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als die angegebenen Hilfsmittel benutzt habe. Die Stellen der Arbeit, die
dem Wortlaut oder dem Sinn nach anderen Werken entnommen sind, wur-
den unter Angabe der Quelle kenntlich gemacht.

Tim Utz Krause



Preamble

This thesis would not have been possible without support. Especially I want
to thank Dr. Rolf Würtz. He developed the idea of this thesis and introduced
me into the exciting research of Spiking-Neural-Networks. He was available
at all times to answer any questions. His critical comments always helped
me to keep the central theme for this work.

Furthermore I want to thank Markus Leßmann. He also was available for
questions all times, helped me to write this thesis in the English language
and spotted numerous mistakes.



Contents

1 Introduction 4

2 Theoretical background of a Spiking-Neural-Network (SNN) 6
2.1 Signal processing in neural systems - neural coding . . . . . . 6

2.1.1 Spike train analysis methods . . . . . . . . . . . . . . . 7
2.1.2 Temporal coding and rate coding . . . . . . . . . . . . 8

2.2 (Leaky-)Integrate-And-Fire-Model . . . . . . . . . . . . . . . . 11
2.2.1 The basic circuit . . . . . . . . . . . . . . . . . . . . . 12
2.2.2 Spatial and temporal summation . . . . . . . . . . . . 18
2.2.3 Neuron and connection parameters . . . . . . . . . . . 19

2.3 Simulation flow and multi-threading . . . . . . . . . . . . . . . 20

3 Fundamental investigations and neural circuit principles 23
3.1 Divergence and convergence . . . . . . . . . . . . . . . . . . . 23
3.2 Correlation and synchrony . . . . . . . . . . . . . . . . . . . . 25

3.2.1 A neuron as bandpass filter . . . . . . . . . . . . . . . 25
3.2.2 A neuron as coincidence detector . . . . . . . . . . . . 27

3.3 Feed forward networks . . . . . . . . . . . . . . . . . . . . . . 30
3.4 Recurrent networks . . . . . . . . . . . . . . . . . . . . . . . . 31

3.4.1 Different types of feedback . . . . . . . . . . . . . . . . 31
3.4.2 A winner-takes-all network . . . . . . . . . . . . . . . . 34
3.4.3 Memory . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.4.4 A fully connected network – influence of parameters

and computing time . . . . . . . . . . . . . . . . . . . 37
3.5 Synaptic plasticity - The ability to learn . . . . . . . . . . . . 41

3.5.1 Rate based Hebbian learning . . . . . . . . . . . . . . . 41
3.5.2 Spike-Time-Dependent-Plasticity (STDP) . . . . . . . 42

4 Using the network for image recognition 46
4.1 Encoding and decoding . . . . . . . . . . . . . . . . . . . . . . 46
4.2 Recognition of similar shapes . . . . . . . . . . . . . . . . . . 48

1



4.2.1 Pixel gray values encoded as spike times . . . . . . . . 48
4.2.2 Pixel gray values encoded as spike rates . . . . . . . . 49

4.3 Recognition of hand written digits of the MNIST database . . 50
4.3.1 Pixel gray values encoded as spike rates . . . . . . . . 50
4.3.2 Pixel gray values encoded as time-to-first-spike . . . . . 56

5 Conclusion 62

A Further MNIST recognitions 65
A.1 Rate encoding, bad ratio of learning rates . . . . . . . . . . . 65
A.2 Rate encoding, small training set . . . . . . . . . . . . . . . . 68
A.3 Time-to-first-spike encoding, small training set . . . . . . . . . 72

B Implementation in C++ 76
B.1 Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
B.2 Neuron . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
B.3 Connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
B.4 Spikes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
B.5 Network generator . . . . . . . . . . . . . . . . . . . . . . . . 80

B.5.1 Layer generation parameters . . . . . . . . . . . . . . . 80
B.5.2 Connection generation parameters . . . . . . . . . . . . 81

B.6 Spike generator . . . . . . . . . . . . . . . . . . . . . . . . . . 82
B.6.1 MNIST . . . . . . . . . . . . . . . . . . . . . . . . . . 85
B.6.2 Geometric . . . . . . . . . . . . . . . . . . . . . . . . . 85

B.7 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
B.7.1 Display Crosscorrelation . . . . . . . . . . . . . . . . . 85
B.7.2 Display Spikes . . . . . . . . . . . . . . . . . . . . . . . 86
B.7.3 Display Moving Average . . . . . . . . . . . . . . . . . 87
B.7.4 Display Moving Average Heatmap . . . . . . . . . . . . 87
B.7.5 Display Weights Vs. Delays . . . . . . . . . . . . . . . 88
B.7.6 Weight Recorder . . . . . . . . . . . . . . . . . . . . . 88
B.7.7 Performance Statistics . . . . . . . . . . . . . . . . . . 89

B.8 Image . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
B.9 Database . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

2



ANN Artificial-Neural-Network

FIR Finite-Impulse-Response

SNN Spiking-Neural-Network

STDP Spike-Time-Dependent-Plasticity

PSTH Peri-Stimulus-Time-Histogram

JPSTH Joint-Peri-Stimulus-Time-Histogram

ISI Inter-Spike-Interval

IF Integrate-and-Fire

LIF Leaky-Integrate-and-Fire

LTP Long-Term-Potentiation

LTD Long-Term-Depression

EPSP Excitatory-Postsynaptic-Potential

IPSP Inhibitory-Postsynaptic-Potential

3



Chapter 1

Introduction

Biological neural systems are certainly the most complex organs of living
beings. Behaviour reaches from simple reflexes to complex cognitive capa-
bilities like vision, speech or motion. Also emotions like sympathy, hate or
love seem to have their origin in the neural system. The understanding of
how the brain handles such complex tasks is fascinating and not yet well
understood. Since the last decades are deemed to be the scientific epoch of
genes and DNA, brain science is one of the essential scientific part of the
upcoming epoch. From biological issues on cellular or even molecular level
up to psychology on behavioural level it is a wide and interdisciplinary range.
For a long time there is a desire to imitate biological nervous system in a
bionic way. Not only the understanding of how the brain works is a goal, to
create simple forms of artificial intelligence is in focus, too. Particularly with
the popularity of the PC an interest has grown to equip it with cognitive
skills.

Thus in the 1980s a 2nd generation of Artificial-Neural-Network (ANN)s
were advanced, it finds applications in complex automatic control technique
and other fields up to day. But there are some issues which cannot be solved
with 2nd generation ANNs like the binding problem. Scientific research seems
to be completed as far as possible. 2nd generation ANNs suffering from
the problem that signals between neurons are modulated by simple scalar
values. This is not corresponding to the biological ideal. It is assumed that
information processing in the brain is based on electrical signals. These
signals are very short impulses, called action potentials or spikes, running
over nerve fibres and allow neurons to communicate with each other. A 3rd
generation of ANNs, so called Spiking-Neural-Networks (SNNs) are trying to
deal with this issue.

Great efforts have been made to study and unravel this spiking neural
code, a general solution has not been found until today. Some methods to
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analyse spike trains of the biological ideal have been developed over the time.
Findings in the spike trains led to different models which try to describe the
information processing. Two basic principles are pointed out, rate coding and
temporal coding. Section 2.1 of this thesis deals with spike train analysis and
the signal processing in neural system.

Parallel to these investigations some partly very complex computer mod-
els have been developed. The aim is to proof theories and to get informations
which cannot be measured in living organism. Another aim is the creation
of artificial intelligence, as mentioned above. A simple neuron model, the
Leaky-Integrate-and-Fire (LIF), is introduced in section 2.2. The simulation
of SNNs differs from the simulation of 2nd generation ANNs, because of the
temporal dimension. A new possibility to simulate aggregates of LIF neurons
is introduced in section 2.3.

Chapter 3 deals with the possibilities to connect neurons with each other.
The way neurons are connected has got an important effect on spike arrival
times and how spikes are correlated. It is described in section 3.2. Further
aspects of this chapter are neural circuit principle in feed forward networks
(sec. 3.3) and recurrent networks (sec. 3.4). At the end of this chapter an
introduction into synaptic plasticity and the associated ability to learn is
given (sec. 3.5).

In chapter 4 a possible application of a SNN in the form of an image
recognition is investigated. In a first instance some geometric shapes with
large intersecting areas should be identified (sec. 4.2), in order to determine
the influence of inhibiting connections. Afterwards it is the goal to recognise
hand written digits from the MNIST database (sec. 4.3). Rate coding as
well as time-to-first-spike coding is used.

The final chapter 5 abstracts the results and provides an outlook to fur-
ther necessary investigations.

The appendix contains the results of some digit recognitions with different
parameter settings (chap. A). Furthermore a brief summary of the classes
of the programmed SNN software is given (chap. B).
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Chapter 2

Theoretical background of a
Spiking-Neural-Network (SNN)

The first section of this chapter gives an insight into neural coding schemes,
furthermore an overview over some relevant analytical tools. Tools which
are used to record and analyse data in the brain and are helpful in the
study of artificial neural networks as well. After that the investigated neuron
model is described in the following chapters and a new algorithm to simulate
aggregates of these neuron models is introduced.

2.1 Signal processing in neural systems - neu-

ral coding

It is known that information transmission and communication of neurons take
place by the use of action potentials. Action potentials are short electrical
impulses, often also called spikes, running over the nerve fibres. Spikes are
expected to be the underlying processes of information processing in the
brain. The initiation and propagation of spikes and the underlying processes
like depolarization, repolarization and hyperpolarization are important parts
of research. But the main focus of the research of neural coding is to find out
the reason of spike rates or even exact spike times of ensembles of neurons.

Caused by an interdisciplinary interest, broad efforts have been made over
the years. Essential targets of the research are inter alia (Diesseroth, 2008):

• Biological prospecting

• Reverse engineering

• Medical translation
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Curing diseases like parcinson or depression, building human-machine inter-
faces or creating cognitive and learning systems could be applications and
benefits of this research. In summary the comprehension of the brain opens
up nearly endless opportunities.

2.1.1 Spike train analysis methods

This subsection gives a brief introduction into common spike train analysis
methods. Spikes are regarded as stereotype events here, represented by their
spike time.

Further methods like Spike pattern classification methods, Likelihood meth-
ods, Frequency-Domain methods, Neural spike train decoding or the Gravity
transformation, which deals with the lack of multiple spike train data analysis
cannot be described in this thesis, even if these might be interesting for future
investigations. Kirkland (2006) and Brown et al. (2004) are recommended to
the interested reader.

Peri-Stimulus-Time-Histogram (PSTH)

This analysis method is based on the observation of a neuron while stim-
ulating it with the same sequence for several repetitions. As a result one
receives a set of spike trains. For small time windows ∆t (typical one or a
few milliseconds) the numbers of spikes nK(t; t + ∆t) of all repetitions are
summarized and are divided by the number of repetitions K. The spike
density of the PSTH follows by scaling the result to the length of the time
window ∆t.

ρ(t) =
1

∆t

nK(t; t+ ∆t)

K
(2.1)

This approach is very similar to the definition of a stochastic process, where
the set of spike trains can be seen as realizations. The spike density of
the PSTH corresponds to the first raw moment of the probability density
function, which is given by evaluating ensemble averages.

Crosscorrelogram

The cross-correlation gives the possibility to compare two different neurons by
giving a measure of the similarity of their spike trains. One neuron is chosen
as reference cell, the other as target cell. For each spike of the reference
spike train, the existing time lag to each spike of the target spike train is
determined. Subsequently the number of time lags falling into equi-sized
intervals of time, called bins, are counted. One receives something like a
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histogram of time lags, whereby as well positive as negative delays are listed.
If reference and target neurons are swapped, one receives the same cross-
correlation function, only swapped in time too. A more detailed description
and some caveats are given in Kirkland (2006).

Joint-Peri-Stimulus-Time-Histogram (JPSTH)

The JPSTH is another cross-correlation analysis method, a two dimensional
histogram of joint spike counts. Each axis of the two dimensional histogram
represents the temporal observation of one neuron, divided into small time
windows. A bin (x; y) is incremented if neuron 1 fires at time x and neuron
2 at time y. In this way all spikes of the two neurons are brought together.
Similar to the PSTH, spikes are recorded over several stimulus trials. Com-
pared with the crosscorrelogram the advantage of the JPSTH lies mainly in
the possibility to get a temporal relation to the stimulus.

The main diagonal of the JPSTH is of particular importance. It displays
the rate of simultaneous or almost simultaneous firings over time. Sometimes
it is plotted in a separate diagram and is called coincidence histogram then.

2.1.2 Temporal coding and rate coding

There have been great efforts in recent years to unravel the neural code, but
no general solution has been found yet. Two of the most common principles
are called temporal coding and rate coding, although there is no broad defi-
nition of them in literature. Some approaches are described in Gerstner et al.
(2008) and Thorpe et al. (2001). A selection is summarized in the following.

Another, not less interesting, question is how information is encoded in
sensory cells in response to stimuli like light, sound, temperature, mechanical
stimulation, chemical stimulation, etc. and how the neural code is decoded
for example in muscles. Unfortunately this cannot be discussed here.

Rate coding

Assuming neural systems use rate codes to exchange information, the firing
rate contains all of the information. Rate codes are very tolerant to distur-
bances, but have a low information density.

Rate coding could be observed in sensory and motor systems early. One
of the best known examples is the firing rate of a stretch receptor in a muscle
spindle (Adrian et al., 1926). In general the approach of temporal average
works well for a slowly varying or constant stimulus. It has fundamentally

8



led to the second generation of artificial neural networks, whose informa-
tion exchange and processing is based on one scalar value per neuron, the
activation ν.

Differentiations in rate coding are made as follows:

• Spike count rate - average over time
Assuming the spike count rate as basis of coding in neural systems, the
rate a neuron fires spikes carries all the information. Measuring the
spike count rate can merely be done by counting the spikes in a time
interval ∆t and dividing it by ∆t, what means calculating the temporal
average. The length of the time interval depends on the type of neuron
and the stimulus (typical one hundred or a few hundred milliseconds).

• Rate as spike density - average over several runs
This coding scheme can be seen analogously to analysing with the
PSTH. It is sufficient for measuring and evaluating neural activity,
but it is not suitable to describe signal processing in the brain. The
example of a frog which wants to catch a fly is given in Gerstner et al.
(2008). The frog cannot wait since the fly flies along exactly the same
trajectory several times. The frog has only got a single chance.

• Rate as population activity - average over several neurons
This coding scheme is based on the idealization of populations of neu-
rons with identical properties. Populations of neurons with similar
properties can be found for instance in the visual cortex of cats and
monkeys. The number of neurons concurrently active in a population
is relevant.

Temporal coding

Regarding temporal coding, the information is contained in the exact mo-
ments of spike occurrence. In contrast to rate coding, temporal coding en-
ables a higher level of information density and a higher speed of processing
because each spike counts and the determination of average is not necessary.
However, minor disturbances may have major effects.

S. Thorpe did some research on the speed of processing in the human
visual system (Thorpe et al., 1996). He analysed the time needed to recognize
animals on photographs, which can be done in less than 150 ms. Considering
the number of processing stages involved within the brain, he came to the
conclusion ”that much of this processing must be based on essentially feed-
forward mechanisms”. In such a short period of time an determination of
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average over several spikes is not possible. This is an indication that the first
spikes probably contain most of the information.

