and the second best matching
node i1 have been determined, the utility measure of the node i0 is updated:

∆ui0 := ||v − xi1 ||2 − ||v − xi0 ||2. (2.14)

Recall, that the local error measure for each node is calculated according
to ∆ei := ||v − xi||2. Thus, the utility in each iteration is increased6 by
the difference between the errors of the winner and the second best node.
Additionally, the utility values of all nodes are decayed by a factor αutility

after each iteration. Therefore, nodes have a small utility when one of the
following two conditions is fullfilled: The first one is when a node is close7

to another one (i.e., the winner node and the second best node are relatively
close in the input space). In this case, removing the winner does not result in
a significant change of the global network error, because the second best node
takes over all the input samples that would otherwise fall into the Voronoi
region of the node that is removed. Furthermore, ∆ui1 is always small, since
∆ei0 and ∆ei1 have almost the same value (i.e., the difference between them
is small, see equation 2.14). In the second case, the node lies in one of
the regions of the probability distribution where it no longer, or only rarely,

6The change of the utility will always be positive because ei0 < ei1 , since per definition
the winner is always closest to the input.

7Close in the sense that the distance measure has a small value compared to the distance
between other nodes.
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becomes the winner. Thus, its utility no longer increases, and due to the
decay after each generation it becomes smaller over time.

In addition to calculating the utility value, a criterion is needed to deter-
mine which nodes can be removed based on it. Removing the node with the
lowest utility value is not sufficient, because that results in the removal of a
node, even if all nodes are actually useful to the network.

[Fritzke, 1997] proposes to remove a node i, when the following holds
true: i is the node with the minimal utility value, i.e.

i := argmin
j
{uj | j ∈ {0, . . . , N}} (2.15)

and
emax

ui

> κ, (2.16)

where emax is the maximal accumulated error, ui the utility of the node i,
and κ has any positive value.

This criterion is based on the fact that removing a useless node allows
the network to create a new one in the region of the highest error. Since the
utility of the useless node approximates how much the network error increases
if it is removed, and new nodes are always inserted where the error is highest,
emax

ui
approximates the amount by which the error would be reduced when

removing the useless node.

2.5 Supervised Growing Neural Gas

2.5.1 The Local Linear Mapping

A local linear mapping is employed to introduce a supervised variant of the
Growing Neural Gas algorithm[Bolder, 2005], allowing nodes to learn a map-
ping from the input space to the output space. Each node i stores a matrix
Yi used to calculate its mapping, and a center yi in the output space.

The output of the node for an input sample v can then be calculated as
follows:

oi(v) := yi + Yi · (v − xi) (2.17)

Where xi is the center of the node i in the input space.
As is common for supervised learning, the samples provided during the

learning phase consist of two elements: the input sample v, and the target
output v′. For each input sample, the best matching node i0 is determined
as follows:

i0 := argmin
i
{d(xi, v) | i ∈ {0, · · · , N}} (2.18)
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The matrix and the center in the output space are moved towards the
target output by the step width εoutput:

∆Yi0 := εoutput · (v′ − oi0(v)) · (v − xi0)
+ (2.19)

∆yi0 := εoutput · (v′ − oi0(v)) (2.20)

2.5.2 Bidirectional Mapping

The mapping described in section 2.5.1 is a unidirectional local linear map-
ping from the input space to the output space. Reversing it (i.e., making
it a bidirectional mapping) could be achieved by creating a second Growing
Neural Gas network where input and output change places. However, inte-
grating the reverse mapping into the Growing Neural Gas algorithm proves
to be more effective in certain cases, and never worse [Bolder, 2005].

To integrate the mapping, every node i in the network is assigned a new
matrix Xi. This matrix is used for calculating the reverse mapping for any
point v̄ in the output space according to the following equation:

ō(v̄) := xi0 +Xi0 · (v̄ − yi0), (2.21)

where i0 is the winner node (i.e., the node closest to v̄ in the output space).
Accordingly, the matrix Xi0 is calculated every time an input (v, v′) is

presented:
∆Xi0 := εwinner · (v − ō(v′)) · (v′ − yi0). (2.22)

where εwinner is a predetermined step width.

2.6 Bootstrapping

With the aim to increase the learning speed in initial iterations, [Bolder, 2005]
proposes the usage of a bootstrapping method. The first Nboot input samples
are used to set the components of new nodes: for each training sample vt

with the target output v′t (where t < Nboot), a new node t is created with
the following components:

xt = vt (2.23)

yt = v′t (2.24)

where xt is the center in the input space, and yt is the center in the output
space of the node t. The matrix Yt is calculated analogously to equation 2.22.

Since without bootstrapping the network begins with two nodes, data is
lost until the network creates sufficient nodes to represent the distribution of
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the input samples. The amount of information lost in the initial iterations of
the network increases with the number of dimensions of the input and output
spaces. Therefore, the effectiveness of bootstrapping is directly proportional
to the dimension of the data distribution.

2.7 The Growing Neural Gas Algorithm

The Growing Neural Gas algorithm presented here takes into account all
additions presented in sections 2.3.1–2.6. However, only the unsupervised
version of this algorithm with the utility measure and the local error measure,
but without bootstrapping is used during the optimization process described
in section 4.

1. The network is initialized with two connected nodes. Their components
are set to random values; depending on the version of the algorithm
that is used, each node i contains different values: xi, the center in the
input space, ei the local error value, and the utility value ui. When
using a local linear mapping (i.e., using the network as a classifier),
the nodes also include a matrix Yi; if this mapping is bidirectional, an
additional matrix Xi is stored as well.

