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A neural process model of learning to sequentially organize and
activate pre-reaches

Jan Tekiilve, Stephan K. U. Zibner, and Gregor Schoner*

Abstract—Inspired by the longitudinal data of von Hof-
sten [1], we provide a neural process model of autonomously
learning to direct pre-reaches toward visual objects. We build
on an earlier neural dynamics account of pre-reaching [2],
in which the elementary behaviors of visual fixation, reaching
toward targets, returning to a resting position, closing, and
opening the hand are tied to perceptual inputs and linked
to a modeled muscle and effector system. In the current
extension, the coupling of these elementary behaviors and their
task-related recruitment emerge from an autonomous learning
process that discovers which elementary behaviors in which
sequential order are associated with success. The learning
dynamics combines a memory trace of recent activation of
behaviors and sequences with a neural representation of the
reward that is inherent in moving the hand close to a visual
object. We address how the temporally discrete reward events
may be integrated into the time-continuous neural and learning
dynamics. The simulated robotic model accounts for the three
phases of activation, suppression, and re-emergence in the
development of pre-reaching that were empirically observed
by von Hofsten. These are attributed to the development of
the sequential organization of movement and the stabilization
of movement activation according to the spatial precision
hypothesis.

I. INTRODUCTION

Learning to reach and grasp objects in a baby’s vicinity is a
major developmental milestone that draws on a set of percep-
tual and motor skills. The longitudinal study of von Hofsten
[1] assessed pre-reaching by recording visual fixation, arm
movements, and hand configuration while infants observed
stationary or moving objects. Von Hofsten identified three
developmental phases. Infants of up to four weeks of age
generated some movements of the hand in the general
direction of the object, called pre-reaches, even though they
often did not visually fixate the object. The number of pre-
reaches dropped in a second phase between four and ten
weeks of age, while the total time spent visually fixating
the object increased. Starting around ten weeks of age, pre-
reaching movements re-emerged with increasing frequency
and often accompanied by visual fixation of the object. Von
Hofsten also described a developmental trajectory for hand
configuration.

Previously, we used the developmental signatures provided
by von Hofsten to assess a neural processing account for the
different developmental stages of pre-reaching [2]. Neural
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processes are captured at the level of the dynamics of
neural population activation representing movement targets,
and initial hand positions. The dynamics of neural oscil-
lators generate timing signals that drive a muscle model
and generate the physical movement. Visual fixation was
modeled by a neural dynamics of covert attention. Initiation
and termination of these different behaviors was accounted
for by the neural dynamics of a set of activation variables.
Their dynamic instabilities trigger the transitions among
the different neural states that are entailed in reaching and
looking.

We mapped the three developmental phases onto different
dynamic regimes captured by three sets of values for model
parameters [2]. Specifically, the connectivity among behav-
iors was changed from an early stage in which behaviors
were not coupled and neural interaction within the neural
dynamics was relatively weak to a more developed stage in
which a specific pattern of coupling among behaviors was
imposed and neural interaction was relatively stronger (the
latter being consistent with the spatial precision hypothesis
[3]). This mapping accounted for the developmental signa-
tures observed by von Hofsten.

In this paper, we provide an account for the developmental
process itself. We focus on the emergence of sequential
organization of the comprised behaviors as an explanation
for the three developmental phases found by von Hofsten’s
experiments. This complements earlier work on the senso-
rimotor aspects of learning the reaching component itself
[4], [5]. Processes of autonomous learning from experience
take the model through the developmental phases. Specif-
ically, two sets of neural connections are learned. First,
the coupling among behaviors emerges from an initial state
without coupling to a coupling structure that reflects the
intrinsic structure of the reaching task. Second, each behavior
evolves from a less stable to a more strongly stabilized
regime. Learning is instantiated by a combination of two
factors. The dynamics of a memory trace represents the
recent history of activation of each behavior. This memory
trace is transformed into synaptic strength whenever a pre-
reach was successful as indicated by an intrinsic reward
signal.