Differentiations in temporal coding are made as follows:

• Count coding and binary coding
A post-synaptic neuron is stimulated by n pre-synaptic neurons, whereby
each pre-synaptic neuron should fire either once or not at all within the
regarded time window after the stimulus. The simplest choice would
be counting the number of pre-synaptic neurons emitted a spike. n+ 1
states of the system are possible. A more efficient way is using the
neurons as a binary code, then 2n states are possible.

• Rank Order Coding
When using the order in which the neurons fire, one talks about rank
order coding. If one considers one or none firing per neuron again and
no simultaneous firing, n! possibilities exist.

• Correlation and synchrony
The principle of rank order coding can be extended by regarding the
exact Inter-Spike-Interval (ISI). Firstly synchrony between two or more
spikes could be seen as an event. But it is also possible to consult
correlations between pairs or more pre-synaptic spikes, thus any precise
spike pattern could be an event.

• Time-to-first-spike
This coding assigns importance to the precise timing of the very first
spikes after a neural network is stimulated. The strength of stimulation
is coded into the time-to-first-spike, triggered by an external stimulus.
The stronger a stimulus, the earlier the spike. In an idealized network
each neuron only fires once, after that it is calm until the next stimulus
of the network occurs.

• Phase coding
Phase coding requires a reference oscillation (in many brain areas back-
ground oscillations are usual). The spike of a neuron is able to carry
information via the phase to the reference oscillation. This is very
similar to the time-to-first-spike code, with the sole difference that the
trigger is the reference oscillation instead of the stimulus.

Comparison of rate coding and temporal coding

When measuring the membrane potential of a nerve fibre over time, a con-
tinuous aperiodic signal is obtained. Each continuous aperiodic signal can be
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transformed from time domain to frequency domain by Fourier-transformation.
It is a transformation to another mathematical space merely, the contained
information remains unaltered. Thus where exactly is the difference between
the concepts of temporal coding and rate coding?

Both coding schemes are apparently used at the same time and the same
neural systems and cannot be clearly distinguished from one another. As well
as this rate-time duality, the presented varieties of rate and temporal coding
are not valid or obligating on their own. Furthermore a clear demarcation
between rate and temporal code will not always be possible. Therefore it
would be more appropriate to understand the introduced coding schemes as
different descriptions of a black box system. They are not suitable as general
interpretations of principles of neural coding.

2.2 (Leaky-)Integrate-And-Fire-Model

With the invention of the electron microscope in the 1950s the neuron doc-
trine could be proofed. Neuronal systems are made up of individual cells, the
neurons. These are the elementary processing units and they connected to
each other by electrical or chemical synapses. The exchange of information
take place by short electrical impulses, called spikes or action potentials. It
is not unusual that one neuron in the vertebrate cortex addresses ten thou-
sand (104) post synaptic neurons. In addition to hundred billion neurons
(1011), the human brain consists of a trillion (1012) glia cells. Glia cells are
seen as ”supporter” cells for structural stabilization and energy supply, but
their role and functionality in respect to information processing is largely
unknown. Attending to the individual behaviour of each neuron, which has
to be studied on a cellular or even molecular level, the functionality of such
large circuits is rather complex and part of current and future research of
neurobiology. The detailed biological background cannot be described suffi-
ciently and will not be continued further at this point. This can be found in
literature like Bear et al. (2008).

Several neuron models have been developed over time. They differ in
biological plausibility and computational efficiency. Several models are listed
in Izhikevich (2004) in a comparative way. One of the most plausible and
detailed model has been performed by Hodgkin and Huxley (1952). This
conductance based model is composed of a set of differential equations which
describe the membrane potential caused by the activation of Na and K and
the inactivation of Na current flows. Over the time the model has been
developed further. Newer models include more types of ion channels and take
account of the neurons and synapses geometry (Gerstner et al., 2008). The
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extremely complex calculation is a drawback of the Hodgkin-Huxley-Model.
Only single neurons or small populations of neurons can be simulated within
an acceptable length of time (Izhikevich, 2004). Therefore also efforts have
been made to simplify the Hodgkin-Huxley-Model. A model which only needs
three differential equations is the Hindmarsh-Rose-Model. Models with two
differential equations are for example the Morris-Lecar-Model, the Fitz-Hugh-
Nagumo-Model and the Izhikevich-Model. Besides offering an opportunity to
speed up calculation, two dimensional models can be studied in the phase
plane. Two general types (type I and type II) can be distinguished by their
fixed points in the phase plane.

For the studies of neural coding, memory, and network dynamics even
more simple phenomenological neuron models are used. Some of the best
known are the Leaky-Integrate-and-Fire (LIF) and its derivatives and the
Spike-Response-Model. Unlike in the above mentioned conductance-based
neuron models, spikes in formal spiking neuron models are characterized by
their firing time. The LIF neuron model is used for the studies in this thesis.
It will be described in detail in the following section.

2.2.1 The basic circuit

This subsection has been essentially inspired from chapter 4.1.1 of Gerstner
et al. (2008).

Threshold conditions, reset value and absolute refractory period

In formal neuron models spikes are regarded as stereotyped events. When
a spike reached a synapse, a Excitatory-Postsynaptic-Potential (EPSP) in-
creases the membrane potential of the post-synaptic neuron. If the membrane
potential u(t) reaches an upper threshold ϑu at this moment, the neuron
sends out a spike itself. The fth spike event occurs at the time of threshold
crossing t(f).

t(f) : u(t(f)) = ϑu (2.2)

It is supposed that through an action potential the capacitor discharges di-
rectly, which is in fact almost practically impossible. This leads to the mem-
brane potential being reset to the value ur, where ur < ϑu.

lim
t→t(f)

u(t) = ur, t > t(f) (2.3)

Next to processes which are increasing the post-synaptic neurons membrane

12



Figure 2.1: Schematic diagram of the Integrate-And-Fire-Model. The basic
circuit is the module inside the dashed circle on the right-hand side. A
current I(t) charges the RC circuit. The voltage u(t) across the capacitance

(points) is compared to the upper threshold ϑu. If u(t) = ϑu at time t
(f)
i

an output pulse δ(t − t
(f)
i ) is generated. Left part: A pre-synaptic spike

δ(t− t(f)j ) is low-pass filtered at the synapse and generates an input current

pulse α(t− t(f)j ). (Figure with caption taken from Gerstner et al. (2008), Fig.
4.1)
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potential, processes which are decreasing the post-synaptic neurons’ mem-
brane potential do exist. This inhibition of a neuron is called Inhibitory-
Postsynaptic-Potential (IPSP). In fact the biochemical process of inhibition
is much more complex, but it is substituted to a negative sign here. If neural
inhibition is supposed to be utilized, a lower threshold ϑl has to be consid-
ered as well. Inhibitions are bounded to this threshold thus lower membrane
potentials are not possible.

Consequently the membrane potential is always within the interval ϑl ≤
um < ϑu. Likewise the reset value ur must be within this interval.

ϑl ≤ ur < ϑu (2.4)

After a neuron initiated an action potential, it takes a certain time until
the neuron is able to generate a second signal. The reason for this is that
the action potential goes along with a depolarization of the membrane and
it takes some time to repolarise it. Until the membrane is not repolarised,
no further depolarisation is possible. Thus the neuron is blind to incoming
spikes within this period of time, which is called absolute refractory period
∆abs.

Integrate-and-Fire (IF)

As the name already indicates, the main element of the IF model is an in-
tegrator. The electrical component is a capacitor Cm. This resembles the
biological structure of a cell. Two conductive layers, the inter-cellular fluid
and the interstitium, which are separated by an dielectricum, the cell mem-
brane. The charging current into the capacitor iIF is given by the following
equation.

iIF(t) = Cm
duIF
dt

(2.5)

And the membrane potential is given by

uIF(t) = ur +
1

Cm

∫ t−t̂

0

iIF(t− s) ds . (2.6)

t̂ is the time of the latest spike occurrence.

Leaky-Integrate-and-Fire (LIF)

The main element of the IF model is an integrator embodied by a capac-
itor. In addition the LIF neuron model considers that the membrane has
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got an electrical conductivity 1/Rm. This means that the membrane is leak-
ing and therefore the membrane potential decreases over time. In the elec-
trical circuit both constructional elements are parallel connected, see Fig.
2.1. The incoming current iLIF(t) splits into a dissipation current through
the resistor iRm = uLIF/Rm and a current which is charging the capacitor
iCm = Cm duLIF/ dt. The following linear differential equation of first order
is obtained.

iLIF(t) =
uLIF(t)

Rm

+ Cm
duLIF

dt
(2.7)

This equation can be converted into the standard form by multiplying with
Rm. The resulting product RmCm equates the time constant of the RC circuit
τm.

τm
duLIF

dt
= RmCm

duLIF
dt

= −uLIF(t) +Rm iLIF(t) (2.8)

A solution of this differential equation under the initial condition ur can be
found by integration. t̂ is the time of the latest spike occurrence.

uLIF(t) = ur exp

(
−t− t̂

τm

)
+

1

Cm

∫ t−t̂

0

exp

(
− s

τm

)
iLIF(t− s) ds (2.9)

Stimulation with a constant current

0
0

TIF TLIF

ϑu

I0R

t in ms

u
IF
,
u
L
IF

in
V

A

LIF
IF

0 1 2 3 4 5
0

0.1

0.2

I0 in A

ν I
F
,
ν L

IF
in

k
H
z

B

LIF
IF

Figure 2.2: Constant stimulation of a IF neuron with reset potential ur =
0V, capacity Cm = 0.01F and in the case of LIF a resistance Rm = 1Ω.
A: Membrane potential as function of time, input current I0 = 1.5A. B:
Resulting firing rates as a function of constant stimulation currents, without
(solid/dashed lines) and with (dotted lines) absolute refractory period ∆abs =
4ms

15



To distinguish between the fundamental principles, both models are stim-
ulated with a constant input current α(t) = I0 in a first step. Assume the
membrane potential is taken to ur = 0 and the latest spike occurred at t̂ = 0.
This procedure can be considered as the step response of the neuron models.

The membrane potential trajectory of the IF neuron equals the charge
stored in the capacitor related to its capacity. The charge flowing toward
the capacitor can be calculated easily by integrating the input current over
time. Thus the membrane potential rises linearly with time, until the upper
threshold is reached. At that time the membrane potential is reset and the
charging process restarts.

uIF(t) =
1

Cm

∫ t

t̂

I0 dt =
1

Cm

I0 (t− t̂) (2.10)

The membrane potential of the LIF can be calculated by the following equa-
tion.

uLIF(t) = RmI0

[
1− exp

(
−t− t̂

τm

)]
(2.11)

Without threshold the membrane potential would always become uLIF(∞) =
RmI0 for t→∞. Thus a LIF neuron will never fire while I0Rm < ϑu.

At each time the membrane potential resets the neuron fires a spike. The
time interval between two spikes can be calculated by equating equation
2.10 and 2.11 with the threshold potential ϑu and rearranging the resulting
equation.

TIF = ∆abs + ϑu
Cm

I0
(2.12)

TLIF = ∆abs + τm ln

(
RmI0

RmI0 − ϑu

)
(2.13)

The frequencies the neurons fire with are given by νIF = 1/TIF and νLIF =
1/TLIF. Firing rates of neurons without absolute refractory period are not
bounded. The theoretical maximum firing rate for a neuron with absolute
refractory period is νIF = νLIF = 1/∆abs. But this value is never reached
because it will always take a very small but finite time to generate an action
potential after the refractory period is expired.

Stimulation with spikes

Stimulating the neuron models with constant currents is not very authentic.
As mentioned above spikes are seen as stereotype events. Arbitrary pulse
shapes α(s) are in principle possible. Besides sophisticated but also more
complex functions, a Dirac-delta function is the simplest version which can
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Figure 2.3: Membrane potential normalized to the upper threshold νu of A:
an IF neuron (Cm = 10mF) and B: a LIF neuron (Rm = 1kΩ, Cm = 10mF)
during stimulation with a continuous firing rate ν = 0.2kHz and a loading of
qs = 4mC per spike.

be chosen. A Dirac-impulse δ(s) can be imaginated as an infinitely high and
infinitely thin impulse at a time s, which is of course physically infeasible.
The integral over a single Dirac-impulse is defined as

∫
δ(s) d s = 1. Assum-

ing that each spike emitted by a neuron carries the electrical charge qs, the
arbitrary pulse shape α(s) is given by

α(t− t(f)) = qs δ(t− t(f)) . (2.14)

The impulse response of an IF-neuron is

hIF(t) =
Q0

Cm

+
qs
Cm

, (2.15)

whereby the first term represents the electrical charge which is already stored
in the capacitor. Merely the electrical charge of the incoming spike must be
added.

For the calculation of the impulse response of a LIF neuron, one considers
that no electrical current flows through the resistor during the infinitesimal
duration of the incoming spike. Then the charge increases due to the incom-
ing spike. Immediately after the spike event the capacitor begins to discharge
over the resistor. The discharge process is given by an exponential decay with
the time constant τm = RmCm.

hLIF(t) =

(
Q0

Cm

+
qs
Cm

)
exp

(
− t

τm

)
(2.16)
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Artefacts caused by quantization of time base

The quantization of time base causes some artefacts because there is a possi-
bility that several spikes reach a neuron at the same time. Equality of spike
times can be caused by user defined scenarios with whole-numbered spike
times or from accidentally simultaneously arriving spikes. This could play
a critical role if an EPSP and an IPSP reach a neuron simultaneously. The
neuron may not fire if the IPSP is processed first because the membrane po-
tential is decreased as much as the EPSP is not sufficient to evoke the action
potential. The other way around the EPSP may causes an action potential
before the IPSP is processed. To deal with this problem, spikes with equal
times are summed up before they are processed.

In this thesis a floating point format is used as temporal base, whereby
the comparison of floating point variables is not a trivial problem. Here
two values are seen as equal if their difference is below a threshold ε. Thus
a small temporal error in the range of ε remains. If these spikes evoke an
action potential of the receiving neuron, this small error relays. A further
remaining problem is that spikes could be suppressed by the time shifting
with ε. If there is no refractory period and activities of the involved spikes
are very large, the activities of the summed spikes may be strong enough to
be able to cause more than one spike. Through the combination the neuron
only fires once.

2.2.2 Spatial and temporal summation

Figure 2.4: Temporal summation (left) and spatial summation (right) of
spikes running towards a neuron.

A single pre-synaptic spike is normally not sufficient to evoke a spike
event in the post-synaptic neuron. This is because each spike carries only a
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little charge which is not able to modify the post-synaptic neurons membrane
potential in the degree needed for evoking a spike event. Thus a superposition
of several spikes is necessary to be successful. Spikes can reach a neuron
spatially separated by different synapses or temporally separated one by one
over one synapse. The resulting input charge of a post-synaptic neuron i,
caused by spatial and temporal summation of spikes of pre-synaptic neurons
j, can be mathematically expressed by the following equation.