2. A new training input sample is determined. It consists of a vector v
generated from the distribution of the input submanifold Msub ⊆ M .
During the learning phase of the supervised algorithm, the input sample
also contains a target output v′.

3. If bootstrapping is used, then the first Nboot training input samples are
used to insert a new node with the following component values:

xt := v (2.25)

et := 0 (2.26)

ut := 0 (2.27)

and additionally, for the supervised algorithm:

yt := v′ (2.28)

where t is the number of the current iteration of the algorithm.

As long as the input samples are used for bootstrapping (i.e., as long
as the number of network iterations t < Nboot), the algorithm continues
from step 2, otherwise it is continued from step 4.
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4. The winner i0 and second best node i1 for the input sample v are
determined using the distance measure d as follows:

i0 = argmin
i

d(xi, v) (2.29)

i1 = argmin
i 6=i0

d(xi, v) (2.30)

If a reverse mapping is included, then instead of the distance measure
di, the measure described in the following equation is used:

d̄i(v
′) = ||v′ − yi||2 (2.31)

During the learning stage (i.e., while target outputs are still known),
the measure needs to take into account the target output:

d̄′(v, v′) = ||v − xi||2 + ||v′ − yi||2 (2.32)

5. The ages Ti0j of all edges neighboring8 the node i0 are incremented.

6. The age of the edge between i0 and i1 is set to zero. If no edge exists
between the two, a new one is created.

7. The error measure ei0 of the winner node is updated. For the unsuper-
vised variant, the squared network error is added:

∆ei0 = ||v − xi0 ||2 (2.33)

For the supervised variant, the squared distance to the network output
is added instead:

∆ei0 = ||v′ − oi0(v)||2 (2.34)

For a bidirectional mapping, the equation 2.34 is extended to:

∆ei0 = ||v′ − oi0(v)||2 + ||v − ōi0(v
′)||2 (2.35)

8. The utility of the winner node is updated. For the unsupervised version,
the increase of the global error that occurs if the winner node would
not be present is added:

∆ui0 = ||v − xi1||2 − ||v − xi0||2 (2.36)

For the supervised algorithm, the utility is updated using the center in
the output space instead:

∆ui0 = ||v′ − oi1(v)||2 − ||v′ − oi0(v)||2 (2.37)

8Here, the neighborhood of a node are those nodes connected to it through an edge.
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9. The network’s topology is adapted. The winner node is moved towards
the input sample, and its direct neighbors in are adapted according to

∆xi0 = εwinner · (v − xi0) (2.38)

∆xin = εneighbor · (v − xin) (2.39)

where εwinner and εneighbor are predetermined step widths.

For the supervised version, the center in the output and the matrix
describing the local linear mapping need to be changed as well:

∆yi0 = εoutput · (v′ − yi0) (2.40)

∆Yi0 = εoutput · (v′ − oi0(v)) · (v − xi0)
+ (2.41)

where εoutput is a step width.

For the reverse mapping, the matrix Xi0 and the neighbors yn in the
output space are adapted using the following equations:

∆Xi0 = εwinner · (v − ōi0(v
′)) · (v′ − yi0)

+ (2.42)

∆yn = εneighbor · (v′ − yn), (2.43)

and the step widths εwinner and εoutput have the same value.

10. All edges that have an age greater than the maximum age are removed,
and all resulting isolated nodes are removed as well, as long as the
network has at least two nodes.

11. For every λgrowth input samples presented to the network, a new node
is inserted. For this, the node q with the highest error, and the node
r with the highest error among its neighbors are determined. A new
node g with

xg :=
1

2
(xq + xr) (2.44)

eg := eq (2.45)

ug := uq (2.46)

is inserted. For a supervised network, the center in the output space
and the matrix containing the mapping are set to

yg :=
1

2
(yq + yr) (2.47)

Yg :=
1

2
(Yq + Yr) (2.48)
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and for bidirectional mapping the matrix Xg is calculated accordingly:

Xg :=
1

2
(Xq +Xr) (2.49)

After inserting the node, the edge between r and q is removed, and
edges from g to r and q are created. Afterwards the error values of the
old nodes are decayed by αgrowth.

12. For every λdecay input samples presented to the network, a node is
deleted based on its utility value.

For this, the maximal error value emax is determined. The node iumin
with the lowest utility value is deleted if its utility is smaller than a
fraction of emax, i.e., if the equation

uiumin
· κ < emax (2.50)

holds true.

13. All error and utility values are decayed by multiplying them with a
factor αerror,utility ∈ (0, 1].

14. The algorithm is repeated from step 2 onwards, until a convergence
criterion is met, or all training samples have been presented. However
it is also possible to let the network learn indefinitely.

3 Evolutionary Algorithms

3.1 Introduction

Evolutionary Algorithms are a class of stochastic search algorithms based
on the principles of Darwinian evolution. These algorithms are capable of
optimizing problems for which a fitness value can be defined. During the
optimization, different generations of individuals, composed of genomes con-
taining possible solutions, compete with each other for survival. In every
generation, each individual is assigned a fitness value, which indicates its
suitability to solve the problem. Based on this value and stochastic influ-
ences, some individuals are selected to survive onto the next generation and
to generate an offspring by the recombination of their genomes. This process
is repeated until a satisfying solution has been found (e.g., an individual with
a fitness value lower than a preset threshold).
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Evolution Strategies are a subclass of Evolutionary Algorithms. The
Covariance Matrix Adaptation strategy uses a normal distribution with an
adapted covariance matrix for mutating the offspring individuals based on the
genomes of a single parent. The distribution’s covariance matrix is adapted
to make the mutations more likely to occur in the same direction as the muta-
tions that increased the fitness values of individuals in previous generations.