The model learns as it autonomously generates sequences
of motor acts through its time-continuous neural dynamics.
We address the problem of how a reward signal that arises
at discrete times at the end of a successful sequence of
actions may impact on the time-continuous neural processes
of learning. We show that the developmental trajectory that
emerges from the learning process qualitatively matches von
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Hofsten’s developmental phases.

II. METHODS

Dynamic Field Theory (DFT), a branch of neural dy-
namics, is a theoretical framework that provides a math-
ematically explicit way to model the evolution in time of
neural population activity [6]. The main building blocks of
DFT are dynamic neural fields (DFs) and dynamic neural
nodes, both implemented as dynamical systems. Multidimen-
sional dynamic neural fields model the activity of neural
populations that are sensitive to certain common features.
Locations within the field encode the corresponding value
along the feature dimensions of the field. Feature dimensions
may encode low-level sensor spaces like retinal location (to
represent salient objects in the visual array, for instance), or
also motor dimensions such as the Cartesian position of the
hand in space. Peaks of activation represent the value along
a feature dimension that is encoded at their location. Neural
interaction within the dynamics of neural fields make such
peaks attractor states. They may arise in dynamic instabilities
driven by input.

A. Dynamic Fields and Nodes

The activation pattern, u(a,t), of a dynamic neural field
spanned over a [N-dimensional feature space x evolves in
time according to the integro-differential equation [7]:

Ti(a, ) = —u(x,t) +h+ Y si(x,t) (1)
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Here, 7 defines the time scale of the neural dynamics together
with the stabilization term, —u(-). The resting level, h <
0, of the field is negative. Inputs, s;(x,t), are summed.
Localized patterns of input may drive associated locations
towards a detection threshold that is set by the non-linear
sigmoidal function o(-). Once activation exceeds threshold,
neural interaction is engaged. Formally, the thresholded acti-
vation pattern is convolved with an interaction kernel w,, 4,
that consists of local excitation, and mid-range to global
inhibition. Local excitatory coupling stabilizes peaks against
decay, while lateral inhibitory coupling prevents activation
from spreading out along the feature dimensions. Global
inhibitory interaction may suppress activation at other field
locations, effectively implementing a selection mechanism.
With weak global inhibition, dynamic fields may contain
multiple peaks at the same time.
Dynamic neural nodes

TU(t) = —u(t) + h + cyuo(u(t)) + Z si(t), (3

have the same neural dynamics as fields, including a detec-
tion decision that is self-stabilized through non-linear local
excitatory interaction with weight ¢, ,. As representations,

nodes are categorical in nature and can be understood as
zero-dimensional fields (N = 0).

Fields may be combined with other fields, with sensor
and motor systems, and with other building blocks into
DFT architectures. Passing its activation through a sigmoidal
threshold function, o(u(t)), a field or a node may project
onto other fields or nodes as excitatory or inhibitory input.
Such projections may entail contraction or expansion along
feature dimensions when the coupled field differs in dimen-
sionality (for a detailed discussion, see [8]). A special case
is a switchable boost, a neural node that projects homoge-
neously to a target DF as a boost of the field’s resting level.
Such a boost may push sub-threshold activation in the field
through the detection instability and thus instantiate such
sub-threshold activation as a self-stabilized peak. Conversely,
a peak detector is a neural node that receives the summed
supra-threshold activation of a DF and is tuned to go through
the detection instability when there is a least one self-
stabilized peak in the DF.

Another DFT building block is the memory trace. Here
we use it for nodes using a learning dynamics that has two
different time scales, 74 < 7_,

ot) = %(—v<t>+a<u(t>>>a<u<t>> @
b ()1 - o).

The memory trace builds up whenever an activation variable,
u(t), is above threshold. It decays more slowly than it builds
up when the activation variable falls below threshold.

B. Behavioral organization

Typically, a task is realized by a dynamic field architecture
by activating a set of sub-tasks in a temporally organized
fashion. For example, the task to pick up a bottle entails
reaching, the transport of the hand toward the bottle, and
grasping, closing the hand to grip the bottle. Such behavioral
or process organization takes place in DFT by activating
or deactivating elementary behaviors (EB) [9]. An EB is
activated by driving its intention node through the detection
instability. It may be deactivated, when its Condition-of-
Satisfaction node (CoS node) becomes active. The intention-
node works as a switchable boost for down-stream fields
or nodes, which it may in turn activate through a detection
instability. These down-stream structures may ultimately
induce a representational or behavioral change, which is
predicted by the intention node and preactivates an associated
CoS field or node. When sensory input or internal feedback
matches the prediction, the CoS becomes active. Internal
feedback about achieving the goal of an intentional state may
take the form of a peak-detector, which may then induces
the transition to a new EB.