Qi(t) = qs
∑
j

wi,j
∑
f

δ(t− t(f)i − di,j)︸ ︷︷ ︸
temporal summation︸ ︷︷ ︸

spatial summation

(2.17)

The temporal term di,j represents the delay a spike experiences while prop-
agating along the axon and dendrites from a pre-synaptic neuron j to a
post-synaptic neuron i. Each spike carries the identical charge qs. The inner
sum represents the superposition of f consecutive spikes, transmitted by a
single connection. To allow different efficacies of synapses, each connection
between a spike transmitting neuron j and a receiving neuron i is weighted
by an individual factor wi,j. These factors are taken account within the outer
sum which represents the spatial summation. All weight factors can either
be positive for an excitatory connection or negative for an inhibitory con-
nection, but cannot change their signs over the time. Delays are positive of
course.

To allow more than one connection between two neurons i and j, the
sum has to be extended by a further variable k which counts the several
connections.

Qi(t) = qs
∑
i,k

wi,j,k
∑
f

δ(t− t(f)i − di,j,k) (2.18)

These equations represent the total input charge of a neuron i which differs
from the current charge in the neurons capacitor. To calculate the current
membrane potential, it must be taken care of the temporal behaviour of the
neuron model, see 2.2.1.

2.2.3 Neuron and connection parameters

All previously introduced electrical parameters can be superseded by dimen-
sionless parameters to obtain a more phenomenological model. The time
base could also be superseded by a generic unit of time, but is maintained in
milliseconds to keep compliance to biological models.
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For reasons of simplicity the reset value is set to zero (ur = 0), the upper
threshold is set to one (ϑu = 1), the lower threshold is set to zero (ϑl = 0)
and the electrical charge of each spike is set to one qs = 1 from here on, unless
otherwise mentioned. The capacitor Cm and resistor Rm are neglected. Cm

can be depicted as scaling factor of the membrane potential (multiplying 2.6
respectively 2.9 with Cm). Thus the factor Cm can be set to the fix value
Cm = 1 and is represented by the threshold values ϑu and ϑl. The time
constant of the electrical circuit τm is given by the product RmCm. With
a given Cm, Rm is a simple proportionality factor (Rm ∝ τm). Thus the
membrane resistor can be set to the fix value Rm = 1 and is represented by
the membrane time constant τm.

In conclusion, ifN is a set of neurons, each neuron n ∈ N can be described
by the following variables:

• Upper threshold: ϑu > 0

• Lower threshold: ϑl ≤ 0

• Absolute refractory period: ∆abs ≥ 0

• Membrane (leaky) time constant: τm > 0

Ci,j,k is a set of connections between pre-synaptic neurons j ∈ N and post-
synaptic neurons i ∈ N . k represents the kth connection between two neu-
rons. Each connection c ∈ C can be described by the two following variables:

• Delay: di,j,k > 0

• Weight: wi,j,k

{
≥ 0, for excitatory synapses

≤ 0, for inhibitory synpses

Delays di,j,k are always positive, if the connection is excitatory wi,j,k ≥ 0
and wi,j,k ≤ 0 if the connection is inhibitory. If there is no usage of several
connections between two neurons, k is not listed from here on.

2.3 Simulation flow and multi-threading

One goal of this thesis is a simple model to simulate aggregates of neurons
in a moderate time on a commercial personal computer. There are several
possibilities to calculate such networks.

One way could be a continuous simulation with a time discretisation.
This means one has to calculate the activity of each neuron for each time
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Figure 2.5: Neuron n1 aims to be calculated, the question is how far its input
is predictable. The four predecessors n0, n1 (output looped to input), n2 and
n3 are calculated until tci (light gray). If one of them delivers a new spike, this
spike can reach neuron n1 at tp1,i,0 = tci + d1,i,0 first. The minimum is given
by the loop connection tp1,1,0 = tc1 + d1,1,0, no new spike of the predecessors
can reach neuron n1 prior, therefore it can be calculated until tp1,1,0 (dark
gray).

step. As depicted above, action potentials are seen as stereotype events and
are mathematically described as Dirac-impulses here. This makes it possible
to characterise each action potential with its infinitesimal duration in time
scale by a time mark. A continuous simulation using a time discretisation
with fixed or variable time steps as well, would not be expedient and not
even possible. Looking at one neuron’s time course, nothing happen in the
majority of time. The majority of simulation time would be paid to do noth-
ing. Another reason is that the sample frequency would have to be selected
very high to achieve sufficient precision. The Nyquist-theorem T < 1/(2fg)
could never be fulfilled because the Fourier-transformation is F(δ(t)) = 1
and therefore fg →∞.

Another way is demonstrated in Mayerhofer et al. (2002), where discrete
event simulation (DES or DEVS) is used. Each spike reaching a neuron
counts as an event, all events are executed sequentially.

In this thesis a new and very performant strategy is used. It offers high
computational power and raises the possibility of multi-threading. For easy
understanding of this strategy, a simple example is discussed first. In figure
2.5 one sees the progress of the calculation of four neurons. The calculation of
neuron n1 is less proceeded than the calculation of the neurons n0, n2 and n3.
Neuron n1 shall be simulated next. Because each connection has got a delay,
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each spike has got a death time while propagating toward a neuron. The first
further spike of neuron n0 could reach neuron n1 at tp1,0,0 = tc0 + d0,1,0, the
first further spike by itself (output looped to input) at tp1,1,0 = tc1+d1,1,0 and
so on. If all predecessors are considered, the minimum of tpi,1,k = tci + d1,i,k
depicts in which range no further input spikes will occur and how far neuron
n1 can be calculated. For this strategy a positive definite delay matrix is
necessary. Negative entries or entries equal to zero would lead to a situation,
where the input of a neuron is not predictable and therefore not possible to
calculate with this strategy.

A major advantage of this strategy is, that the determination of pre-
dictable input spikes works for all neurons all over the time. This means,
that not only the neuron with the least simulation progress can be calculated.
In principle it would be possible to start an own thread for each neuron, which
first calculates the maximal predictable time, and than simulates the neuron
inputs within this time and repeats these steps again and again. In practice
a smaller number of threads would be suitable.

Another advantage is that in pure feed forward networks each neuron has
to be called only once, under the condition that they are called in order of
their arrangement, neurons of the input layer first, then hidden layer neurons
and at last the output layer neurons. This leads to a rather fast simulation
progress.

If only the neuron with the least simulation progress is calculated at
all times (a single thread) and there are large numbers of connections, a
simplification is possible. Instead of considering the exact calculation time
tci, one just has to ensure that all pre-synaptic (spike emitting) neurons are
processed as far as the post-synaptic (resolving) neuron. Then no spike can
arrive at the post-synaptic neuron’s soma within the minimal afferent delay.
Concerning just the minimal afferent delay might be slightly shorter than
concerning the processed time of the pre-synaptic neuron, too. But it has
got the great advantage that the minimal afferent delay does not change over
time, and therefore can be determined once.
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Chapter 3

Fundamental investigations and
neural circuit principles

While previous chapters were concerned with the description of the here
used neuron model, it is the goal of this chapter to examine the interaction
between neurons. The applicability to more complex tasks is not yet in
focus and follows with the example of recognition of hand written digits
in chapter 4. Here the aim is to examine intrinsic and in scope restricted
circuits to get a better understanding of processes and signal sequences within
SNNs. Or in other words, to get a better understanding of neural coding.
Furthermore it improves comprehension of the factors of influence and helps
to parametrise more complex networks. Simple connections between neurons
are studied first. Afterwards the importance of correlation and synchrony in
spike trains is pointed out. Feed forward networks are briefly discussed in
the following. After that some examples of recurrent circuits are analysed.
Finally possibilities of training SNNs are described, whereby the main focus
is on STDP.

3.1 Divergence and convergence

Regarding a soma of a single neuron, two generally conduction are possible,
inputs and outputs. Neural outputs corresponding to the neurons axons and
the inputs to its dendrites (Bear et al., 2008). The process of spreading
a neural activity to several outputs is called divergence, see fig. 3.1 (left).
Caused by the underlying bio-electrical process of signal transmission, the
signal intensity is not decreased by an increasing number of paths. The
superposition of several inputs is called convergence, see fig. 3.1 (right).

A general problem occurs if spikes, converging toward a neuron Ni, carry
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Figure 3.1: Divergence (left) of one input spike train A0 to several outputs
E0...E4 and convergence (right) of several input spike trains A0...A4 to one
output spike train E0.

large charges qs or if the weights wi,j are very high. For the sake of simplicity
a simple IF neuron without any refractory time ∆abs is considered here. If
wi,j ≥ ϑu each incoming spike leads to an output spike, thus the input firing
rate equals the output firing rate and weight changes have no effect. This
contradicts the assumption that weight changes are responsible for learning.

For smaller weights wi,j ≤ ϑu the cell sums up the incoming activities
as integrator, more than one spike is required to evoke an output spike. In
fig. 3.2 the number of required incoming spikes needed to effect an action
potential of a single neuron is displayed over various weights. The formalism
behind is:

F = ceil

(
1

w

)
, 0 < wi,j ≤ 1 (3.1)

Because the number of required spikes goes with 1/w the influence of small
weights is very small.

If all spikes are transmitted by a single connection, the neuron works as
a frequency divider which can be adjusted by the weight:

νout =
νin

ceil
(
1
w

) , 0 < wi,j ≤ 1 (3.2)

The smaller the weights, the finer the adjustability.
The exact timing of the latest input spike, which evokes the output spike,

might play a role, too. The time to the first output spike would be 1/νout for
example. Here, too, a finer tuning and higher precision can be attained by
smaller weights.
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Figure 3.2: Number of required input spikes F needed to effect one output
spike of a single neuron Ni, displayed over various weights wi,j. Concerning
an IF neuron without refractory period ∆abs.

3.2 Correlation and synchrony

The behaviour described in the previous section is caused by the neural
integration inside the IF. The temporal dynamics being left out from the
influences so far. These are described in this section and will ultimately lead
to the dualism of the role of a neuron as integrator or coincidence detector.

3.2.1 A neuron as bandpass filter

N0 N1

w1,0,0, d1,0,0

w1,0,1, d1,0,1

w1,0,2, d1,0,2

...

w1,0,k, d1,0,k

Figure 3.3: Two neurons with several connections.

Looking at two neurons and the possibility to connect these two neurons
by multiple paths, it reminds strongly of the structure of a Finite-Impulse-
Response (FIR) filter. Taking a FIR filter the incoming signal goes through
a tapped delay line, whereby a different weighting is used for each time delay.
If one considers a neuron instead of the FIR, differences in delays arises as
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a result of the length or myelinization of the nerves in the different paths.
Differences of weights are given by different strengths of synapses. This
structure provides the possibility to design low pass, high pass and band
pass filter characteristics by varying the delays and weights. Its impulse
response is always finite and therefore the filter is always stable. Whole
artificial neural networks can be designed by modelling connections between
neurons by FIR filters. This technique enhances the classical perceptron
architecture to a temporal dimension. In Wan (1993) such a network is used
for time series prediction, furthermore a backpropagation learning algorithm
is developed.

In this thesis spikes trains are used instead of continuous signals. As a
result, the signal processing with a FIR filter will not work at all. This is
because the impulse response yields the temporal sequence of filter coeffi-
cients. Adding the filter coefficients up, results in the DC voltage gain of
the filter. In case of an IF neuron without an absolute refractory period, the
resulting activity of the target neuron is proportional to the activity of the
spike emitting neuron, shifted in time by the maximum of connection delays.
The proportionality factor is the sum over all weights, the DC voltage gain.

In case of a LIF, instead of an IF neuron, the membrane potential decays
over time. This means that contemporaneously or within a short span of time
incoming spikes are more effective than spikes distributed in time. Viewing
the multiple connections again, there must be a pattern of delays which
correlates with an specific output spike pattern of the pre-synaptic neuron.
The easiest approach are two connections with the delays d0,1,0 and d0,1,1 and
a difference of ξ = |d0,1,1 − d0,1,0| between these delays. If the pre-synaptic
neuron fires twice with an ISI of ξ, the first spike taking the longer delay will
reach the post-synaptic neuron contemporaneously with the second spike
taking the path with the shorter delay. Thus the connection transmits spikes
superiorly with ISIs equal to ξ, which is a band pass characteristic.

This effect can be intensified by inserting additional connections with
ξ = |d0,1,k − d0,1,k+1|. Fig 3.4 displays the result of such an arrangement. In
addition to the expected passband at νa = 100spikes/s, passbands arise at
the harmonics 2νa, 3νa, ... etc. The efferent activity νe neuron has got a
significantly higher amplitude at the harmonics, because the afferent stim-
ulation is greater as well. If there is a further rise in the afferent activity,
spikes reach the neuron with such short ISI that the membrane decay plays
an increasingly minor role. More and more there is a linear interrelation be-
tween the input and output activity. Because equidistant delays are a very
notional arrangement, these basic approaches shall be generalised.
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Figure 3.4: Moving average ρ1 of the successor neurons spike train over the
moving average of the predecessor’s spike train ρ0. Membrane time constant
are τm = 0.5ms (black) and τm = 3ms (gray) and connections d0,1,0 = 1ms,
d0,1,1 = 11ms, d0,1,2 = 21ms, d0,1,3 = 31ms, d0,1,4 = 41ms. Moving aver-
age parameters: integration window ∆t = 100ms, discretization step width
dt = 1ms. Data recorded by increasing the predecessor’s activity slowly with
200Hz/s.

3.2.2 A neuron as coincidence detector

Two LIF neurons are connected with K different delays d0,1,k now. There
exists a spike train pattern of the pre-synaptic neuron, which enables K
spikes to reach the post-synaptic neuron simultaneously at time ts. This
pattern can be easily determined, the spike times are the reverse delays times
t
(f)
0 = ts− d0,1,k. Note that one spike of neuron A leads to K spikes reaching

neuron B, but more important than the number of spikes reaching a neuron,
is their simultaneous arrival.