3.2 Populations and Individuals

Evolutionary Algorithms optimize a problem by evaluating some of its pos-
sible solutions against each other. Each of these is encoded into the chromo-
somes of an individual, and the resulting set of individuals forms a popula-
tion.

The premise for using Evolutionary Algorithms is that a fitness value can
be assigned to every individual (i.e. a fitness value f(x) can be assigned to
every possible solution x). This fitness value serves as a basis for selecting
the individuals that survive onto the next generation. For example, let w
be a vector of weights representing the connections between neurons of a
neural net set to be optimized by an Evolutionary Algorithm. If the goal
of the network using w is to represent a function g, the fitness value could
be a measure of the network error for a data set (e.g., the squared network
error for samples from g in a predetermined range). During the optimiza-
tion the Evolutionary Algorithm would create various individuals, and would
calculate the network error for each one to acquire its fitness value.

There are several approaches to encoding a possible solution in a chro-
mosome (e.g., character or bitstrings). Selecting the encoding approach de-
pends on the type of data and the Evolutionary Algorithm to be used. In
the present work, the chromosomes are considered an array of integral or
real values, because the Neural Gas algorithm contains only real and integral
valued parameters.

3.3 The Evolutionary Cycle

In essence, Evolutionary Algorithms always follow the same structure [Kreutz
et al., 2008]. They hold a population of individuals, which is initialized
(e.g., by assigning random values to the chromosomes of its individuals);
after that, the individuals are evaluated (i.e., each individual is assigned a
fitness value based on its genome). Subsequently, the population for the next
generation is selected from the individuals of the last one. Then, mating
selection and recombination are performed to form additional individuals.
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Lastly, these additional individuals are evaluated, and the cycle is repeated
until a termination criterion (e.g., a predetermined fitness value) is met.

The algorithm described above is a basic form of Evolutionary Algo-
rithms, containing elements common to most variations. However, mutation
is an additional step used for the present work applied when the offspring
individuals have been generated. In general, it is part of the recombination
process which allows to explore the search space by adding a random element
to the formation of the individuals’ genomes.

3.3.1 (µ, λ) and (µ+ λ) Selection

Selection occurs twice in the evolutionary cycle: the mating selection and
the selection of the individuals for the next generation. The latter one is the
process of determining which individuals survive and are passed on to the
next generation, and its mechanisms are the focus of this section.

The selection mechanisms presented in this section are deterministic.
There are also stochastic selection mechanisms which assign individuals a
probability to survive that is directly proportional to their fitness to solve
the problem that is being optimized. The present work only uses determin-
istic selection mechanisms.

Several different kinds of deterministic selection mechanisms are proposed
in the literature. In the present work, only (µ, λ), (µ+λ) and elitist selection
are used. In these selection mechanisms, there are two kinds of populations
during each generation. The first one is the parent population, which consists
of µ individuals from the previous generations. The second one is the off-
spring population containing λ individuals, which are created by mating the
individuals from the parent population followed by mutating the resulting
offspring.

Each individual survives based on its fitness value. When applying (µ, λ)
selection, only the µ fittest individuals from the offspring generation become
part of the next parent population. This selection mechanism does not pre-
serve the best solutions over generations, because the offspring individual are
not necessarily fitter than their parents. However, such a property allows this
mechanism to have a greater chance of finding the global optimum, because
it is capable of moving away from a locally optimal solution. In the case
of (µ + λ) selection, the next generation consists of individuals from both
the offspring and the parent populations of the preceding generation. Op-
posed to the (µ, λ) selection mechanism, this method always preserves the
best solutions found. If none of the offspring individuals are fitter than their
parents, in the next generation the parent population remains the same. This
difference to the (µ, λ) selection mechanism reduces the chances of finding
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a global optimum, but also decreases the chances of losing a good solution
once it is found.

Therefore, both methods have an advantage over the other. The (µ, λ)
selection mechanism performs exploration while the (µ+ λ) one preserves the
best solutions found. To make use of both properties, the present work uses a
selection mechanism that combines the two[Kreutz et al., 2008] mechanisms.
In principle, this selection mechanism selects individuals similar to the (µ, λ)
mechanism. However, prior to selecting the best offspring individuals, nelitists

from both the parent and the offspring population are selected to survive.
After those individuals are selected, µ − nelitists of the fittest individuals
from the offspring population are selected. It is relevant to note, that no
individual gets selected twice. This combined selection mechanism preserves
good solutions for the problem, even if all the offspring individuals have a
lower fitness value than their parents. Additionally, it enables exploration,
because a number of the best offspring individuals still survives, giving the
offspring population the chance to evolve towards a different local optimum.

3.3.2 Mutation and recombination

Recombination is the process of combining individuals from the parent pop-
ulation to form new offspring individuals. During this process, the parents
can be selected in several ways. In the present work, each individual in the
parent population has the same chance of being one of the two parents of a
new individual.

After the parents are selected, they are combined to form a new indi-
vidual by performing a crossover between their genomes. The result of the
crossover is a new genome containing parts from both parents: the genomes
of both parents have the same length (i.e., they store the same number of
values). The crossover algorithm starts with the values from one of the par-
ent individuals and writes them into the new genome. After a number of
values, it switches to the second parent and uses the values from its genome.
The number of cross points ncrosses is determined (e.g., randomly) and the
process described above is repeated ncrosses times, resulting in a genome that
is a combination of both parents.