In the model, EBs receive input from a common task node
that boosts their intention nodes. This is a place holder for
intention nodes at a higher hierarchical level. We assume
that an EB may be invoked in multiple, different tasks so
that selection of preactivated EBs by a task node may be
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one form of behavioral organization. On the other hand,
interaction among EBs within a single task is mediated by
dynamical “pre-condition” nodes that are co-activated by the
corresponding task node (see for an explanation).
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Fig. 1.  This figure displays three elementary behaviors A, B and C
connected through behavioral organization. A and B are connected through
a precondition node (green) that prevents B from activating unless the CoS
node from A is above threshold. B suppresses C through a suppression node
(red) that prevents any activation of C while B is active. All EBs and the
behavioral organization nodes are activated through a common task node
(blue).

C. Spontaneous behavioral activation

In our developmental account, we assume that early in de-
velopment, both forms of behavioral organization, preactiva-
tion of elementary behaviors by the task node and activation
of the inhibitory pre-condition nodes, are not articulated. EBs
may therefore spontaneously activate or deactivate. In the
model, this happens because the intentional neural node has
generic activation-inhibition neural dynamics that may enter
an oscillatory regime, in which activation drives inhibition,
which suppresses activation, and then decays itself, enabling
activation to rise again [7]. Earlier, Perone and Spencer
[10] suggested that such neural oscillation may be a generic
mechanism for exploratory behavior in DFT. A periodically
activated intention node may still be inhibited through forms
of behavioral organization. It may also be lifted out of the
oscillatory regime when it receives a sufficient boost from
the task node as happens during learning (see
for a sketch). A typical time course of activation, wu(t),
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Fig. 2. This figures is a sketch of a spontaneously activating and
deactivating intention node that acts as a neural oscillator modulated by
behavioral organization and task input.

self-excitation

and the corresponding thresholded activation, o (u(t)), of an
oscillatory intention node is shown in
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Fig. 3.
an oscillatory intention node. Only activation above threshold,
activates downstream behaviors.

This figure shows an exemplary activation time course, u(t), of

o (u(?)),

III. MODEL

In this paper we build on phase one of the pre-reaching
architecture that was previously presented [2] (see
as the initial condition of a developmental process model.
The five elementary behaviors fixate, reach, rest, open, and
close are initially in the dynamic regime of
spontaneous behavior activation (or “behavioral babbling”)
and are not initially coupled. We first explain the components
of the architecture and then discuss the learning process.

A. Elementary Behaviors

The fixation behavior operates on a dynamic neural field
defined over the visual array in retinal coordinates. This
fixation field receives a salience pattern as input from the
simulated vision sensor. When the fixation behavior is ac-
tivated, its intention node boosts the resting level of the
fixation field. As a result, saliency input from the visual
array may then induce through a detection instability, a
single peak of activation at the visual location with most
salience. The intentional node of the fixation EB is self-
stabilized and drives its inhibitory component, forming a
neural oscillator. A similar notion has been used previously
to account for patterns of infant looking [10]. A peak detector
node activates the CoS node when a peak builds in the
fixating field. A peak in the fixation field projects onto the
reaching field as described by a coordinate transform from
visual to Cartesian workspace. In this simplest model, the
transformation is assumed given and trivialized by keeping
the head and camera orientation fixed. The fixation behavior
thus takes the form of covert attention to a salient visual
location, which determines the location to which a reach is
directed.

The reaching behavior is similarly controlled by an in-
tention node that is initially in an oscillatory regime and
globally boosts the reaching field, inducing a single peak
of activation that represents the current reaching target in
Cartesian work space. In the presence of a peak in the
fixation field, the reaching field most likely selects the fixated
(covertly attended) visual location as a reaching target. In
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Fig. 4.