To investigate the phenomenon in more depth, the frequency response
like in fig. 3.4 is not suitable. As an alternative approach a poisson impulse
process1 is used to determine the activity of neuron A, whereby the mean
firing rate is ν̄ = 50Hz. Its moving average is displayed in fig. 3.5 (top) and
the successor’s activity response is displayed below (fig. 3.5 (middle)). At
the figure’s bottom the correlation of the predecessor’s random spike train
with the optimal spike train is displayed. One can expect that the randomly

1A poisson process is a counting process, whereby the intervals between two counted
events are exponential distributed. The poisson impulse process is the derivative of a
poisson process. At each time the poisson process is incremented, the derivative is infinite
and the derivative between two events is zero.
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generated spike train resembles the optimal spike train from time to time.
The correlation of both should be relatively high these times. Furthermore
one can expect that the activity of neuron B increases at those times, too.
This correlation can be observed at several times. However, it is possible
that this effect is caused by punctual high activities of the predecessor. The
optimal spike train would lead to a correlation max(Corr[Sref , S0]) = 6, here
the maximum is 3. One is able to see a tendency but it is not clear if results
are caused by transient increase of the firing rate of the predecessor or by
the correlation effect.
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Figure 3.5: Moving average ρ0 of the predecessor neurons spike train S0

(top). N0 fires randomly (poisson impulse process) with ν̄0 = 50Hz. Moving
average ρ1 of the successor neuron N1 (middle), with membrane time constant
τm = 7ms. The neurons are connected via six synapses d1,0,0 = 1ms, d1,0,1 =
4ms, d1,0,2 = 10ms, d1,0,3 = 18ms, d1,0,4 = 30ms, d1,0,4 = 36ms, weights
w1,0,k = 0.2. The correlation (bottom) of the predecessor neurons spike
train and the largest coincidence spike pattern Sref , which is t(0) = 0ms + τ ,
t(1) = 6ms+τ , t(2) = 18ms+τ , t(3) = 26ms+τ , t(4) = 32ms+τ , t(0) = 35ms+τ ,
the time shifting variable τ is set to zero. Thus there are no negative delays
and those bins are not displayed. Moving average parameters: integration
window ∆t = 10ms, discretization step width dt = 1ms.
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To achieve a correspondingly high correlation, eventually one has to wait
for a long period time. It would be more advantageous to include the ideal
spike train into the randomly generated signal. This is not a simple matter,
too, because the deterministic sequence would disturb the stochastic process
in any case. In fig. 3.6, for the sake of simplicity, a superposition of a poisson
impulse process and the optimal spike train is used as the predecessor’s spike
train. The poisson impulse process, with a mean firing rate of ν̄0 = 100Hz,
is active within the first second. The optimal spike train is repeated every
0.5s. It is obviously that the successor neuron only reacts on the optimal
spike train, the randomly arriving spikes are ignored.
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Figure 3.6: Similar to fig. 3.5, but neuron N0 fires randomly (poisson impulse
process) with ν̄0 = 100Hz for the first 1000ms. Furthermore N0 fires the opti-

mal spike train t
(0)
0 = 0ms+τ , t

(1)
0 = 10ms+τ , t

(2)
0 = 18ms+τ , t

(3)
0 = 32ms+τ ,

t
(4)
0 = 43ms + τ , t

(5)
0 = 50ms + τ at τ = 0ms, 500ms, 1000ms, 1500ms. The

membrane time constant of neuron N1 is decreased to a level (τm = 2ms) at
which a response to the predecessor neuron is highly improbable if the input
spike pattern is generated randomly. The two neurons are connected via six
synapses again: d1,0,0 = 1ms, d1,0,1 = 8ms, d1,0,2 = 19ms, d1,0,3 = 33ms,
d1,0,4 = 41ms, d1,0,4 = 51ms, weights w1,0,k = 0.17. Moving average parame-
ters: integration window ∆t = 10ms, discretization step width dt = 1ms.
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These results can be adapted to constellations with more than one prede-
cessor neuron. Besides the firing times of the predecessor neurons, the delay
times are important for the exact moment the spike arrives at the successor
neuron. Assuming that all delays are in an equal range, the largest activity
of the successor occurs if all predecessors are firing synchronously. If the de-
lays are not in an equal range the largest activity of the successor occurs, if
all predecessors are firing with an specific order (determined by the delays).
Thus the successor neuron is working as a coincidence detector. To achieve
a synchronous spike arrival time ts at the successor, ts must be counted back
through the delays to get the predecessor’s firing times t

(f)
j = ts − di,j,k.

Unfortunately there are only a few analysis methods which are able to simul-
taneously analyse more than two spike trains, see section 2.1.1. Therefore
this qualitative description is given here. Possibilities and potentials of co-
incidence detection are further described on the basis of an application in
chapter 4.

3.3 Feed forward networks

Feed forward networks differ from recurrent networks in that connections do
not form a directed cycle. In the connection matrix this implies that all
entries below the main diagonal and on the main diagonal itself are zero. For
practical application the absence of directed cycles means that the network
behaviour is stable and does not form oscillations caused by feedbacks. Fig.
3.7 shows a schematic drawing of a two layer feed forward network.

. . . Input Layer

. . . Hidden layer

. . . Output layer

Figure 3.7: A two layer feed foward network.

Considering a two layer feed forward network with ni input-, nh hidden-
and no output-neurons, each hidden neuron has got ni predecessors and each
neuron in the output layer nh predecessors. Assuming that each neuron has
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got a similar activity on average, the number of predecessors can give an
idea how to dimension the related weights. To consider the information of
many predecessor neurons, weights should be small enough to allow a certain
number of input spikes. A first indication for an IF neuron could be that on
average half of the predecessors have fired once before the successor fires, then
the weights would be on average w ≈ 0.5/ni between input and hidden layer
and w ≈ 0.5/nh between hidden- and output layer. Involving the membrane
decay of a LIF things are getting much more complicated. The period of
time the input spikes arrive at the successor have to be taken into account.
Instead of changing the weights, the membrane time constant τm can be
adjusted to changing conditions. However, in the practical application in the
following chapter 4 it has been very successful to choose a constant value of
around 5 . . . 20ms for τm. But altogether, no general dimensioning basis can
be specified here.

3.4 Recurrent networks

In recurrent networks connections between neurons may form directed cycles.
This increases the potential number of neural connections immensely. On the
one hand this can increase functionality and performance, but on the other
hand oscillations in feedback occur. What leads to the problem of instability.
It is known that the brain includes lot of directed cycles. A distinction in
literature of biological recurrent neural networks is made in feedback which
occurs within a single processing layer and feedback which occurs between
multiple processing layers. In this thesis the focus is on feedback within a
single processing layer. Biological examples for this are inter alia: short-
term memory, winner-takes-all decision making, contrast enhancement and
normalization (Grossberg, 2013).

3.4.1 Different types of feedback

In principle there are two possibilities to form directed cycles within a single
layer. The first option is to loop the output of a neuron back to its input,
what is called direct feedback. The second option is to connect the output
of the neuron to the input of its neighbours, what is called lateral feedback.
The two different types are shown in fig. 3.8. Note that feedback may not
necessarily be excitatory, inhibition may also be possible.
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Figure 3.8: Lateral inhibition (left), with an input spike train A0, N0 trans-
mits the stimulus to E0 and simultaneously suppresses the neighbour path
(A1 to E1) by inhibiting N1. This applies in reverse as well. Recurrent in-
hibition (center), if the neuron is activated via A0 and inhibits itself. Those
negative feedback is a principle of self regulation and is able to enforce stabil-
ity. Recurrent excitation (right), if the neuron is activated via A0 and excites
itself. Those positive feedbacks are able to grow the system activity like an
avalanche, but are typically bounded by external conditions.

Direct feedback

Direct feedback can be divided into two types, positive (fig. 3.8 (right)) and
negative feedback (fig. 3.8 (center)). The principle of feedbacks is used in
many disciplines like electronic engineering, control theory, etc. Negative
feedback allows finer tuning and increases stability, while positive feedback
increases a system’s agility.

Without any feedback, one would expect that the output firing rate ν̄out
divided by the input firing rate ν̄in is approximately proportional to the input
weight.

If feedback is negative, the membrane is reset or even negatively preloa-
ded, depending on θl and the weight of the feedback wi,i. This may suppress
further spikes after one output spike occurred, in figure 3.9 this can be ob-
served. With short delays the effect is very similar to the one of the refractory
period. But the arbitrary delay offers the possibility to perform the inhibi-
tion at an arbitrary point in time. For inhibitory connections the cycle must
always be stable.

If feedback is positive, the membrane is positively preloaded. This makes
the neuron more sensitive to further incoming spikes, it is more likely to fire
again. The arbitrary delay time offers the possibility to chose the point in
time of self stimulation. The pre-loading is degraded by the membrane leaky
current, thus this effect only remains for a short time. As long as there is only
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Figure 3.9: Direct feedback, cf. Fig. 3.8 (right). Input spike trains: w = 0.3,
ν̄0 = 300Hz (poisson impulse processes). Neuron without direct feedback:
E0(nofb): w = 0, with positive feedback: E0(positivefb): w = 0.9, d = 0.1ms,
with negative feedback E0(positivefb): w = −0.9, d = 0.1ms. Neuron parame-
ters: ϑl = −1, τm = 20ms.

a single direct feedback and its weight is smaller than the upper membrane
threshold, the cycle is stable. The process of self excitation is shown in 3.9.
If the weight becomes equal or greater than the threshold, the cycle may
become marginal stable, because each output spike will cause an input spike
which again evokes an output spike. If there is more than one feedback path
each output spike can evoke more than one input spikes. This could make
the circuit instable.

Lateral feedback

Lateral inhibition can be found in many kinds of neural networks. For in-
stance reciprocal inhibition antagonists in spinal motor structures or more
complex applications like contrast enhancement in the visual system (Bear
et al., 2008). Lateral excitations in neural networks have been found within
the Olfactory Bulb or in the Escape Circuit of Crayfish for example. Corre-
sponding publications can be found in neuroscientific journals, but are not
part of and therefore will not be discussed further in this thesis.

As a minimal example, according to the scheme in figure 3.8 (left), two
neurons inhibiting each other laterally shall be stimulated with randomly
generated spike trains. The results of the simulation are shown in fig. 3.10.
If a neuron is active, the activity of neighbour neurons is suppressed. In prin-
ciple it is the same as the winner-takes-all network described in the following
subsection.
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Figure 3.10: Lateral inhibition, cf. Fig. 3.8 (left). Input spike trains: w =
0.3, ν̄0 = 300Hz (poisson impulse processes). Lateral inhibiting connections:
w = 1, d = 0.1ms. Neuron parameters: ϑl = −0.1, τm = 15ms.

3.4.2 A winner-takes-all network

Neurons of a winner-takes-all network are connected in a way that they are in
competition. The competition offers the opportunity of decision-making. In
a classical form the neuron with the highest activation wins this competition
and forces the others to switch off. As the basis of decision various processes
can be considered. Next to the highest activations, which refers to rate
coding, it could be the time to the first spike or a designated input spike
pattern.

A0 A1 A2

N0

N1

N2

E0 E1 E2

Figure 3.11: A winner-takes-all network of three neurons. If one of the neu-
rons is activated by A0, A1 or A2, the according neuron inhibits its neigh-
bours (dashed arrows). In order to enhance and perpetuate the result of this
computational principle, the neuron may exite itself (loops).

Fig. 3.11 shows a typical wiring of a winner-takes-all network with three
competitive neurons. The suppression of the neighbour neurons takes place
by the inhibiting lateral connections. To have a direct effect, the delay times
of these connections should be chosen rather short, in the example shown in
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Fig. 3.12 a delay of d = 0.1ms is taken. The weights of the lateral connections
should be chosen rather high to bring an effect. Additionally the negative
threshold of the neurons can be chosen very low, thus the inhibited neurons
are negative preloaded and the inhibition effect persists longer. Reasonable
values are w = ϑu + |ϑl|.

A further intensification of the competitive effect can be achieved by
direct feedback, in order to let the neuron fire more easily again. These
weights can be chosen rather high, too. If wi,i = ϑu the neuron activates
itself continuously after it fired once. This marginal stable state makes it
impossible or highly difficult to change the winner over time.

An exemplary demonstration is given in Fig. 3.12. The competing neu-
rons are LIF neurons and the connection parameters are dimensioned in a
way that the winner can change over time. At t ≈ 10ms neuron N1 is the
first winner of the competition, but the following activation via A1 is appar-
ently not sufficiently high to keep the supremacy. At t ≈ 80ms neuron N0

is successful, but is not able to keep the supremacy, too. Thus the winner
changes again in the further process.

A0

A1

A2

E0

E1

0 50 100 150 200

E2

t in ms

Figure 3.12: Winner-takes-all network, cf. Fig. 3.11. Input spike trains: w =
0.2, ν̄0 = 300Hz (poisson impulse processes). Lateral inhibiting connections:
w = −1, d = 0.1ms. Direct feedback connections: w = 0.9, d = 0.1ms.
Neuron parameters: ϑl = −0.5, τm = 20ms, ∆abs = 0ms.

3.4.3 Memory

The way how information is stored inside the brain is largely unknown. It
is assumed that memory takes place in most parts of the brain, whereby
it is expected that specific brain regions are responsible for different types
of learning, which are sensory memory, short-term memory and long-term
memory. Besides modification of synaptic weights (which can be understood
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as learning and memory as well), the way neurons are connected with one
another facilitates the storage of information as well.

Here a very simple and artificial example of neural wiring, which provides
an opportunity to store information, is given. Fig. 3.13 shows an aggregate
of five neurons, which are connected in a ring structure. The weights are
adequate to evoke a spike in the post-synaptic neuron by a single pre-synaptic
neuron. Information inserted into the neuron circle via input A0 is circling
around, until it is erased with the inhibitory input signal A1. Data that is
saved in this way can be retrieved periodically at each neurons output.

A0 A1

N0

N1 N3

N4

N2

E0

Figure 3.13: Aggregate of five neurons in order to store activation patterns.
An afferent activation pattern can be inserted into the neuron circle by input
A0. The stored pattern appears cyclically at E0, efferences of the other
neurons are suitable as well. Inhibition by the afference A1 results in a
clearance of the circling activation pattern. Parameters: wi,j = ϑu = 1

In Fig. 3.14 a random spike pattern is loaded into the cycle. The length
of the input spike pattern is limited by the sum of the used delays inside
the circle, otherwise the end overlaps the begin and the spike train is mud-
dled in consequence. One can clearly see how this pattern appears delayed
(di,j = 5ms) at one neuron after the other. On the one hand this example
demonstrates the effect of memory, on the other hand the example confirms
the correct operation of the software for recurrent networks.

At t = 100ms an inhibitory spike burst appears at input A1 and deletes
the stored information. When dimensioning the inhibition process, one has
to take care of the frequency and length of the spike burst, the weight of the
according connection and the negative threshold of neuron N4. In addition to
the connection weight, the frequency of the spike burst is significant for the
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Figure 3.14: Storage of a spike train by an aggregate of five neuron, see Fig.
3.13. An spike pattern is inserted by A0 into the neuron cycle at t = 0ms.
At t = 100ms the circling spike spattern is erased by an inhibition caused by
A1. Parameters are wi,j = 1, di,j = 5ms and ϑl = −1, ϑu = 1, ∆abs = 0.1µs,
τm =∞

strength of the inhibition effect, see temporal summation in Eq. 2.18. The
length of the inhibiting spike burst must be greater or equal to the maximal
length of the stored spike pattern or to the sum of the used delays inside the
circle respectively. This ensures that no information remains. Furthermore
it could be advantageously to enlarge the duration over several passes, thus
any remaining spikes are deleted, too. Here again a negative preloading and
the related ruggedness against excitatory peaks can be achieved through a
larger negative threshold.

3.4.4 A fully connected network – influence of param-
eters and computing time

As basis of this investigations a fully connected network with 25 neurons is
generated. The weights (wi,j = ±0.1 . . . 0.2) of the connections are uniformly
distributed, whereby 10% are inhibitory and have a negative sign. The delays
(di,j = 1 . . . 5ms) are also uniformly distributed. In order to allow a little
negative preload, the neurons’ lower thresholds are ϑl = −0.5. Furthermore
a membrane τm = 15ms is given for all neurons. To initiate an activity of the
network, the first ten neurons fire randomly (poisson impulse process) with
ν̄ = 150Hz for the first 25ms. The simulation time is limited to t = 500ms.