After the offspring individuals are created, each of their genomes is mu-
tated by drawing a vector from a normal distribution centered around zero
and adding it to the genome of the individual. The variance of the normal
distribution can be varied to achieve more or less exploration of the search
space during the evolutionary cycle (i.e., a greater value for the variance re-
sults in more exploration while a smaller one restricts the mutation of the
individuals to a smaller range).
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3.4 Covariance Matrix Adaptation

The Covariance Matrix Adaptation (CMA) is an Evolution Strategy de-
vised for optimizing problems with solutions consisting entirely of real values.
CMA uses a modified normal distribution for mutating the genomes: the dis-
tribution’s covariance matrix is adapted according to the information about
the search space obtained over the course of the last generations. It uses
one parent from which all offspring individuals are generated by means of
mutation[Igel et al., 2006]: without loss of generality, assume cgp ∈ Rd to be
the representation of the parent’s chromosome. The offspring i is generated
according to the following equation:

coi := cgp +mi (3.1)

where m represents the value of the mutation. Using a n-dimensional
normally distributed random variable with a unit covariance matrix for gen-
erating m would result in the method described in section 3.3.2. However,
For the Covariance Matrix Adaptation the mutation is sampled with a co-
variance matrix Cg+1:

m ∼ N(0, Cg+1) (3.2)

Cg+1 is initially set to 1. For each subsequent generation it is updated
orienting the random distribution towards solutions that are proven to have
better fitness values. For example, if a parent solution s1 was mutated to
become an offspring s2, and f(s2) > f(s1) (i.e., s2 would become the new
parent in the next generation), then the covariance matrix is adapted making
a sample more likely to occur in the direction of s2− s1 (and in the opposite
direction as well, since the normal distribution is symmetric). In principle,
this method is similar to a gradient descent, with the difference that the
movement towards an optimal solution is not deterministic.

Due to its nature, the CMA Evolution Strategy can find an optimum
in significantly less generations than Evolutionary Algorithms when dealing
with real valued parameters. It can also be used to optimize multiple goals of
one problem [Igel et al., 2007], however this could not be used in the present
work.

4 Optimizing Parameter Sets

4.1 Introduction

Many machine learning algorithms, such as the one introduced in section
2.1, have a high number of parameters that control the learning process.

20



The values of these parameters need to be selected carefully to achieve the
desired learning effects, either by applying prior knowledge about the nature
of the problem presented to the algorithm or by setting them empirically.
In most cases, a combination of these methods is used, and the search for
optimal values for these parameters becomes extensive and time consuming.

Evolutionary Algorithms on the other hand are capable of optimizing any
problem for which a fitness function can be defined.

Since the performance of machine learning algorithms can be evaluated
(e.g., by using the squared network error of a multilayer neural network),
the present work proposes a method for using Evolutionary Algorithms to
optimize their parameter values.

4.2 Optimizing Growing Neural Gas Networks

The present work focuses on optimizing the parameter values of the Growing
Neural Gas algorithm because of the high number of parameters used by
this algorithm, which makes finding optimal values a very complex task.
Additionally, applying it to represent the visual knowledge of a feature-based
object recognition and categorization model offers a chance to evaluate the
practical effect of the parameter values found during the optimization process
on the object recognition and categorization rates. Since the fitness values
obtained from the Evolutionary Algorithm with different fitness functions
presented in section 4.5 cannot be compared, the object recognition and
recall rates can be used for this as well.

4.3 The Optimizer

The parameter optimization is achieved with the evolutionary cycle described
in section 3.3. Special considerations have to be taken into account in order
to evaluate parameter values of Growing Neural Gas networks. Among those
is the definition of a fitness function and the implementation of the range
restrictions of the parameters to be optimized. These considerations are
addressed in the following algorithm used for optimizing the parameter values
of the Growing Neural Gas algorithm:

1. The population sizes are selected, µ for the parent population and λ for
the offspring population, as well as the number of elitists in the parent
population and a standard deviation σ for the normal distribution used
when the individuals are mutated. The parameters which have real
numbers ranging from zero to one (e.g., the error decay αerror, see step
13 in section 2.7), use a different deviation σ[0,1], because the magnitude
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of the mutation in these cases has to be smaller than for parameters
with a wider range. Using the same standard deviation for both types
of parameters would result in the parameters that are restricted to
the smaller range being zero or one most of the time, because the
magnitude of the added mutation value would often exceed the range
of the parameters.

In the present work, the parent and offspring populations are both set
to contain two individuals, and one of those parents is an elitist. The
standard deviation of the distributions used for the mutation are set as
σ = 2.0 and σ[0,1] = 0.1 respectively.

2. The parent population is initialized. This entails creating a set of indi-
viduals and randomly setting the values of their genomes. The range
of these initial random values is limited to prevent excessive starting
conditions. This is necessary because in preliminary experiments unre-
stricted random initial values often allowed for the creation of millions
of nodes in a network, resulting in long calculation times when evalu-
ating the fitness of an individual.

3. After the parent population has been initialized, a Growing Neural Gas
network is created for each individual in the parent population, and its
parameters are set to the parameter values encoded in that individual.
Once created and initialized, the Growing Neural Gas networks are
trained using the input samples from the training data set (see section
4.4), and a fitness value is assigned to each of them (the methods for
the calculation of the fitness value are described in section 4.5).

4. The individuals of the offspring population are generated from the cur-
rent parent population, using a crossover between two randomly se-
lected parents as it is described in section 3.3.2.