This figure shows a schematic overview of how the three elementary behaviors ‘reach’, ‘rest’ and ’fixate’ couple into movement generation.

Squares with red activation peaks denote fields. Diamonds along connections are indicators of reference frame transformations. All three behaviors are
driven by oscillatory intention nodes resulting in spontaneous forming and vanishing of peaks in the corresponding fields. Without a peak in the fixating-field
influencing the reaching-field, peaks in the reaching-field emerge at a random position. Peaks in the fixating-field emerge at the position of the visual
stimulus and peaks in the resting peak always form at the resting position. Once a peak is present in the target-field the movement generation architecture
drives the arm to the corresponding workspace position. Nodes and connections realizing behavioral organization aside from the oscillatory intention nodes,
both within each EB and between them, are not shown in this figure. For more details, please refer to [11]. Note that a similar network of fields translates
the targets of the elementary behaviors ‘open’ and ‘close’ into movements of the hand.

the absence of a fixation peak, the reaching target arises
as a fluctuation induced peak at a random location. Neural
noise of considerable strength is present in all fields. A
peak in the reaching field triggers a chain of events in the
movement generation architecture (introduced in more detail
in Zibner and colleagues [11]). The direction and extent to
the movement are determined by transforming the reaching
target into a coordinate frame that is centered on the initial
hand (endeffector, eef) position. This coordinate transform is
neurally implemented by convolving the reaching field with
a neural field representing the initial hand position.

Triggered by input from the transformed reaching field, a
two-layer field of neural oscillators generates timing signals
in approximately Gaussian shape. The outputs of the different
oscillators are combined with a learned set of weights
that transform into virtual end-effector velocity, whose peak
velocity and duration ultimately move the hand to the desired
position. The velocity command is transformed into joint-
space using an inverse kinematic map and is subsequently
path-integrated to form an internal representation of the
desired joint configuration. The resulting virtual trajectory

of joint vector drives a set of muscles, modeled in simplified
form as critically damped harmonic oscillators, by shifting
their resting lengths. The torques predicted by the muscle
models drive the robot arm’s dynamics. The virtual trajectory
is also used in the form of a corollary discharge to predict the
hand position in space based on a forward kinematic model.

The resting behavior is an alternate source of specification
of a movement target for the arm. An activation of the resting
intention node always leads to a peak forming in the resting
field at a default resting position. That peak projects onto the
target field, where it converges with input from the reaching
field. When input from the two sources of specification
induces two peaks in the target field, then the eef will move
toward an averaged position.

The behaviors open and close similarly converge on shared
neural processing structure that generates hand movement
and is similar to the architecture for reaching of Figure []
Both behaviors generate movement with default movement
parameter values along a single dimension, the hand opening.
These are represented in associated fields and activated by
oscillatory intention nodes.
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B. Learning Framework

We assume that a pattern of coupling among the five
elementary behaviors exists prior to learning. This pattern
is illustrated in Figure [5] and is meant to capture in a
qualitative way the functional role of the basal ganglia.
Each elementary behavior inhibits four precondition nodes,
which project inhibitorily onto the four other elementary
behaviors. This coupling structure provides for the potential
of sequentiality: An activated precondition node prevents
its target elementary behavior from becoming activated.
Only when the elementary behavior (the “precondition”) that
inhibits the precondition node has been performed, is the
target elementary behavior released from inhibition and may
become activated. Completion of the precondition behavior
is signaled by the Condition-of-Satisfaction of that behavior
(see Figure [6] for the fine structure of this coupling structure).

The precondition nodes are activated by input (s} 5
in Figure [6) from a task node that effectively selects the
set of sequential constraints relevant to the task. Early in
development, we assume this set of connections has zero
strength, so that no sequential structure is active. During
learning, the sequential order of activation of elementary
behaviors that leads to reward strengthens the projections
from the task node to the appropriate precondition nodes,
creating a task network of sequential constraints.