Totally different behaviour of one and the same network but different
initiation spike trains can be observed. In fig. 3.15 an example is given
in which the activity fades away very quickly. After only 30 . . . 40ms the
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network is back again in a state of calmness. Figure 3.16 shows a round with
some other initiation spike trains. The network activity increases within the
first ≈ 100ms, after that the resulting pattern remains. No alteration can
be observed after 500ms (not displayed). This indicates that the network
is getting into a marginal stable state. After several runs no result could
be observed, in which the network’s activity runs into an unstable state.
Although such a state might be possible due to the huge number of feedbacks.

t = 0ms t = 10ms t = 20ms t = 30ms t = 40ms

0Hz 420Hz

Figure 3.15: Activity heatmap of a fully connected network with 25 neurons,
black corresponds to ν = 0 and white to ν = 420Hz. Initiation spike trains
of neuron 0 . . . 9 are randomly generated (poisson impulse process), ν̄ =
150Hz. Neuron parameters: ϑl = −0.5, τm = 15ms, ∆abs = 0. Connection
parameters: wi,j = ±0.1 . . . 0.2, di,j = 1 . . . 5ms, 10% of the connections are
inhibiting. Moving average parameters: integration window ∆t = 100ms,
discretization step width d t = 1ms. Computing time: 0.03s

Computing time

Here the computing time is measured by calling the clock t clock(void)
function of the time.h before and after the simulation and calculating the
difference. The result is returned in clock ticks and therefore is divided by
the constant CLOCKS PER SEC in order to convert it into the time format.
This is a very simple measurement method but sufficiently precise in this
application. As hardware a Pentium(R) Dual-Core CPU E5200 @ 2.50GHz
2 and 3.2GiB ram was used with an Ubuntu 12.04 (precise) (32-Bit) (Kernel
Linux 3.2.0-57-generic-pae) operating system.

A comparison of the two simulations in fig. 3.15 (0.03s) and 3.16 (42.74s)
shows a significant difference between computing times. This difference can-
not be explained by the network’s neuron and connection parameters because
they are unaltered. The reason for this lies in the different neural activities.
One has to consider that not only the processing of the spikes does take
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time. The most time consuming element is to insert the output spikes into
the target neuron’s spike container. Inserting Fi spikes into a container with
size Fc goes logarithmic with Fi log(Fi + Fc).

A further effect on the computing time occurs if there are feedbacks with
short circling time in conjunction with a high neural activity. Then the
neurons’ simulation function has to be called very often, cf. sec. 2.3.

Larger networks are getting extensive very quick. The number of connec-
tions increases the number of spikes as well. A fully connected network with
one hundred neurons cannot be sufficiently studied with this software and
the used PC because it exceeds the 3.2GiB memory quickly.
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t = 0ms t = 10ms t = 20ms t = 30ms t = 40ms

t = 50ms t = 60ms t = 70ms t = 80ms t = 90ms

t = 100ms t = 110ms t = 120ms t = 130ms t = 140ms

t = 150ms t = 160ms t = 170ms t = 180ms t = 190ms

0kHz 5kHz

Figure 3.16: Activity heatmap of a fully connected network with 25 neurons,
black corresponds to ν = 0 and white to ν = 5kHz. Identical to network in
fig. 3.16, but different initiation spike train. Initiation spike trains of neuron
0 . . . 9 are randomly generated (poisson impulse process), ν̄ = 150Hz. Neuron
parameters: ϑl = −0.5, τm = 15ms, ∆abs = 0. Connection parameters:
wi,j = ±0.1 . . . 0.2, di,j = 1 . . . 5ms, 10% of the connections are inhibiting.
Moving average parameters: integration window ∆t = 100ms, discretization
step width d t = 1ms. Computing time: 42.74s
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3.5 Synaptic plasticity - The ability to learn

The ability of neural systems to change their behaviour over time, with
the aim to improve capability and performance, is generically referred to
as learning. The underlying alteration process of the neural system is called
neuro-plasticity or brain-plasticity. A distinction is made between synaptic
and non-synaptic plasticity. Synaptic plasticity is described as the ability of
synapses to strengthen or weaken over time, whereby the increase of strength
of a synapse is called Long-Term-Potentiation (LTP) and the decrease is
called Long-Term-Depression (LTD). This process is thought to be a ma-
jor part of learning and memory. Non-synaptic plasticity is less studied. It
refers to the ability of changes in the characteristics of the remaining cellular
components like soma, axon and dendrites.

A further distinction is made between the time frames within the alter-
ation process takes place:

• Short term plasticity
Alteration remains for a sub millisecond period.

• Long term plasticity
Alteration remains for minutes, hours, days or even longer.

The processes behind are rather complex and due to time restrictions it would
not be suitable to be concerned with all of them in detail. In this thesis solely
synaptic weight changes in terms of long term plasticity are given priority.
An excellent starting point for this is given by neuro-psychologist D. O. Hebb
in his book ”The Organization of Behaviour” from 1949. He postulated the
following:
”When an axon of cell A is near enough to excite a cell B and repeatedly or
persistently takes part in firing it, some growth process or metabolic change
takes place in one or both cells such that A’s efficiency, as one of the cells
firing B, is increased.”(Hebb, 1949)
This sentence is often vaguely summarised by ”what fires together, wires
together”. It underlines Hebb’s idea that learning is based on correlation.
In the following two mathematically interpretations of this rule are given.
The first one is a rate based and the second one a spike time based learning
concept.

3.5.1 Rate based Hebbian learning

The general approach for the synaptic plasticity is an arbitrary function of
the activities νi and νj of a pre-synaptic neuron j and a post-synaptic neuron
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i, connected by a synapse with the weight wij. For a rate based learning the
activities can be assumed as firing rates.

d

dt
wij = F (wij; νi, νj) (3.3)

In Gerstner et al. (2008) F is expanded in a Taylor series about νi = νj = 0:

d

dt
wij = c0(wij) + cpost1 (wij)νi + cpre1 (wij)νj

+ cpre2 (wij)ν
2
j + cpost2 (wij)ν

2
i + ccorr2 (wij)νiνj +O(ν3)

(3.4)

The simplest form is to set all terms but the correlation term to zero, which
is Hebb’s hypothesis :

d

dt
wij = ccorr2 νiνj (3.5)

This equation is sometimes called activity product rule, whereby the constant
factor ccorr2 is called rate of learning. A disadvantage of Hebb’s native rule
is the missing of negative weight changes, thus the weights are driven into
saturation over time. Some more complex learning rules can be deduced from
equation 3.4 and remove the problem. These are for example the covariance
rule and the Bienenstock-Cooper-Munroe rule (Haykin, 1994).

3.5.2 Spike-Time-Dependent-Plasticity (STDP)

By assuming that not the firing rate but the exact spike timing is the basis of
information, another learning algorithm is required. Unlike in 3.3, in STDP
weight changes are given by a function of pre- and post-synaptic spikes.

d

dt
wij = f(wij; t

(f)
i , t

(f)
j ) (3.6)

A general model with pre- and post-synaptic spike trains Sj(t) =
∑

f δ(t− t
(f)
j )

and Si(t) =
∑

f δ(t− t
(f)
i ) can be denoted:

d

dt
wij = a0 + Sj(t)

[
apre1 +

∫ ∞
0

apre,post2 (s)Si(t− s) ds

]
+ Si(t)

[
apost1 +

∫ ∞
0

apost,pre2 (s)Sj(t− s) ds

] (3.7)

42



−50 50

−0.5

0

0.5

1

ti = tj

0

LTP

LTD

(tj − ti) in ms

∆
w

ij

w
ij

Figure 3.17: STDP with an exponential learning window (A+ = 1, A− = 0.5,

τ+ = τ− = 10ms). Synaptic efficiency alterates if pre-synaptic spike at t
(f)
j

and post-synaptic firing at t
(f)
i are temporal close. Synaptic efficiency is

increased (LTP) if the pre-synaptic spike precedes the post-synaptic spike
and is decreased (LTD) for reversed timing.

Parameters a0, a
pre
1 , apre,post2 and kernels apost1 have got the following meanings:

a0 Spike independent term (non–Hebbian)
apre1 Pre-synaptic plasticity (non–Hebbian), refers to pres-

ynaptic spikes in ignorance of post-synaptic spikes
apre,post2 Correlation based plasticity (Hebbian), refers to post-

synaptic spikes occurring before pre-synaptic spikes
apost1 Post-synaptic plasticity (non–Hebbian), refers to post-

synaptic spikes in ignorance of pre-synaptic spikes
apost,pre2 Correlation based plasticity (Hebbian), refers to post-

synaptic spikes occurring after pre-synaptic spikes
A common choice is to set the non-Hebbian terms to zero and to take an

exponential function for the two Hebbian terms apre,post2 and apost,pre2 . The
resulting ”learning window” W (s) is

W (s) =

{
A+ exp (−s/τ+), for s ≥ 0

−A− exp (s/τ−), for s < 0 .
(3.8)

The time constants are in the range of τ+ = 10ms and τ− = 10ms, which
are slightly smaller but correspond to the time constants of the neuron mem-
branes τm. Note that this learning algorithm finds its utilization for excita-
tory synapses only. STDP processes in inhibitory synapses are less well stud-
ied because inhibitory synapses are rare. Consequently no learning algorithm
for inhibitory synapses is established, these connections remain unaltered.
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The total weight change can be denoted by the sum over all weight
changes caused by pairs of pre- and post-synaptic spikes.

∆wj =
N∑
m=1

N∑
n=1

W
(
t
(n)
i − t(m)

j

)
(3.9)

As long as A+ and A− are not a functions of wij weights cannot be bounded.
If a weight of a synapse becomes greater than the upper threshold of the
neuron ϑu, each spike running over this synapse forces the post-synaptic
neuron to spike. Thus the weight of this synapse enlarges more and more.
Naturally unbounded weights are not truly biologically realistic, too.

In order to keep the weights within an interval wmin < wj < wmax, dif-
ferent weight dependent amplitudes A+(wj), A−(wj) are conceivable. To
simplify, the lower bound is set to zero, wmin. One possibility is a simple
linear function, called soft bounds or multiplicative weight dependence:

A+(wj) = η+(wmax − wj) (3.10)

A−(wj) = η−wj (3.11)

Besides linear soft bounds more complex function traces are possible.
Another possibility is called hard bounds. The weights are rigidly restricted
by the bounds. Mathematically this can be expressed with the Heaviside
step function Θ:

A+(wj) = η+Θ(wmax − wj) (3.12)

A−(wj) = η−Θ(−wj) (3.13)

Further information on the subject of STDP can be found in Sjöström and
Gerstner (2010) and Gerstner et al. (2008).

A further way to keep the weights stable was tried but achieved no satis-
factory results. The idea was to keep the sum-of-squares of all weights leading
towards a neuron constant. Of course the weights are stable with this proce-
dure, but a problem is that connections which should actually be increased
by learning can be decreased by the following compensation. To keep the
sum-of-squares of all connections leading to the neurons’ successors constant
was not tested. May be this is less critical due to the reduced number of
connections per neuron, but in general the described problem remains.

Influences of STDP

STDP can be regarded as an enhanced interpretation of the Hebbian learning
rule for SNNs (section 3.5). As described in chapter 2.1, information in SNNs
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could be coded within the firing rates or the exact spike times. The STDP
has got a direct influence on the firing rate of a neuron and its firing time as
well.

The influence on the firing rate is obvious. Increasing weights enable that
less input spikes are needed to evoke an output spike, resulting in higher
firing rates. Decreasing weights effect opposite. Since the exponential STDP
learning window used here evokes positive as well as negative weight changes,
the η+/η− ratio has got a main impact on the alteration of the mean firing
rate of the neurons. In conclusion the STDP leads to a greater sensitivity
(and a resulting greater firing rate) to inputs from the connection which
evoke an output spike before.

The influence on the spike times is a bit less obvious than the influence
on the firing rate. One significant effect can be observed if one neuron is con-
nected to a group of predecessors which are firing one after another (Sjöström
and Gerstner, 2010). The target neuron shall spikes only once, after the fth
input spike. Through the STDP learning process the connections which have
been activated before the successors spike event are strengthened. After one
or more repetitions the successor neuron may already fire after the (f − 1)th
input spike. These considerations demonstrate that STDP has a direct effect
on the firing time.

Supervised learning and backpropagation

For a supervised learning method it is necessary to define an error in the
output-layer. In the following chapter each output neuron represents one
decision. The neuron which should win, whether it wins the competition or
not, is reinforced by the STDP learning algorithm. This done by applying
the STDP algorithm only to connections leading to the neuron which should
win.

In networks with one or more hidden layers, the weights between input-
and hidden-layer cannot be taught without defining a target constellation for
the hidden layer. There is no possibility to propagate the failure from the
output back to hidden neurons.

Supervised learning is used in the following chapter. The STDP algorithm
from section this section serves as a basis. Because of the lack of a possibility
to propagate the error back to a hidden layer, feedforward networks with one
input and one output layer will take into account exclusively.

Some tests without supervising, so called clustering, has been performed
without success. Also it appears possible on principle.
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Chapter 4

Using the network for image
recognition

Since the fundamentals have been pointed out in the previous two chapters,
this chapter deals with a possible application of a SNN. The goal is the
recognition of handwritten digits in an 8-bit gray value image. In a first
instance the used procedures of neural encoding and decoding are described
(sec. 4.1). After that the recognition of some less fractured but similar shapes
is realised (sec. 4.2). This deals with intersections in the presented patterns
in order to study the necessity of inhibiting connections. Conclusively the
digit recognition is described (sec. 4.3).

4.1 Encoding and decoding

Before the recognition begins, a reasonable approach for neural encoding
and decoding must be defined. It seems to be relatively clear that each pixel
of the input image should be represented by one input neuron. The more
interesting question is how to transform the gray values into spike patterns.
As already mentioned in section 2.1.2, this is not an uncontroversial task. To
deal with the dualism of rate and temporal coding, two procedures are used.

Encoding

The first procedure refers to rate coding. Each input neuron should fire with
a frequency proportional to the gray value.

νx+y = p(x, y)
νmax − νmin

pmax

+ νmin (4.1)

46



Whereby νmin is the lowest and νmax is the highest possible frequency, pmax

is the maximal gray value. To avoid that all neurons fire the first spike at
the same time, a normal distributed (µ = 20ms, σ = 5ms) phase is added.
In the software ISIs are used instead of firing rates.

The second procedure refers to the time-to-first-spike coding approach
(see sec. 2.1.2). Each input neuron fires once. For this, the gray value of a
pixel p(x, y) is transformed linearly into a spike time.

t
(0)
x+y = p(x, y)

tmax − tmin

pmax

+ tmin (4.2)

Whereby tmin is the earliest and tmax is the latest possible time of spike
occurrence.