5. The new offspring individuals are mutated by adding a random num-
ber x ∼ N(0, σ) to each parameter value in the individual’s genome
(a different deviation σ[0,1] is used for mutating the values of param-
eters that are restricted to the range [0, 1]). This randomization can
result in parameter values that are no longer in their specified range
(e.g., an error decay greater than one, with the error decay parameter
being restricted to the range (0, 1]). In these cases, it is not sufficient
to restrict the value that is used by the Growing Neural Gas algorithm
to the according range and leave the value in the individual’s genome
unchanged, because this would allow the individual’s values to con-
tinue evolving out of the parameter range while still possibly assigning
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higher fitness values to it than to other individuals. Thus, whenever
a parameter value exceeds the range specified for it, it is changed in
the individual’s genome before the parameters are used in the Growing
Neural Gas algorithm for calculating the fitness value. Following the
example of the error decay having a value greater than one, the value
would be set to exactly one.

6. The fitness of the new offspring individuals evaluated as it is described
in step 3.

7. The parents of the next generation are selected from all the popula-
tions of the current generation (i.e., the current parent and offspring
individuals) using the elitist selection mechanism described in section
3.3.1.

8. The steps starting from 4 onwards are repeated until either a prede-
termined amount of generations or an individual with a fitness value
greater than a preset value is found.

4.4 The Data Set

The training and test data sets used for the experiments described in section
5 are provided by Guillermo S. Donatti (unpublished data, 2008). Both are
composed of vectors of Gabor Jets9 which represent the features extracted
from ETH-80 [Leibe and Schiele, 2003] object images. This database contains
images of objects from four abstract categories (e.g., animals, fruits and veg-
etables) and eight concrete categories (e.g., horses, apples). Each concrete
category includes 10 different objects represented by 41 images from view-
points sampled equally over the upper viewing hemisphere. The data sets
used in the present work contain features extracted from 256 different object
images obtained from 4 objects of each concrete category represented by 8
of the 41 available view points.

This data is used for training and testing a feature-based object recog-
nition and categorization model introduced by Guillermo S. Donatti (manu-
script in preparation, 2008). This model is defined by a taxonomic hierarchy
of self-organized Growing Neural Gas networks, which comprises three lev-
els of knowledge organization: universal, abstract and concrete. During its
training stage, features extracted from different object images and a distance

9Gabor Jets[Lades et al., 1993] are a collection of responses of Gabor Wavelets. Gabor
wavelets are widely used in object recognition and computer vision in general, because
they model the responses of V1 simple cells in the brain [Jones and Palmer, 1987].
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measure are used to create an associative structure at each level, which repre-
sents the learned visual knowledge of its enclosed categories. During its recall
stage, features extracted from test object images are matched, according to
the same distance measure, against the learned object models, starting with
the most abstract level of the hierarchy (i.e., the universal level) and descend-
ing to the more specific levels. During this process, the inference probabilities
calculated on more abstract levels determine the ones of the more specific
levels. Once the most specific level is reached, the object model with the
highest probability is selected and the test object is finally identified.

The distance measure used both during the training and test stages is
the normalized scalar distance, which is calculated using to the following
equation:

dsn(v1, v2) := 1− 〈v1|v2〉
||v1|| · ||v2||

(4.1)

where dsn represents the dissimilarity10 of two given vectors v1, v2 ∈ Rk
+ and

is in the range [0, 1].

4.5 The Fitness Functions

An important part of the optimization process is the definition of a fitness
function, which determines what kind of individuals are preferred11 by the
optimizer. In the present work, determining the fitness value of an individual
is a process with the following structure: Let p be a vector containing the
values of the parameters of the Growing Neural Gas algorithm stored in
the individual for which the fitness value is to be calculated. First, the
parameter set p is assigned to a Growing Neural Gas algorithm; the algorithm
is initialized as described in section 2.7. Second, the network is trained using
the Growing Neural Gas algorithm. The network’s fitness value is calculated
using the global error or the sample distance fitness function, both of which
are described in the following sections.

4.5.1 Global Error

The fitness function presented here uses the global network error, which is
the sum of the accumulated error values of all nodes after the network has

10This function (or rather the similarity function S(v1, v2) = 1 − dsn(v1, v2)) is also
used as an error measure in object recognition for bunchgraph matching and therefore it
is suited for the data set described above.

11Which is either a minimum or a maximum value of the fitness function, depending on
the definition of the fitness function: if the fitness value is an error, then the Evolutionary
Algorithm is set to search for a minimum, and it is set to search for a maximum otherwise.
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been trained:

fG(p) :=

N(p)∑
i=0

ei(p), (4.2)

where ei(p) is the accumulated error of the node i when training the
network with Growing Neural Gas algorithm using the parameter set p, and
N(p) is the number of nodes in the trained network.

The error decay factors (i.e., αgrowth and αerror, see section 2.3.1) are
not optimized by the global error fitness function, because preliminary ex-
periments suggest that they evolve to zero values, or to the smallest value
permitted if they are restrained to values greater than zero. Thus, the global
error is reduced to a minimum, independently of the quality (i.e., the capa-
bility of a network created with these parameters for learning the topology of
the input manifold) of the parameter values. Therefore, in experiments that
use the global error as the fitness function, the decay values are empirically
set and are not optimized.