A second substrate for learning is a set of projections from
the task node to each elementary behavior (s in Figure @
This network primes elementary behaviors engaged in the
task, making them easier to activate and their activated state
more stable. Early in development, we assume this second set
of connections also has zero strength so that all elementary
behaviors are equally easy to activate. During learning, task
input to the set of elementary behaviors that leads to reward
is strengthened.

plastlc
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Fig. 5.
behavior. Analog connections exist for the other four behaviors resulting in a
total of twenty preconditions. The precondition nodes need sufficient input
from the task node in order to prevent the corresponding behavior from
activating. All task-to-precondition connections are not sufficient initially
and their connection strength is subject to learning.

The four precondition connections outgoing from the fixate

The neural architecture spontaneously generates behavior
as elementary behaviors are activated through the inherently
oscillatory nature of their neural dynamics. As this happens,
the system learns based on two factors. (1) Memory traces
that reflect the recent behavioral history and its sequential

order, and (2) reward events that occur when a pre-reach
brings the hand sufficiently close to a visually perceived
object. We briefly review the two factors and explain how the
temporally discrete onsets of the reward signal are integrated
into the time-continuous activation and learning dynamics.
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Fig. 6. Two Elementary Behaviors A and B and their corresponding
intention and CoS nodes. The plastic connections to the task node are
denoted with dotted lines. Plastic connections are adapted depending on
a global reward signal and the corresponding memory trace activation vg
or VatoB. The part responsible for the memory trace acquisition for the
precondition connection is shown in green, while memory trace acquisition
shown for a single behavior (B) is shown in blue. Memory trace acquisition
for behavior A or the sequence BA are analog to the depicted mechanisms
and not shown here.

!
.
I

—>.

feld |mplementatlon

1) Memory traces: The CoS node of any individual ele-
mentary behavior, B, builds a memory trace, vg, according
to Equation ] This memory trace represents the recent
activation of behavior B even after the intention and CoS
activation of B have subsided, and thus helps carry the
activation history into the time interval during which reward
is signaled.

To build a similar representation of the sequential structure
of recent activation patterns we use a pair of neural nodes,
‘A—B’ and ‘AAB’ (see for each pairing of two
elementary behaviors, A and B. Their connectivity is inspired
by the serial encoder network proposed as a model of the
basal ganglia by Houk and colleagues [12]. The ‘A—B’ node
receives excitatory input from the CoS node of behavior A
and inhibitory input from the intention node of behavior B.
This node is therefore activated if A has been performed in
the absence of ongoing activation of B. Once activated, the
‘A—B’ node is stabilized by recurrent self-excitation. The
‘AAB’ node receives excitatory input from both the ‘A—B’
node and from B’s intention node. This node is therefore
activated only if previously behavior A has been performed
in the absence of B, but B is now active. This nodes thus
flags the sequential nature of the activation of first A, then B.
According to Equation [Z_f], the memory trace, vaiop keeps a
record of this sequentiality detection even after the individual
intention and CoS nodes have become deactivated.
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2) Reward signal: A reward signal, r(t), is generated
autonomously, whenever the hand moves sufficiently close
to the visual target. This happens through a neural field,
Urew, 1N Which a peak is induced when the hand and the
visual target overlap sufficiently. Learning occurs in a well-
defined time window after the onset of such reward detection
so that it does not depend on how long the hand remains
near the target. This translation of discrete events into time-
continuous signals is a core problem in autonomous learning
with neural dynamics. It is solved here through an eligibility
trace that is generated by a pair of excitatory, uexc, and
inhibitory,u;,;,, activation variables, both of which receive
input, o (trew), from the reward field:

Texclexc (t) = - uexc(t) +h+ O'(urew) )
- Cuinh7uexca(uinh (t))
TinhUinh (t) = — Uinn (t) + b + 0 (Urew) (6)

with Texe < Tinh-

When that input becomes non-zero, both neurons go through
the detection threshold, but excitation does so earlier than
inhibition because its relaxation time is faster (Texe < Tinh)-
Once the inhibitory node goes above threshold, it deactivates
the excitatory variable again, which therefore only generates
a single transient pulse of activation. Passed through the
threshold function, this pulse, o(uexc(t)), serves as the
transient reward signal r(¢). Once the hand moves away
again from the target, the peak in the reward field decays,
the transient system re-levels its activation pattern without
generating another excitatory pulse, and the system is ready
for a potential new reward.