The here given parameters are the same for all following investigations:

• Time tmin = 10ms, tmax = 90ms

• Firing rate νmin = 1/(3ms), νmax = 1/(35ms)

• Gray value pmax = 255

Decoding

Each decidable input pattern is represented by one neuron in the output
layer. A winner in this layer indicates which pattern is represented at the
network’s input. For the decoding two possibilities can be used to determine
the winner neuron in the output layer. One referring to rate coding and the
other to temporal coding. The rate code winner could be determined by
counting the output spikes of each neuron, the one with the largest number
wins. The temporal decoding winner is determined by getting the time-to-
first-spike, the neuron which is firing first wins. The competition is done
by evaluation after the end of the simulation. Decidedly networks like the
winner-takes-all network from section 3.4.2 are not used because of the time
consuming simulation. If two neurons fire at exact the same time or fire the
same number of spikes respectively the result is considered as false.

To enable the decoding with spike rates it should be the goal to increase
the connection weights which belonging to the intersection set of all the
digits of one group. The remaining connections are not needed. This can
be achieved rudimentary with time-to-first-spike encoding, see sec. 4.3.2.
Especially if all weights are initialized with very low values and the negative
learning rate is set to zero, the requested receptive fields can be achieved.
But in several tests the winner determination with spike rate codes failed.
Regarding for example the results in fig. 4.10, the number of output spikes
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of the three neurons is very similar (n784 = 9, n785 = 8 and n786 = 9), the
winner is not unambiguously determined because n784 = n786. A reason for
this is the numerousness of equal gray values in the represented images. Even
in combination with strongly varying weights it results in a very similar mean
input spike density. This problem remains, even after many training epochs
and adapted weights. Here the STDP algorithm has only effects on the firing
time of an output neuron. In case if it fires earlier or later. An alteration of
the number of spikes is not possible because the number of connections are
very high and grouped weight changes by STDP do not achieve the desired
effect. In principle it should be possible to decode the information by the
number of spikes but the STDP algorithm does not seem to be adequate to
train these networks in that way. Therefore all winners are determined with
time-to-first-spike decoding.

4.2 Recognition of similar shapes

The goal in this section is to enable the network to recognize the four shapes
listed in fig. 4.1. These four shapes consist solely of the intersection of each
other and therefore have a high degree of overlap, what makes them not easily
distinguishable. The difficult task of separation may require negative weights,
in order to make the small differences in the patterns more meaningful.

Each of the 282 pixel is represented by one input neuron and each deci-
sion is represented by one of the four output neurons. A connection exists
between each input and output neuron. The weights are initialized uniformly
distributed within the interval [0.01, 0.011] and the delays within the interval
[1ms, 9ms]. The neurons of the output layer have a lower threshold ϑu = −0.1
and a membrane time constant τm = 15ms. The refractory period is without
influence, because the winner is determined by the time-to-first-spike method
(see sec. 4.1). Only the first spike is used in the learning process.

4.2.1 Pixel gray values encoded as spike times

The input neurons are only firing once in accordance to their gray value.
The learning algorithm is applied to all connections relating to the neuron
which should be the winner in each epoch. The parameters are η+ = 0.003,
τ+ = 10ms, η− = 0.0018, τ− = 25ms and wmax = 0.1. All parameters,
inclusively the neuron and connection parameters, have been determined
through trial and error.

To simplify the task, only shape one and two should be recognized in a
first step. The results vary widely. In only one half of all cases the decision-
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Shape 0 Shape 1 Shape 2 Shape 3

Figure 4.1: Four similar shapes to test the network.

making is correct within a fix number of epochs. Therefore another abort
criterion is chosen here. Within each epoch it is tested if the two shapes
can be distinguished from one another. If the decision-making is correct the
learning process is aborted. If there is no correct decision after 200 epochs,
the learning process is stopped, too. To examine the mean number of epochs
which are necessary to make the network learn to recognise the two shapes,
the program is executed five thousand times. The results show that the
learning process was only successful in approximately 74.2% of the cases.
The network needed on average 18.713 epochs to learn the two shapes. Some
of the networks were accidentally initialized correctly.

To study the influence of negative weights, now 15% of the connections
are inhibiting and get a negative sign respectively. The result of five thousand
runs shows approximately 76.6% successful learning processes. On average
19.612 epochs were needed to make a network recognize the first two shapes
correctly. If the same network is trained with all four shapes, the results are
very bad. None of 5000 training runs have been successful, with or without
negative weights.

Based on this examples, it cannot clearly be assessed that the used net-
work is in principle able to solve the problem. Inhibitory connections appear
not to be necessary for this task. Eventually a problem occurs due to the
huge number of input neurons and the comparably small number of deci-
sions. The learning algorithm is not suitable to adapt such a huge number
of connections in a correct way with such a low rate of information. An
immensely more extensive database provides the MNIST collection of hand
written digits, whose recognition is topic of the next chapter. Furthermore
there may be very large potentials in the optimisation of the parameters.
Larger test series with a more powerful computer may be expedient.

4.2.2 Pixel gray values encoded as spike rates

The same network, which is used before, is taken here, but the gray values of
the image pixels are encoded as spike rates. The learning process is aborted
if there is no correct decision after 300 epochs. The results are significantly
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better, all 5000 learning processes succeeded. 92.914 epochs were needed
on average to get the correct result. With 20% inhibiting connections the
results are not better. 4924 out of 5000 successful learning processes (98.48%)
could be observed. 138.011 epochs were needed on average to get a correct
result. Fig. 4.2 displays the steep learning of one training run with inhibiting
connections. The reason for the better results cannot be determined at this
point.
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Figure 4.2: A network (without inhibiting connections) is learning the four
shapes of fig. 4.1, pixel gray values are encoded as spike rates.

4.3 Recognition of hand written digits of the

MNIST database

In the first subsection of this section, a network is used to recognize the
handwritten digits of the MNIST database encoded as firing rates (subsec.
4.3.1). Within the second subsection 4.3.2, a comparison to pixels’ gray
values encoded as spike times is made.

The MNIST database is available in the internet1, it has a training set
of 60, 000 examples and a test set of 10, 000 examples. In this thesis only
the digits 0, 1 and 2 are used. Furthermore a subset of the selected digits is
used, which is always taken from the beginning of the MNIST training and
test sets.

4.3.1 Pixel gray values encoded as spike rates

In figure 4.3 a heatmap of the input layer’s activity at several points of
time is displayed. Each pixel of the heatmap is representing one neuron.
The gray values correspond to the current activity, which is calculated by

1http://yann.lecun.com/exdb/mnist/
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a moving average function. For further information see section B.7. One
sees that all white pixels which belong to the written digit are firing with a
constant rate of ν = 1/(3ms). The small firing rate of the background pixels
induces a beat frequency in the pictures, because the integration window of
the moving average function cannot be chosen arbitrarily long. This causes
varying spike rates in the figure, in fact the background fires with a constant
rate of ν = 1/(35ms).

t = 0ms t = 20ms t = 40ms t = 60ms t = 80ms

t = 100ms t = 120ms t = 140ms t = 160ms t = 180ms

t = 200ms t = 220ms t = 240ms t = 260ms t = 280ms

t = 300ms t = 320ms t = 340ms t = 360ms t = 380ms

0Hz νmax = 1/0.003Hz

Figure 4.3: Exemplary activity heatmap of the input layer with 282 neurons
and a handwritten ”two” of the MNIST database. Spikes are generated
according to equation 4.1, νmin = 1/(35ms), νmax = 1/(3ms) pmax = 255.
Moving average parameters: integration window ∆t = 200ms, discretization
step width d t = 1ms.

The huge number of spikes generated in the input layer arrives at each
neuron of the output layer. A visualisation of such a large number of spikes
is not possible. Therefore only the output spikes of the output layer are
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displayed in figure 4.4. One can see that the number of output spikes is
identical for each neuron in this example. The times to first spike differ
slightly.
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Figure 4.4: Exemplary spike trains of the three output neurons N784, N785

and N786. The number of input spikes is too large (approximately 12,500) to
realize a visual separation. Therefore input spikes are not displayed.

In order to study rate coding and avoid the influence of coincidences
simple IF neurons are used in this subsection. Neuron parameters are ϑu = 1,
ϑl = −0.1 and ∆abs = 1ms. The connections are initialized uniformly and
distributed with wi,j ∈ [1 · 10−3, 11 · 10−3] and di,j ∈ [1ms, 2ms].

The network is trained over 3000 epochs with the STDP algorithm (learn-
ing rates: η+ = 2 · 10−3, η− = 2.5 · η+ = 5 · 10−3, time constants: τ+ = τ− =
5ms, weight maximum: wmax = 0.05). Only the first spike of an output neu-
rons spike train is considered. The training set consists of 300 examples (100
times digit 0, 100 times digit 1, 100 times digit 2) and the test set consists of
1500 examples (500 times digit 0, 500 times digit 1, 500 times digit 2). The
decoding in the output layer is done by time-to-first-spike.
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Figure 4.5: Learning process of a training set from the MNIST database,
pixel gray values are encoded as spike rates.
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Figure 4.6: Bars show how often which decision was made for each digit in
percentage. The first row holds the decisions when digit 0 is presented, the
second row if 1 is presented and the third row if 2 is presented. For a training
set (left) and a test set (right) from the MNIST database, pixel gray values
were encoded as spike rates.

Fig. 4.5 shows the recognition rate while training the network. It is
plotted by storing if the decision is true or false for each epoch in a vector and
smooth this vector with a moving average, for further informations see section
B.7. This curve gives an indication if the learning process was successful or
not.

In this example the large training set is learned well. Around 80% of
the training examples can be recognized correctly after the learning process
(4.6, left). Even if the relatively large training set can be learned well, the
generalization with this network fails. In fig. 4.6 (right) the decisions which
are made while presenting the test set to the network are displayed. There
is no general learning success ascertainable.

The weights are moving together during the learning process (compare
fig. 4.8 top and bottom), however the mean value keeps approximately con-
stant. Among themselves the weights remain equably distributed (a real
uniform distribution can no longer be assumed), but after the learning other
connections have the strongest weights. This can be gathered from figure
A.7 in the appendix, too. Evenly distributed weights become apparent as
an indicator for the quality of the learning process. The results of another
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simulation are displayed in the appendix (sec. A.1). Here the ratio of η−/η+
is chosen smaller (0.5 instead of 2.5), thus the positive learning rate have
a stronger influences and most of the weights are increased. A decreasing
of lesser important connection weights does not take place sufficiently. The
result is correspondingly deteriorated.

The receptive field of output neuron N786 (digit 2) in figure 4.7 is taken
from another simulation, but with the same parameters used in this chap-
ter. Even after many training epochs an arising of dedicated patterns is not
visible. This could reflect the missing ability of generalization. A reliable
statement of what and especially how the network learns the given training
set can not be given here.

0 600 1200 1800 2400

0 wmax = 0.05

Figure 4.7: Receptive field of output neuron N784 (digit 2) in different training
epochs.
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Figure 4.8: Connections leading to the three output neurons before (top) and
after (bottom) the learning process. Weights are plotted over related delays,
each mark represents one connection.
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4.3.2 Pixel gray values encoded as time-to-first-spike

In fig. 4.9 one sees the activity heatmap of the input layer. A two is repre-
sented, thus each neuron fires once according to the time-to-first-spike coding
(sec. 4.1). A first spike wave occurs at 10ms. These are the neurons with
the written digit and a white image gray value of 255. In the following some
individual spikes appear in the surrounding of the written digit. These are
some darker gray values in the lateral areas of the digit. At 90ms the pixels
of the black background are spiking. Because spike rates are displayed, a
single spike leads to a rate of 1/∆t = 1/(5ms) = 200Hz in the figure.

t = 0ms t = 5ms t = 10ms t = 15ms t = 20ms

t = 25ms t = 30ms t = 35ms t = 40ms t = 45ms

t = 50ms t = 55ms t = 60ms t = 65ms t = 70ms

t = 75ms t = 80ms t = 85ms t = 90ms t = 95ms

0Hz 200Hz

Figure 4.9: Exemplary activity heatmap of the input layer with 282 neurons
and a handwritten ”two” of the MNIST database. Spikes are generated
according to equation 4.2, tmin = 10ms, tmax = 90ms, pmax = 255. In the
heatmap black corresponds to ν = 0 and white to ν = 200Hz. Moving
average parameters: integration window ∆t = 5ms, discretization step width
d t = 1ms.
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Because each input neuron is connected to each neuron of the consecutive
layer, all 282 spikes will arrive in the output layer, too. Fig. 4.10 shows the
input and output spikes of the three output neurons. A first spike wave
arrives at the neurons between 11ms and 19ms. These are the spikes of the
input neurons firing at 10ms. Caused by the uniformly distributed delays
(di,j = 1 . . . 9ms) the wave is temporally spread. After that the spikes of the
lateral areas of the digit are following and then those of the background.
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Figure 4.10: Exemplary spike trains of the three output neurons N784, N785

and N786. The first input spike wave (11 . . . 19ms) is caused by the white areas
in the input patterns, the written digits. The second wave (92 . . . 100ms) is
caused by the background. Differences in the spike patterns arise through
different connection delay times.

All connection weights are initialized very close to each other, within the
interval [0.04, 0.041]. The LIF neurons in the output layer (∆abs = 1ms,
τm = 15ms) are responding. If the winner neuron is selected by the first

spike times (t
(0)
784 = 13.434m, t

(0)
785 = 14.037m and t

(0)
786 = 13.364m in fig. 4.10),

the winner in this case is neuron N786. This is the correct decision, because
a two has been presented. Time-to-first-spike decoding provides an unique
winner in all probability. A simultaneous spiking is unlikely, because of the
numerousness of different delays.

After the initialization the network is trained with the STDP algorithm
for 3000 epochs. A test set with 3000 examples (1000 times digit 0, 1000
times digit 1, 1000 times digit 2) and a training set with 300 examples (100
times digit 0, 100 times digit 1, 100 times digit 2) is used. Parameters of the
learning algorithm are η+ = 0.02, η− = 0.6 · η+ = 0.012, τ+ = τ− = 11ms
and wmax = 0.1. Only the first spike of the real winner is taken as reference
spike for the learning process within one epoch.

Here a relatively small learning rate is chosen. Larger learning rates
(η+ = 0.2, η− = 0.12) are working well for small training sets. For larger
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training sets the network adapts too fast and cannot learn in consequence.
Their ratio is more important than the magnitude of the learning rates. A
ratio of η−/η+ = 0.6 between the two learning rates has turned out to be
good.

Fig. 4.11 shows the recognition rate while training the network. It reveals
how the recognition rate increases or the number of wrong decision decreases
respectively over several epochs. Compared with the training run in section
A.3 where a significantly smaller training set is used, the recognition rate is
smaller on average and the curve is more noisy after several epochs. However,
the recognized number of digits of the training set after the learning and the
possibility of generalization cannot be seen from this figure.
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Figure 4.11: Learning process of a training set from the MNIST database,
pixel gray values are encoded with time-to-first-spike.

To get an overview of how well the training set is learned, all 300 examples
from the training set are presented once again without calling the STDP
algorithm. The results are displayed in fig. 4.12 on the left. The digits seem
to be learned passably good, in any case there is a tendency to a correct
recognition. In order to prove the ability to identify examples which are
not part of the training set, the test set is presented. The results of this
generalization test are displayed on the right in fig. 4.12. One can see that
the result are only slightly below and very similar to the result with the
training set. This indicates that generalization is possible, but of course
within the bounds of quality of learning on the training set. In comparison
with the example in the appendix (sec. A.3) one can observe the results for
a small training set. Here it may be essential that the number of connections
is large and the basis of information is relatively small. The training set is
learned very well, but because of the small amount of data generalization
fails.