4.5.2 Sample Distance

Since the global network error cannot be used to optimize the error decay
parameters, an alternative fitness function that is able to do it is desired.
As both, αerror and αgrowth are tied to the Growing Neural Gas algorithm’s
global error calculation, a fitness function independent of the algorithm is
proposed. After the network is trained, a test set S = {s ∈ Rdin} is used to
calculate the distance of the network’s nodes to the samples in S, according
to the distance measure d(x, y). The sum of these distances is used as the
fitness value o the network:

fSD(p) =
∑
s∈S

d(xi0s (p), s), (4.3)

where xi(p) is the node of the network trained with the parameter set p, and
i0s is the index of the node closest to the sample s:

i0s := argmin
j

d(xj(p), s) (4.4)

4.5.3 Restricting Neuron Growth

It is possible to minimize the value of the sample distance function by filling
the input space with a very high number of nodes. Since the node density
resulting from this is very high, This could lead to a network that has one
node for each test sample, which is not a desirable outcome, because the
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network should extract the topology of the distribution and generalize over
the input samples. Therefore, it is necessary to modify this fitness function
to evaluate the networks proportionately to their number of nodes.

In the Growing Neural Gas algorithm the network’s size is regulated with
the utility measure (see section 2.4). However, this value is dependent on the
parameter κ, which is included in the parameter values that are optimized
and thus cannot be used in a fitness function.

A possible solution could be to calculate the density of the network and
using it as its fitness value. However, the complexity of this approach exceeds
the scope of the present work and therefore is not developed further. Instead,
a less complex solution is proposed and described in section 4.5.4.

4.5.4 Sample Distance with Restricted Growth

The fitness function proposed in this section is a modified version of the one
described in section 4.5.2. In addition to calculating the sample distance,
it “punishes” individuals by adding one to their fitness value for each node
contained in the networks trained with the individuals’ parameter values.
Thus, the fitness value is calculated according to the following equation:

fSD+1(p) =
∑
s∈S

d(xi0s (p), s) +N(p) = fSD(p) +N(p) (4.5)

where N(p) is the number of nodes after training a network with the
parameter values p. This function has small values when the number of
nodes is small and the distance of the nodes to the test input samples is
low.

5 Discussion

5.1 Multiple presentations

The optimization process described in section 4.3 is used to optimize the
global error fitness function. During the evaluation of the individuals in
the Evolutionary Algorithm, Growing Neural Gas networks are trained with
input samples from 22% of the training data set.

The fitness values calculated during the optimization process do not pro-
vide sufficient information for evaluating the optimization. Therefore, the
optimized parameter values are used for training a separate Growing Neural
Gas network with the same data set. The global and mean errors recorded
during training of this network are shown in Figure 1. They display rela-
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Figure 1: Training a Growing Neural Gas network with the parameters from
an optimization with the global error fitness function results in these error
curves. The global and mean errors oscillate in the range [0.16, 1.4], indicat-
ing that no learning occurs during the training of the network.

tively low error values in all iterations. However, both, the global and mean
error oscillate between the same values (approximately 0.16 and 1.4) without
showing any tendency towards being decreased. This indicates that networks
trained with these parameter values are unable to learn the topology of the
input manifold.

The values of both, the decay and growth generation length parameters,
are set to one. This results in the creation of a new node and the deletion
of a useless one for every input sample presented to the Growing Neural Gas
network during its training (see section 2.7, step 11 and 12). Additionally, the
parameters controlling the movement of the winner node and its neighbors
are set to one as well, hence the nodes with a low distance to the input
samples presented to the Growing Neural Gas network are moved strongly
towards them. While these optimized values minimize the global and mean
errors, they also lead to the undesired behavior described above.

One possible reason for this undesired behavior is the relatively short
training time during the optimization. The input samples for each network
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Figure 2: The effect of multiple presentations. Networks to which train-
ing samples are presented 300 times learn significantly better than the ones
trained with 150 presentations. Additionally, the results are found earlier
(at generation 68 as opposed to generation 403). The parameter values for
these networks are evolved with 11% of the training data set and the sample
distance fitness function.

are extracted from 22% of the training data set, thus the networks are trained
with approximately 1000 input samples. Only a small amount of learning
can occur during the presentation of these input samples, thus networks
that show the undesired behavior described above would be preferred by the
Evolutionary Algorithm, because networks capable of learning usually show
a relatively high error during early iterations.

To solve this problem, training input samples are presented repeatedly
during the evaluation of the Growing Neural Gas networks. Empirical results
(see Figure 2) suggest that presenting the input samples 300 times achieves
low error values while the calculation times for evaluating individuals are still
relatively short.

5.1.1 Reducing Calculation Time

Presenting samples repeatedly significantly increases the time required for
evaluating an individual during the optimization process. Hence, empirically
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determined parameter values provided by Guillermo S. Donatti (unpublished
data, 2008) are used as initial values for the individuals in the first parent
population. These parameter values are known to produce low global and
mean network errors and are used during the training of the feature-based
object recognition and categorization model described in section 4.4.

This approach significantly limits the size of the region of the search
space the Evolutionary Algorithm has to explore, because the individuals
already start out near parameter values known to produce networks that
show the desired behavior. Additionally, every individual fitter than the
one containing the empirically determined parameters should improve upon
them, if the fitness functions work as intended.

5.1.2 The Covariance Matrix Adaptation

An additional approach to reducing the time for finding an optimum is using
the Covariance Matrix Adaptation (see section 3.4) instead of the Evolution-
ary Algorithm described in section 4.3, because using this strategy decreases
the amount of generations necessary for finding optimal parameter values.
However, the CMA strategy is only designed for optimizing problems with
real valued parameters. Furthermore, experiments using the CMA strategy
for optimizing Growing Neural Gas parameter values suggest that it cannot
adapt parameters with integral values. This is most likely caused by the
non-steady nature of integral values (the parameter values with integral di-
mensions are truncated, i.e., rounded down for use in the Growing Neural
Gas algorithm when the CMA strategy is used). However, further research
on this topic is needed, since the CMA strategy could significantly reduce
the time required for finding optimal parameter values.