3) Learning rule: Both a memory trace and a reward
signal must be present, for any of the projections to be
strengthened. We use this simplest form of a learning rule:

‘éib(t) = T(t))\ebVA + (1 — H(VA))T(t)’yeb 7
.pre r(t))\PreVAtoB + (1 - H(VAtoB))T(t)fypre (8)

SAtoB (t)

where H(-) is the Heaviside step function, A°® and \P"¢ >
0 are the respective learning rates, and v** and v7"¢ < 0
the corresponding rates of unlearning. The idea is that only
while a reward signal is detected, those connection strengths,
s, are strengthened who reflect recently active elementary
behaviors or recently observed sequential activation patterns.
All other strengths are weakened.

IV. EXPERIMENTS

We implemented and simulated the autonomous learning
dynamics of pre-reaching in the previously used robotic sce-
nario [2]. The simulated Nao robot operated in a 200 mm x
200 mm workspace containing the resting position and two
possible target positions (see [Figure 7). A single simulated
reaching target was presented to the visual system at all
times during the experiment. The global reward signal was
triggered when movement ended with the eef within a radius
of 15mm of the simulated target position. Once a reward

resting position

o, o,

target positions

movement plane

puey 4joQ | + wle 400 G

robot trunk

Fig. 7. This sketch depicts the experimental setup, showing the robots
reaching workspace (200 mm X 200 mm), the resting position and the two
alternating target positions.

was emitted, the simulated target was switched to the other
possible target position.

Two discrete target positions were presented rather than
a continuously moving target, as this made it easier to
evaluate the reaching behavior. At all times, behaviors were
autonomously generated by the architecture based on spon-
taneous activations of the intention nodes. In the present
simulation, open and close behaviors had no effect on the
reward signal. This allowed us to contrast behavior that is
not expected to be affected by learning with behavior that is
affected. The goal was to learn the precondition connectivity
as well as to learn the connectivity from task node to the
elementary behaviors for fixate and reach, while finding open
and close to remain invariant.

The learning and unlearning rates were set to AP™® =
—~P*e for the preconditions and to A\°® = —~°P for the
elementary behaviors. We concluded from the data of von
Hofsten [1] that the precondition should be learned faster
(AP > /\eb) than the elementary behaviors, because se-
quentiality is already established to some extent in phase 2
and performance continues to improve in later phases.

We ran the experiment three times for a simulated time
of 26 hours with a single reach from the resting position
to target t1 (see taking 8.5 seconds. The proposed
learning dynamics succeeded in establishing the precondition
between fixate and reach as well as the task connections to
the elementary behaviors fixate and reach (see and
[Figure 9). We also measured the number of movements every
hour and observed a U-shape over learning time, similar to
von Hofsten’s experimental observation (see [Figure 10).

Thus, the three different phases of pre-reaching develop
autonomously within the same neural architecture. For each
phase, characteristic movement trajectories are depicted in
The first phase is dominated by movements
to random locations that occasionally hit target positions.
In the second phase, the overall number of pre-reaching
movements decreases, as the emerging precondition inhibits
some reaching attempts. The percentage of movements di-
rected towards the target position begins to outweigh random
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Fig. 8. This figure shows the development of weights of all twenty possible
preconditions across 26 hours simulated time for one exemplary simulation
run. The precondition fixate before reach is the only learned precondition,
which reaches the maximum synapse weight of two. The other precondition
weights are not able to pierce the threshold of one, because they are subject
to the unlearning rule as they are not required for achieving the reward.
Note that the weights tend to reach higher values in the last third of
the simulation. This results from the higher activation rate of the learned
elementary behaviors leading to an increased probability for activating the
corresponding precondition memory traces.
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Fig. 9. This figure shows the development of weights of the five elementary
behaviors across 26 hours simulated time for one exemplary simulation run.
The weights from the task node to the elementary behaviors fixate and reach
grow continuously while the behaviors close hand, open hand and rest do
not. Note that the rate of change of reach decreases slightly around the
time of the learned precondition (after around 4 hours), but then grows in
an exponential fashion as more fixation and reaches lead to more reward,
which in turn leads to an increase in connection strength. The reach behavior
is learned faster than fixate, because it is temporally closer to the reward
event, thus less memory trace is decayed once the learning rule is applied.

movements. Accuracy towards the targets and the overall
number of reaches further increase in the third phase as
the corresponding elementary behaviors become easier to
activate and stabilize. Movements take place between the
two target positions and the resting position.