Having a closer look the to the weights before (fig. 4.13 top) and after (fig.
4.13 bottom) the learning process, one sees that some weights are changed
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Figure 4.12: Bars show how often which decision was made for each digit in
percentage. The first row holds the decisions when digit 0 is presented, the
second row if 1 is presented and the third row if 2 is presented. For a training
set (left) and a test set (right) from the MNIST database, pixel gray values
were encoded as time-to-first-spike.

but a large number of the weights are unaltered or only slightly changed.
This is also shown in another example from the appendix (fig. A.11). There
a random chosen subset of the connection weights leading to the three output
neurons is displayed. Some of the weights are running against specific values,
which is the expected behaviour. But a large number of the weights are
unaltered or only slightly changed. This could be an indicator of a too
large number of connections. One aspect are the large image parts with
background pixels. They have the same gray value (zero) and are therefore
firing very late at t = 90ms. These pixels are not or only very little included
in the learning process, because the output spikes in the output layer will be
earlier and the STDP window is relatively small. This is fine because theses
pixels do not carry any new information. Another aspect lies in the different
delay times. When comparing figure 4.13 (top) and 4.13 (bottom) it can
reasonably be concluded that the connections with greater delays are rarely
increased. Only a few connection weights with short delays are strongly
increased. Altogether negative changes are weaker. On the one hand this
can be deduced by the smaller negative learning rate. On the other hand the
weights are approaching the lower soft bound.
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Figure 4.13: Connections leading to the three output neurons before (top)
and after (bottom) the learning process. Weights are plotted over related
delays, each mark represents one connection.
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An elaboration for this issue gives figure 4.14. It is recognizable that due
to the learning process especially connections which refer to areas that are
part of the digits are altered. This is because those input neurons are firing
earlier. The increasing of those connection weights seems to be the obviously
needed behaviour. But it can also be observed that digit characteristically
connection weights are strongly decreased, which is probably not very prac-
tically. Connection weights which refer to input neurons which are always
representing background pixel are slowly decreased over the epochs.

0 600 1200 1800 2400

0 wmax = 0.1

Figure 4.14: Receptive field of output neuron N784 (digit 2) in different train-
ing epochs.
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Chapter 5

Conclusion

Within the scope of this thesis a wide ranging inside into the topic of SNNs
was given. Due to limitations of time and the considerable subject a deeper
analysis was not possible at some points in this application-oriented ap-
proach. Nevertheless, started form scratch by concerning the used neuron
model up to a functioning application, a numerousness of aspects could be
examined. Potentials and limitations of different approaches of neural coding
were described in the beginning (chap. 2). Furthermore a new way of sim-
ulating aggregates of IF and LIF neurons was introduced in order to get an
efficient simulation platform for the following investigations. The dualism of
rate and temporal coding as well as the the role of neurons as coincidence de-
tectors could be pointed out while studying simple neural circuits in chapter
3.

The analysis in chapter 4 led to some findings of how to parametrize the
network and pointed out some principles of operation. The upper threshold
of all neurons was the fix value ϑu = 1. This is possible because changing
this parameter has the same effect as introducing a proportionality factor
of the corresponding weights. The lower threshold ϑl is chosen lower or
equal zero. Exact values are unimportant, because a negative pre-loading
without inhibitions is not possible anyway. The membrane constants are
chosen arbitrarily but within the range of biological neurons. Values are
around τm = 10 . . . 25ms. Values of the absolute refractory period of the input
neurons should be chosen as high as they have no effect on the eigenfiring
rates. Output neurons’ refractory periods are of no importance, because the
determination is done by the time-to-first-spike procedure.

To chose a reasonable initialization of the connection parameters was
proved to be more difficult. Care must be taken on connection weights.
They have to be be small enough to let several spikes arrive at the output
neuron before a output spike occurs. Weights also have to be large enough
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so that the target neuron fires at all. Furthermore the initialization must be
noisy to enable adequate differences between the connections in order to allow
different decisions. On the other hand the noise amplitude must not reach a
level on which the network always makes the same decision. Bearing in mind
that several input spikes should be considered, one is operating on the very
steep part of function 3.1. Thus a fine weight tuning for the initialization
and especially for the learning is obligatory. In the case of IF neurons and
rate encoded gray values weights are chosen between wi,j ∈ [1 · 10−3, 11 ·
10−3], thus approximately 500 spikes are leading to an output spike. Because
the spike trains’ phases are normal distributed with a standard deviation of
σ = 5ms some input neurons fired twice before the output spike occurs.
However, other neurons have not fired at all. In this way different pixels
of the image can be addressed and assigned to the corresponding output
neurons. The connection delays are of less influence. Noise with a certain
degree is important to avoid simultaneous firings in the output layer, in order
to make unique decisions.

In the case of LIF neurons and time-to-first-spike encoded gray values
weights are chosen within the range wi,j ∈ [0.04, 0.041], thus approximately
25 simultaneously arriving spikes lead to an output spike. In fact this number
is certainly larger, because spikes will not arrive precisely simultaneously.
Connection delays with differences which are large enough to achieve the
coincidence effects described in section 3.2 are important. Here values are
chosen as di,j ∈ [1ms, 9ms], which is in the range of the membrane time
constant.

The STDP algorithm turned out as functional possibility to adapt the
network’s weights. Both in rate and in temporal encoded images it generates
good results if the winner neuron is determined with time-to-first-spike. For
this purpose the learning rule has to be applied to the first spike of the
winner neuron’s output spike train, otherwise a deterioration in the results
is observable. To adjust the learning rates one has to consider the training
set size. For large training sets, the ratio has to be smaller than for smaller
training sets. Otherwise the weights are adjusted too fast and stable states
cannot be reached.

For the success of a learning process the ratio of η+/η− is more important
than the learning rates themselves. This ratio influences greatly if the weights
are shifted up or down together. Clearly this should not happen. If it comes
to a relatively equable distribution of the weights within the interval (0, wmax)
it seems to lead to better results. Hereby wmax avoids that single weights
are in a range to generate an output spike alone. The ratio of the time
parameters τ+/τ− seems to have a similar effect like the ratio of the learning
rates. Furthermore they should be in the same range of the neurons time
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constant. If one is working with IF neurons the time constants have to be
in the range of a few milliseconds. The options of rate decoding have not
yet been finally clarified. The here used training and test examples did not
achieve satisfying results.

In general it can be observed that rate encoded images in combination
with IF neurons are learning the training set very well but the generalization
fails. Maybe there is a chance of generalization if one increases the training
set on a PC with a greater working memory. For temporal encoded images
with LIF neurons the training results are a bit worse, but generalization is
visible within the limits of the training success.

In future studies the difference in testing and training procedures between
IF and LIF neurons may be an interesting subject. The deeper knowledge
could lead to the possibility of initializing network and STDP parameters in
order to enable a combination of coincidence and integration in an optimal
way. This improvement could be supported by larger test series on a high-
performance computer. It is reasonable to assume that due to optimisation
further improvements are attainable, because small parameter changes yield
significant effects. Another interesting issue should be the research of a STDP
back-propagation algorithm in order to insert one or more hidden layers which
may increase the performance. Furthermore the possibilities of a learning
algorithm which adapts the connection delays may yield a performance and
quality increase, too. In long term the possibilities of recurrent networks
need to be the subject of further examination.

Regarding the present state of research (and what remains unclear) it
should be possible to solve much more complex tasks. In conclusion SNNs
have been and will remain an interesting research subject with great poten-
tials.
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Appendix A

Further MNIST recognitions

A.1 Rate encoding, bad ratio of learning rates

In this example the ratio η−/η+ = 0.5 is not optimal. Due to this all weights
are increased while training and are not adjusted reasonable. The result is a
large remaining error on the training set. In consequence the generalization
fails, too.

The network is trained over 3000 epochs. The training set consists of 150
examples (50 times digit 0, 50 times digit 1, 50 times digit 2) and the test
set consists of 450 example (150 times digit 0, 150 times digit 1, 150 times
digit 2). Spikes are generated by rate encoding. The decoding in the output
layer is done by time-to-first-spike.

Neuron parameters (IF): upper threshold ϑu = 1, lower threshold ϑl =
−0.1, absolute refractory period ∆abs = 1ms.

Initialization of connections parameters between input and output layer,
each output neuron is connected to each input neuron: weights wi,j ∈ [1 ·
10−3, 11 · 10−3], delays di,j ∈ [1ms, 2ms].

STDP parameters:

• Positive learning rate η+ = 2 · 10−3

• Negative learning rate η− = 0.5 · η+ = 1 · 10−3

• Time constants τ+ = τ− = 5ms

• Weight maximum wmax = 0.05

• Considering only first output spike
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Figure A.1: Learning process of a training set from the MNIST database,
pixel gray values are encoded as spike rates.
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Figure A.2: Bars show how often which decision was made for each digit in
percentage. The first row holds the decisions when digit 0 is presented, the
second row if 1 is presented and the third row if 2 is presented. For a training
set (left) and a test set (right) from the MNIST database, pixel gray values
were encoded as spike rates.
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Figure A.3: Connections leading to the three output neurons before (top)
and after (bottom) the learning process. Weights are plotted over related
delays, each mark represents one connection.
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A.2 Rate encoding, small training set

In this example the training set is learned well.
The network is trained over 300 epochs. The training set consists of 15

examples (5 times digit 0, 5 times digit 1, 5 times digit 2) and the test set
consists of 150 example (50 times digit 0, 50 times digit 1, 50 times digit 2).
Spikes are generated by rate encoding. The decoding in the output layer is
done by time-to-first-spike.

Neuron parameters (IF):

• Upper threshold ϑu = 1

• Lower threshold ϑl = −0.1

• Absolute refractory period ∆abs = 1ms

Initialization of connections parameters between input and output layer, each
output neuron is connected to each input neuron:

• Weights wi,j ∈ [1 · 10−3, 11 · 10−3]

• Delays di,j ∈ [1ms, 2ms]

STDP parameters:

• Positive learning rate η+ = 2 · 10−3

• Negative learning rate η− = 2.5 · η+ = 5 · 10−3

• Time constants τ+ = τ− = 5ms

• Weight maximum wmax = 0.05

• Considering only first output spike
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Figure A.4: Learning process of a small training set from the MNIST
database, pixel gray values are encoded as spike rates.
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Figure A.5: Bars show how often which decision was made for each digit in
percentage. The first row holds the decisions when digit 0 is presented, the
second row if 1 is presented and the third row if 2 is presented. For a training
set (left) and a test set (right) from the MNIST database, pixel gray values
were encoded as spike rates.
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Figure A.6: Connections leading to the three output neurons before (top)
and after (bottom) the learning process. Weights are plotted over related
delays, each mark represents one connection.
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Figure A.7: A random chosen subset of the connection weights leading to the
three output neurons over the learning epochs. The training set is relatively
small.
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A.3 Time-to-first-spike encoding, small train-

ing set

A network with one input and one output layer, similar to network in section
4.3.2. But here the network is only trained over 300 epochs and the training
and test set size is reduced. A generalization is not visible. The training
set consists of 15 examples (5 times digit 0, 5 times digit 1, 5 times digit 2)
and the test set consists of 300 example (100 times digit 0, 100 times digit 1,
100 times digit 2). Spikes are generated by time-to-first-spike encoding. The
decoding in the output layer is done by time-to-first-spike, too.

Neuron parameters:

• Upper threshold ϑu = 1

• Lower threshold ϑl = −0.1

• Membrane time constant τm = 15ms

• Absolute refractory period ∆abs = 1ms

Initialization of connections parameters between input and output layer, each
output neuron is connected to each input neuron:

• Weights wi,j ∈ [0.04, 0.041]

• Delays di,j ∈ [1ms, 9ms]

STDP parameters:

• Positive learning rate η+ = 0.02

• Negative learning rate η− = 0.6 · η+ = 0.012

• Time constants τ+ = τ− = 11ms

• Weight maximum wmax = 0.1

• Considering only first output spike
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Figure A.8: Learning process of a small training set from the MNIST
database, pixel gray values are encoded as time-to-first-spike.

0
20
40
60
80
100

d
ig
it
0

0
20
40
60
80
100

0
20
40
60
80
100

d
ig
it
1

0
20
40
60
80
100

N784

(digit 0)

N785

(digit 1)

N786

(digit 2)

0
20
40
60
80
100

decisions (training set)

d
ig
it
2

N784

(digit 0)

N785

(digit 1)

N786

(digit 2)

0
20
40
60
80
100

decisions (test set)

Figure A.9: Bars show how often which decision was made for each digit in
percentage. The first row holds the decisions when digit 0 is presented, the
second row if 1 is presented and the third row if 2 is presented. For a training
set (left) and a test set (right) from the MNIST database, pixel gray values
were encoded as time-to-first-spike.
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Figure A.10: Connections before learning begins. Each mark represents one
connection.
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Figure A.11: A random chosen subset of the connection weights leading to
the three output neurons over the learning epochs.
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Appendix B

Implementation in C++

In the following a brief summary of the classes of the programmed SNN
software is given. Especially the meanings of the parameters are summarized.
Weight (tWeight) and time (tTime) is represented by double values, the time
base is in ms.

KDevlop4 was used as IDE, to ease portability to other IDEs a cmake
file was written, this can be found within the src-folder. The source code is
documented with doxygen.

B.1 Network

This is the central class of the SNN project. It contains a vector which
contains all neurons and one vector which contains all connections. The
typical usage of the functions is in this order:

• load( ... );

• initialize( ... );

• run( ... );

• learn(...);

The way to create a set of neurons and connections is to insert one vec-
tor which is containing all Neuron::Parameter and one vector containing all
Connection::Paramter to the Network::load() function.

After all neurons and connection are loaded the network must be initial-
ized with some eigenspikes. Therefore a vector with the tSpikeSets is given
to the initialize function.
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To run the simulation for one epoch one has to call the network::run()
function. A point of time when the simulation is interrupted must be handed
over.

After simulating one epoch the network may be is supposed to learn.
Therefore the network provides the opportunity to learn with STDP. Inter-
nally this function calls the learning function of each neuron given by the
parameter neuronIds. To reduce calculation time the STDP learning win-
dow is bounded to the interval [t

(ref)
i − 2 · τ+, t(ref)i + 2 · τ−], hereby t

(ref)
i is the

reference spike time. The STDP parameters are:

• tUint neuronIds
Neurons whose afferent connections are included in the learning pro-
cess.

• double etaPos
Positive learning rate.

• double tauPos
Time constant of positive interval of the exponential learning window.

• double etaNeg
Negative learning rate.

• double tauNeg
Time constant of negative interval of the exponential learning window.

• double wMax
Upper bounds of weights. Lower bounds are zero.

• bool onlyFirstSpike
Just the first spike of a given neurons spike train is considered if true.

• string bounds
Defines if bounds are ”soft-linear” or ”hard”. Default is ”soft-linear”.