5.2 The Experiments

The algorithm described in section 4.3 is used to optimize parameter values
for 22% of the training data set. The approaches discussed in sections 5.1–
5.1.2 are taken into account as well: input samples from the training data
set are presented 300 times, and the values of the genomes of the individuals
in the parent population of the first generation are constrained to the em-
pirically set parameter values for the Growing Neural Gas algorithm. The
resulting optimized parameter values are then used to calculate the different
fitness values for a separate Growing Neural Gas network trained with the
same data set that is used during the optimization. Experiments with this
setup are conducted for each of the fitness functions introduced in section
4.5, and the results are discussed in the following sections.
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5.2.1 The Global Error Fitness Function

The results obtained when using the global error fitness function are pre-
sented in Figure 3. They show, that the Growing Neural Gas networks
created with the optimized parameter values generate a lower global network
error than the ones created with the empirically set parameters. However,
the speed of learning (i.e., the decrease of the error) is not optimized by the
fitness function: the global error of the network from generation 114 indi-
cates a much slower decrease than the one of the baseline Growing Neural
Gas network12, but at the same time arrives at a lower error.

The values of the fSD+1 function of the empirically set parameters and the
individual from generation 114 behave similarly, while the fitness values of the
winner individual display a much higher increase in the final iterations, which
is likely caused by a greater growth of the Growing Neural Gas network13.
These results support the idea of needing a growth restriction for the sample
distance fitness function introduced in section 4.5.4.

5.2.2 The Sample Distance Fitness Function

The results for parameters extracted from individuals obtained with an op-
timization process using the fSD fitness function show that the optimization
does not reduce the global error (see Figure 4). This may be caused by the
fact that the optimized error decay factors (αgrowth and αerror, see section
2.7, step 13) are both set to one, suggesting that once a Growing Neural Gas
network trained with these values accumulates an error, it can only lower its
global error by removing a node. The decay parameter values probably cause
the near-steady (i.e., almost steady with only small reductions) increase of
the global error that can be observed in Figure 4. Furthermore, it is possible
that the Growing Neural Gas networks trained with the optimized parameter
values retain a high global error due to the values of the decay factors and
still learn the topology of the input manifold, but this cannot be evaluated
using the error measures of the Growing Neural Gas algorithm. However,
using the optimized parameter values may show increased object recognition
and categorization rates with the model introduced in section 5.4.

It is also worth noting that the networks that use the optimized parameter
values seem to have a tendency to constantly increase the number of their
nodes, as already observed with the global error fitness function in section

12The baseline Growing Neural Gas network uses the empirically set parameter values
as described in section 5.1.1.

13This can be deduced from the fact that fSD+1 − fSD = N . Since the values for fSD

of all individuals only have a small difference, the increase in fSD+1 results mostly from
additional nodes in the network.
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Figure 3: The graphs show the three fitness functions calculated for a Grow-
ing Neural Gas network trained with parameter values obtained from an
optimization process using the global error fitness function and the method
described in section 5.2.
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Figure 4: The graphs show the three fitness functions calculated for Growing
Neural Gas networks using parameter values that were optimized with the
sample distance measure and the methods described in section 5.2.
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5.2.1. In general, longer evolutions would probably lead to networks with a
high number of nodes, as it is described in section 4.5.3.

5.2.3 Sample Distance with Restricted Growth

The results for using the fSD+1 fitness function for the Evolutionary Algo-
rithm are presented in Figure 5. They suggest that the goal of restricting
the amount of nodes in the Growing Neural Gas networks is achieved: while
the difference between the sample distance values of all networks is relatively
small, the values of fSD+1 decrease significantly compared to the baseline val-
ues, indicating a reduction in the amount of nodes created by the network.

The fittest individual found during the optimization process shows a
global error that increases almost steadily, likely caused by the same rea-
sons described in section 5.2.2. However, the sample distance values of all
individuals (see Figure 5) show only a small difference between each other,
hence it is possible that the network correctly learns the topology. This hy-
pothesis is also supported by the fact that a Growing Neural Gas network
trained with parameter values extracted from an individual of generation 187,
which contains decay values less than one, shows lower global error values
than the network that is trained using the empirically set parameter values.

5.3 Random Initialization

Additional experiments are conducted using the same setup as described in
section 5.2, but with random initial values for the individuals in the parent
population of the first generation. The results14 for these experiments are
presented in Figure 6.

In general, most of the Growing Neural Gas networks trained with the
parameter values obtained have a low initial error. However, they do not
show any learning behavior since the error oscillates within a fixed range.
Although networks with parameter values from subsequent generations seem
to lower the limits of this range, they do not show a tendency towards learning
either. These solutions are probably preferred by the optimizer because they
are near a local optimum.

These local optima could probably be avoided by running the optimiza-
tion process multiple times, until the individuals in the first parent popu-
lation start near a region of the search space that describes networks that
show learning behavior. However, directly evaluating learning capabilities is
preferable, as it would not rely on such random influences.

14These results can only be considered preliminary, as more time is needed to properly
evolve parameter sets with this method.