V. DISCUSSION AND CONCLUSION

We have presented an account of autonomous learning
that captures the developmental process of pre-reaching in
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Fig. 10. This figure shows the number of movements elicited in each hour
averaged over the three simulation runs, x denoting the mean value and o the
standard deviation. The average number of movements per hour decreases
with the establishment of the precondition around hour 5 and continues to
rise again due to individual strengthening of relevant behaviors. Note that
the standard deviation o between the three simulations is lowest around
the time of the learned precondition and after learning, while the learning
process of the elementary behaviors has a higher variance across simulation
runs.

infants. A dynamic field architecture provides elementary
behaviors from salience-based visual input to the generation
of motor commands that drive muscles and move the hand in
space [2]. Early in development, behaviors are spontaneously
activated based on the intrinsic bistability of the neural
dynamics, but not sequentially organized.

Two neural connectivity patterns evolve during learning
(see[Figure 6). One set of connections controls the sequential
activation of elementary behaviors. The learning process
for this set of connections is mediated by a sequentiality
detector, a neural structure inspired by models of learning
in the basal ganglia [12]. The other set of connections
in effect strengthens neural interaction consistent with the
Spatial Precision Hypothesis [3]. Over learning, therefore,
the neural dynamics becomes more strongly self-stabilizing
and generates fewer uncoordinated spontaneous switches of
activation.

The time-continuous learning rule for both connectivity
patterns combines a memory trace of recent activation with
an endogenous reinforcement signal. A role of reinforcement
in learning to reach is supported by recent empirical findings
[13]. Learning episodes are embedded in the continuous time
neural dynamics through a transient reinforcement signal
triggered each time the hand comes sufficiently close to
the visual object. The observed U-shape is modelled by
assuming that the learning of the connectivity pattern re-
quired for sequential organization is faster than the learning
of the connectivity that strengthens interaction within each
component.

The model does not yet include learning to open and close
the hand. Such an extension would be possible by including
a component to the reinforcement signal that is sensitive to
the state of the hand.
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Fig. 11. These three figures show the eef trajectories elicited in the three developmental phases. The starting position is in the top right corner of the

workspace and the two target areas are depicted with green circles. Each phase was plotted for 20 minutes of simulated time. In phase one targeted and
non-targeted movements can be observed, while in phase two the number of overall movements decreases. In phase three targeted movements outweigh
non-targeted movements and the overall number of movements increases again.

The notion of motor “babbling” has been employed in a
number of projects that take inspiration from infant develop-
ment [14]-[16]. Among them Shaw and colleagues [15] and
Narioka and Steil [16] also dealt with modeling the U-shape
found by von Hofsten, and achieved it by altering the param-
eters of the “babbling”-algorithm across different phases of
development. A strength of the proposed learning processes
is the autonomous nature of learning from experience. In
fact, the initial exploratory activation of elementary behav-
iors transitions into coordinated and goal-directed behaviors
based on the intrinsic bistability of the neural dynamics. It
would be attractive to explore how engaging the system in
multiple different tasks that involve the same elementary
behaviors may lead to a form of hierarchical organization
of the neural dynamics in which a specific task set may be
selectively activated.

In our model, reaching emerges as the sequential or-
ganization of visual fixation followed by reach initiation
is learned. This may appear to contradict recent empirical
findings [17] according to which infants reach and then learn
to look at the reaching location. The contradiction is only
apparent, however, as the infants globally look at the object
any time they reach. What they learn is to direct their gaze
to the location on the object at which their hand makes
contact. This fine structure of the reaching behavior is not
yet addressed in our model. The data [17] provides important
constraints for such future extensions of the model.
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