B.2 Neuron

This class represents a neuron. The input spikes of each neuron are stored
in a container at each neuron. Spikes within the containers are ordered by
their time and spikes with equal spike times are added up. In contrast to one
central spike container a decentralised storing has got the advantage of faster
sorting of new spikes. With increasing network activity the number of spikes
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can increase immensely, thus spike sorting takes a major part of calculation
time.

It would be less memory consuming to store the spikes as output spikes
at the belonging neuron and to read this storage when calling the simulation
function of the successor neurons. The way to store several copies of the
output spikes (modified with the connection delay) as input spikes at the
receiving neurons has got the advantage that the relevant spikes have not
to be collected together from a large number of possibly extensive spike
containers. A comparison of simulation times of both approaches has not
been carried out. In order to initiate the network there must be a possibility
to evoke output spikes without external stimulation with spikes. This kind
of output spike is called eigenspike here. Eigenspikes are stored in the same
container as the input spikes, but are marked by an invalid connection id,
for example UINT MAX.

Connections have to be registered, therefore pointers to all connections
of a neuron are stored. Spikes are automatically delivered while simulating.
How far the simulation can go is calculated at each time the simulate()
function is called. Each neuron has got the following parameters.

• tUint id
Id of this neuron, must be unique. Defaults to UINT MAX.

• tUint layerId
Layer this neuron belongs to. Defaults to UINT MAX.

• tWeight activationLowerBound
Lower membrane threshold, must be ≤ 0. Defaults to 0.

• tWeight activationUpperBound
Upper membrane threshold, must be > 0. Defaults to 1.

• tTime refractoryPeriod
Absolute refractory period, must be ≥ 0. Defaults to 0.001.

• tTime leaky
Membrane time constant, disabled if ≤ 0. Defaults to -1.

B.3 Connection

To come into effect, the connections have to be notified at the neurons they
are belonging to. Delays are always positive. Weights are positive if the
connection is excitatory and negative if the connection is inhibitory. The
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boolean value inhibiting is necessary to define if the connection is excitatory
or inhibitory when the weight becomes zero. Changes between inhibitory
and excitatory connections are not in scope.

• tUint id
Each connection has got its own id. Default is UINT MAX.

• tUint originNeuronId
Id of the pre-synaptic neuron. Default is UINT MAX.

• tUint targetNeuronId
Id of the post-synaptic neuron. Default is UINT MAX.

• bool inhibiting
Connection is excitatory if false, inhibitory if true. Default is false.

• tweight weight
Connection’s weight, weight ≥ 0 if excitatory, weight ≤ 0 if inhibitory.

• tTime delay
Connection’s delay (delay > 0), time until a spike arrives at the post-
synaptic neuron. Defaults to 1 ms.

B.4 Spikes

Each action potential is represented by one instance of this class. This class
seems to be slightly oversized at a first sight. A spike receiving neuron
requires information about when and with which strength a spike arrives.
This information could be stored either as weight value or as a reference to
the connection the spike takes. Furthermore the possibility of simultaneously
arriving spikes must be handled, this means a summation of the belonging
connection weights or a storing of their references. To avoid calling the
connection instances several times the weights are stored at the spikes, but
the connection IDs are stored as well to support the STDP algorithm. The
boolean variable evokedSpike is only for the purpose of evaluation, it holds
the information if an input spike is responsible for an output spike.

The CompAndAddIfEqual functor allows to sort spikes in a set and com-
bine simultaneous arriving spikes by adding their weights. Spike parameters
are:

• tUint connectionId
Id of the connection this spike is transmitted with, more than one id if
several spikes arrive at the same time.
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• tWeight weight
Sum of weights of the connections this spike is transmitted with.

• tTime time
Time of arrival at the target neuron.

• bool evokedSpike
True if this spike evoked an output spike. Defaults to false.

B.5 Network generator

The class Networkgenerator generates initial values of a network’s neuron
and connection parameters. The generation process starts by calling the
Networkgenerator::generate( ... ) function. There are two types of parame-
ters. The first type defines the attributes of a layer’s neurons and the second
type defines how these layers are connected with each other. Both parameter
types can be defined in csv files and loaded with the Database.
The generated Neuron::Parameter and Connection::Parameter are returned
by the corresponding getter functions.

B.5.1 Layer generation parameters

Each layer is represented by one object of this class, the parameters are:

• tUint numberOfNeurons
Number of neurons within this layer.

• tWeight activationLowerBound
Lower threshold of the neurons.

• double activationLowerBoundJitter
Adds Gaussian noise to the lower threshold with this standard devia-
tion.

• tWeight activationUpperBound
Upper threshold of the neurons.

• double activationUpperBoundJitter
Adds gausian noise to the upper threshold with this standard deviation.

• tTime refractoryPeriod
Absolute refractory period of the neurons.
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• double refractoryPeriodJitter
Adds gausian noise to the refractory period with this standard devia-
tion.

• tTime leaky
Membrane time constant, no decay if zero or negative.

B.5.2 Connection generation parameters

Each group of connections is represented by one object of this class. It is
possible to connect neurons via several connections. The parameters are:

• tUint layerA
Layer of predecessor neurons.

• tUint layerB
Layer of successor neurons.

• tWeight weightsLowerBound
Weights are uniform distributed between weightsLowerBound and weight-
sUpperBound.

• tWeight weightsUpperBound
Weights are uniform distributed between weightsLowerBound and weight-
sUpperBound.

• tTime delaysLowerBound
Delays are uniform distributed between delaysLowerBound and delay-
sUpperBound.

• tTime delaysUpperBound
Delays are uniform distributed between delaysLowerBound and delay-
sUpperBound.

• double connectionProbability
The probability that a connection is established.

• double inhibitorySynapsesRatio
The probability a connection is excitatory or inhibitory.

• bool upperTriangle
A connection between pre-synaptic neuron j and post-synaptic neuron
i can be established if j < i.

81



• bool lowerTriangle
A connection between pre-synaptic neuron j and post-synaptic neuron
i can be established if j > i.

• bool mainDiagonal
A connection between pre-synaptic neuron j and post-synaptic neuron
i can be established if i = j.

B.6 Spike generator

The class Spikegenerator generates the network’s neurons eigenspikes. It is
necessary to pass the total number of neurons to its constructor. The gen-
eration process starts by calling the Spikegenerator::generate( ... ) function.
Several parameters are available which can be called one after another, the
spikes sets are joined. The generated spike trains are returned by the function
or accessed by a getter function.

The generated spike trains can be stored in csv files. Some of the gener-
ation parameters can be loaded from csv files, too.

All spike generator parameters are inherited from the Spikegenerator::Parameter
object. The following general parameters are used:

• tUint firstNeuronId
Id of the first neuron of the neuron-group spikes are generated for.

• tUint lastNeuronId
Id of the last neuron of the neuron-group spikes are generated for.

• tUint orginatorNeuronId
Eigenspikes have no predecessor neuron id. Therefore this typically
should be an id that is not used yet.

• tWeight weight
The weight of the spikes, typically 1 in order to always evoke an output
spike.

• double weightJitter
Adds Gaussian noise to the weights with this standard deviation.

• tTime start
Beginning of the spike trains.

• tTime end
Ending of the spike trains.

82



Equal spaced spikes

Parameter to generate a continuous firing rate:

• tTime timeSpace
Time lag between two spikes, the same as 1/ν.

• tTime phase
Phase of the spike train.

• double phaseJitter
Adds Gaussian noise to the phase with this standard deviation.

Poisson spikes

Parameter to generate a poisson impulse process. The time lag between
two spikes is exponentially distributed. The exponential distribution p(x) =
λe−λx has got the single parameter lambda, which is the expectation value.

• double lambda
Expectation value of the time lag between two spikes.

• tTime phase
Phase of the spike train.

• double phaseJitter
Adds Gaussian noise to the phase with this standard deviation.

Ramp spikes

Parameter to generate a linear frequency ramp. The slope is (fMax−fMin)/(tend−
tstart).

• double fMin
Start frequency of the ramp.

• double fMax
Stop frequency of the ramp.

Gaussian spikes

Parameter to generate normal distributed spikes.

• double my
Expectation value.
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• double sigma
Standard deviation of the normal distribution.

• double numberOfSpikes
Number of normal distributed spikes. The number of spikes can differ.
If some generated spikes are not within [start:end] (general parameters),
they are ignored.

Image Single Parameter

A single spike is generated per pixel and neuron by transforming the gray
value linearly into its time, see section 4.1.

• tUint sx
Image size x (number of pixels).

• tUint sy
Image size y (number of pixels).

• tUint maxval
Max gray value.

• vector< tUint > data
Vector with image data.

• tTime tMin
Earliest spike time, corresponds to gray value of zero.

• tTime tMax
Latest spike time, corresponds to max gray value.

Image Rate Parameter

A constant firing rate is generated per pixel and neuron by transforming
the gray value linearly to a firing rate, see section 4.1. To avoid the same
phase for all spike trains of an image, the phase is determined by a normal
distribution with µ = 20ms and standard deviation σ = 5ms.

• tUint sx
Image size x (number of pixels).

• tUint sy
Image size y (number of pixels).
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• tUint maxval
Max gray value.

• vector< tUint > data
Vector with image data.

• tTime isiMax
Maximal inter spike interval, corresponds to min gray value.

• tTime isiMin
Minimal inter spike interval, corresponds to max gray value.

B.6.1 MNIST

The class Mnist provides the possibility to generate a test and a training set
from the MNIST handwritten digit database. Therefore the above described
Spikegenerator::ImageSingleParameter parameter is used to enable time-to-
first-spike coding or the Spikegenerator::ImageRateParameter parameter is
used to enable rate coding. A vector containing the digits which are used
(this could be 0,1,...,9) has to be handed over, furthermore the number of
training or test examples per used digit must be defined. The used digits are
always taken from the beginning of the MNIST database.

B.6.2 Geometric

The class Geometric provides the possibility to generate a test and a training
set from the four shapes from figure 4.1 with the above described Spikegenera-
tor::ImageSingleParameter or Spikegenerator::ImageRateParameter param-
eters. The number of shapes can be chosen.

B.7 Evaluation

This class provides some evaluation functions. Next to the following dis-
play functions a function to determine a winner neuron of a given layer is
implemented.

B.7.1 Display Crosscorrelation

Plots the crosscorrelation of two neurons’ spike trains.

• neuronIdA
Reference neuron.
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• neuronIdB
Target neuron.

• binWidth
Temporal width of each bin.

• numberOfBins
Number of bins.

• start
No spikes considered before.

• end
No spikes considered after.

• output
Defines if gnuplot (”gplt”) or pdflatex (”latex”) output is generated.
Defaults to ”gplt”.

• filename
Filename. Defaults to ”cc”.

B.7.2 Display Spikes

Displays the spike trains of the given neurons in the defined interval. For each
neuron are plotted input, output and eigenspikes (read from Database*).

• neuronIds
Neurons whose spike trains shall be plotted.

• Database*
Database containing eigenspikes.

• start
No spikes considered before.

• end
No spikes considered after.

• output
Defines if gnuplot (”gplt”) or pdflatex (”latex”) output is generated.
Defaults to ”gplt”.

• filename
Name of the output file. Defaults to ”spikes”.
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B.7.3 Display Moving Average

Calculates and displays the moving average of given neurons’ spike trains.
Calculated by ρ(t) = nK(t − window/2; t + window/2)/window whereby nK

denotes the number of spikes within the interval [t−window/2, t+window/2].

• neuronIds
Neurons of which moving average activities shall be displayed.

• window
Width of sliding integration window used to calculate moving average.

• dt
Discretisation step width.

• start
No spikes considered before.

• end
No spikes considered after.

• output
Defines if gnuplot (”gplt”) or pdflatex (”latex”) output is generated.
Defaults to ”gplt”.

• filename
Filename. Default is ”sma”.

B.7.4 Display Moving Average Heatmap

Calculates the moving average for each neuron according to subsection B.7.3.
Then the sma values are converted in to colors and displayed at several points
of time.

• neuronIds
Neurons of which moving average activities shall be displayed.

• window
Width of sliding integration window used to calculate moving average.

• dt
Discretisation step width.

• start
No spikes considered before.
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• end
No spikes considered after.

• sx
Number of pixel (neurons) in x direction (sx ≥ 2 and sx · sy == neu-
ronIds.size()).

• sy
Number of pixel (neurons) in y direction (sy ≥ 2 and sx · sy == neu-
ronIds.size()).

• times
Vector containing the times at which heat maps are created.

• output
Defines if gnuplot (”gplt”) or pdflatex (”latex”) output is generated.
Defaults to ”gplt”.

• filename
Filename. Defaults to ”sma”.

B.7.5 Display Weights Vs. Delays

Displays weights over delays of the connections leading to the given neurons.

• neuronIds
Considered neurons.

• output
Defines if plotting with gnuplot (”gplt”) or pdflatex (”latex”). Defaults
to ”gplt”.

• filename
Filename. Defaults to ”wVsD”.

B.7.6 Weight Recorder

This is a subclass of Evaluation which enables the observation of weights over
time. The ids of neurons whose afferent connections’ weights are recorded
must be handed to the constructor. Every time the function WeightRecorder::record()
is called the momentary values are recorded. Results can be plotted with
WeightRecorder::display().
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Furthermore the weight recorder gives the possibility to plot receptive
fields in different epochs. The parameters of the displayReceptiveField() func-
tion are the following:

• neuronId
Neuron which receptive field is plotted.

• epochs
Epochs in which the receptive field is displayed.

• sx
Number of pixel in x direction.

• sy
Number of pixel in y direction.

• maxWeight
Maximal weight value in plot, if negative maximum from all recorded
weights is taken. Defaults to -1.

• filename
Filename. Defaults to ”receptiveField”.

• output
Defines if plotting with gnuplot (”gplt”) or pdflatex (”latex”). Defaults
to ”gplt”.

B.7.7 Performance Statistics

This subclass of Evaluation enables the recording and analysis of training
successes while training a network. Each epoch the decision of the network
and the correct decision have to be passed by the function record().
The successes true or false are recorded and can be displayed smoothed with
a moving average over time with displaySuccesses().
How often which decision was made for each group of represented examples
can be displayed with displayWinnings().

B.8 Image

This is a helper class in order to handle images. It provides the possibility
of pixel manipulation as well as writing PNG and PGM files.
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B.9 Database

The class Database provides functionality for writing and storing different
parameters. The here implemented version provides the reading and writing
of comma separated files. It is possible to read vectors containing Spikegen-
erator::EqualSpacedParameter, Spikegenerator::PoissonParameter, Spikegen-
erator::RampParameter, Spikegenerator::GaussianParameter and Network-
generator::NeuronParameter, Networkgenerator::LayerParameter and Neu-
ron::Parameter, Connection::Parameter and tSpikeSet.

Furthermore it is possible to store vectors containing Neuron::Parameter,
Connection::Parameter and tSpikeSet.

The parameters’ members are stored according to the order of the de-
scriptions in the preceding subsections. With the exception of tSpikeSets
each entry of a vector containing a parameter object is represented by one
row in the text-files. Each entry in a vector which contains tSpikeSets is
stored in a particular file, whereby each row of each text file contains one
spike.
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