33



0 50000 100000 150000 200000 250000 300000
1

10

100

1000

10000

baseline
Generation 187
Generation 313

Growing Neural Gas network iteration

gl
ob

al
 e

rro
r f

itn
es

s 
va

lu
e

0 50000 100000 150000 200000 250000 300000
0

200

400

600

800

1000

1200

1400

1600

baseline
Generation 187
Generation 313

Growing Neural Gas network iteration

sa
m

pl
e 

di
st

an
ce

 fi
tn

es
s 

va
lu

e

0 50000 100000 150000 200000 250000 300000
0

200

400

600

800

1000

1200

1400

1600

baseline
Generation 187
Generation 313

Growing Neural Gas network iteration

sa
m

pl
e 

di
st

an
ce

 fi
tn

es
s 

va
lu

e 
w

ith
 g

ro
w

th
 re

st
ric

tio
n

Figure 5: These diagrams show the three fitness functions calculated for
Growing Neural Gas networks using parameter values optimized with the
sample distance fitness function with restricted growth (the optimization
process described in section 5.2 is used).
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Figure 6: Global error curves of networks trained with parameter sets ob-
tained from three generations of the optimization process using the global
error fitness function and starting from random parameter sets.

In a future work, additional experiments with random initializations need
to be done. The effect of the restriction of the initial values of the individuals
in the first parent population (see section 4.3) on the quality of the solutions
(i.e., the capability of networks trained with the optimized paramete values)
needs to be investigated as well.

5.4 Comparing the Fitness Functions

In the present work, three different fitness functions are proposed to find
optimal individuals. Their genomes are used to set the parameter values of
the Growing Neural Gas algorithm (see section 4.3) and the obtained results
are presented in section 5.2. However, the performances cannot be cross-
compared directly. Furthermore, the global or mean error values of Growing
Neural Gas networks trained with the optimized parameter values cannot
be used to perform this task either, since they depend on the error decay
parameters.

In order to cross-compare the performance of these parameter values,
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Figure 7: Recognition and categorization rates achieved with the feature-
based categorization and object recognition model for 22% and 48% of the
data set.
The abbreviations are: B – Baseline, B-P – Baseline without plasticity, G –
Global Error, SD – Sample distance, SD+1 – Sample distance with growth
restriction.

the different object recognition and categorization rates obtained from the
model introduced in section 4.4 are used, and the model’s underlying Grow-
ing Neural Gas taxonomy is trained with the optimized parameter values.
Additionally, the object recognition and categorization rates can be used to
indicate the practical effect of the parameter value optimization.

The resulting experimental set is composed of five instances of the model,
one for each parameter set obtained using different fitness functions, one for
the empirically determined parameter sets, and another one for a parameter
set which uses a combination between the empirically determined parameter
values and a plasticity function15.

15The plasticity function is an empirically set function which regulates the node growth
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Figure 8: Recognition and categorization rates achieved with the feature-
based categorization and object recognition model for 75% and 100% of the
data set.
The abbreviations are: B – Baseline, B-P – Baseline without plasticity, G –
Global Error, SD – Sample distance, SD+1 – Sample distance with growth
restriction.

The percentage of object images correctly categorized (abstract and con-
crete) and recognized (object names) achieved by the models both for the
training and test data sets introduced in section 4.4 are presented in Figure
7 and 8. The results show, that the models trained with the parameters opti-
mized with the global error and sample distance fitness function with growth
restriction achieve significantly higher object recognition and categorization
rates than the models trained with the baseline parameter values with the
plasticity function. However, the models trained with the sample distance
function without the growth restriction show lower object recognition and

during training of a Growing Neural Gas network based on its growth and decay factor
parameters and the size of the training data set that is used.
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categorization rates than the model trained with empirically determined val-
ues.

In general, the object recognition and categorization rates seem to stay
relatively constant when more input samples are presented. On the other
hand, the ones of the model trained with empirically set parameter values
with the plasticity function seem to decrease proportionately to the number
of samples presented.

In all cases, the optimized parameter values outperform the empirically
determined ones.

6 Conclusion and Further Research

The results presented in section 5.4 indicate that it is possible to find pa-
rameter sets, which improve the object recognition and categorization rates
of the model described in section 4.4, when starting the optimization process
with constrained parameter values and using the global error fitness function.
Furthermore, similar improvements can be obtained when using the sample
distance fitness function with the growth restriction. However, the general
goal of finding optimal parameter values starting the optimization process
from arbitrary values could not be reached.

There are two obstacles that need to be overcome in future research:
one is the long calculation time needed for training Growing Neural Gas
networks during the evaluation of parameter values; the other is avoiding the
apparently high number of local optima, leading to networks with very low
error values, but also with little capability of learning the distribution of the
input samples. A possible approach to overcome this can be to modify the
fitness functions to take the learning capabilities of a network into account
(e.g., by assigning Growing Neural Gas networks a lower fitness value for
errors generated in later generations and disregarding errors in earlier ones).
Another possible solution can be incorporating a rate of change in the error
curve into a fitness function.

Additionally, reducing the number of generations necessary for finding an
optimum is an important task for future research, because of the time re-
quired for evaluating the individual in each generation. Therefore, a method
for using the Covariance Matrix Adaptation for integral dimensions is desired.
This might also allow for the usage of the Covariance Matrix Adaptation for
Multi-objective Optimization[Igel et al., 2007] to restrict the growth rates of
the Growing Neural Gas networks.

The growth restriction placed on the sample distance fitness function may
be too restrictive, favoring small networks over networks that perform the
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desired quantization. In a future work, the possibility of allowing for gradual
restriction of network size and the distance from the test input samples could
be examined.

Further experiments using randomly initialized individuals in the first
parent population are needed to determine the suitability of this method.
The effect of the restrictions placed on the ranges of the random values for
the initial parent population needs to be investigated as well.
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ngemäß auch für gelieferte Zeichnungen, Skizzen und bildliche Darstellungen
und dergleichen.

Datum Unterschrift

41


