
Lab class: Autonomous robotics
Exercise sheets

Institut für Neuroinformatik

August 26, 2016

Student information

Name

ID number (German: Matrikelnummer)

Grade overview

Problem Tutor signature

1.1

1.2

2.1

2.2

3.1

3.2

1



1 Controlling the e-puck

1.1 Basic movement commands

Problem: Let the robot drive from the starting position to the target on a
printout of the first environment (Figure 1). The trajectory of the robot does
not have to be smooth, but the robot has to remain within the dashed area
and may not touch any obstacles.
(Hint: Set wheel speeds, pause, repeat.)

Educational objectives of the problem:

• Understanding basics of Matlab

• Getting to know basic robot control

1.2 Kinematics

Problem: We now have an environment without obstacles, where the start-
ing and end position can be varied (Figure 2). Write a program that brings
the robot from an arbitrary starting position to an arbitrary end position.
The program should get the coordinates (e.g., in millimeters) of the starting
position and end position as well as the initial orientation (e.g., in degrees)
of the robot as parameters. The coordinates should be expressed relative to
the global (allocentric) coordinate frame as defined in the printout. The final
orientation of the robot does not matter. We have marked some exemplary
positions P1, . . . , P4 in the environment that you may use, but other coordi-
nates also have to work as starting and end positions. Try all combinations
of starting positions and end positions with a number of initial orientations
to make sure there are no errors in your code.1

(Hint: Turn first, drive later.)

Educational objectives of the problem:

• Understanding the trigonometry for determining the direction of
the target

1You will continue to use this code on subsequent problems so make sure that it is free
of errors.

2



start

obstacle

target

obstacle

Figure 1: The environment for the first problem.

3



200

190

180

170

160

150

140

130

120

10

100

90

80

70

60

50

40

30

20

110

380

370

360

350

340

330

320

310

210

300

290

280

270

260

250

240

230

220

390

400

2001901801701601501401301201009080706050403020 110 210 270260250240230220

10

10 2001901801701601501401301201009080706050403020 110 210 270260250240230220

200

190

180

170

160

150

140

130

120

100

90

80

70

60

50

40

30

20

110

380

370

360

350

340

330

320

310

210

300

290

280

270

260

250

240

230

220

390

400

10

[mm]

P1

(70,90)

name:

coordinates [mm]:

0°

22.5°

180°

90°

45°

67.5°112.5°

135°

157.5°

202.5°

225°

247.5°
270°

292.5°

315°

337.5°

P3

(90,250)

name:

coordinates [mm]:

0°

22.5°

180°

90°

45°

67.5°112.5°

135°

157.5°

202.5°

225°

247.5°
270°

292.5°

315°

337.5°

P4

(210,340)

name:

coordinates [mm]:

0°

22.5°

180°

90°

45°

67.5°112.5°

135°

157.5°

202.5°

225°

247.5°
270°

292.5°

315°

337.5°

P2

(230,60)

name:

coordinates [mm]:

0°

22.5°

180°

90°

45°

67.5°112.5°

135°

157.5°

202.5°

225°

247.5°
270°

292.5°

315°

337.5°

Figure 2: The environment for the second problem.

4



• Understanding how to rotate the robot by a given angle

• Understanding how to make the robot drive a given distance

Theoretical questions:

• In both problems, your robot finds its way to the target with the help
of your program. Would you call the robot autonomous? If yes, explain
what makes it autonomous. If no, explain why not and what is missing.

• Explain how you can give the robot coordinates in a metric unit (e.g.,
millimeters)—how does the robot know where and how far to drive?

• Explain the technical term ‘kinematics’ and its connection to the prob-
lem. Did you have to program a ‘forward kinematics’ or ‘inverse kine-
matics’? Explain.

• Could the program replan if we moved the target along the way? If
yes, explain how this works. If no, explain why this does not work.

Educational objectives of the theoretical questions:

• Establish an understanding of what autonomy means

• Understanding how much knowledge the robot has about its sur-
roundings and about itself.

• Understanding the term ‘kinematics’ and its relevance to this prob-
lem.

• Understanding what information the robot needs in order to inter-
act with the world.

2 Obstacle avoidance

2.1 Detecting obstacles with sensors

Problem: We will now make the environment more difficult by placing an
obstacle between the starting position and the target (see Figure 3). Write a
program that makes the robot drive from a (variable) starting position (e.g.,

5



one of A1, . . . , A3) and a (variable) initial orientation toward a (variable) end
position (e.g., one of B1, . . . , B3). Do not try to avoid the obstacle yet. For
now, it is fine if the robot runs into it. Generate a live plot of all the robot’s
infrared sensors so that you can observe their output as the robot moves
in the environment. Implement a function that uses the sensor readings
to approximate the distance of the robot to an obstacle (for example, in
cm). Create a live plot for this as well. Observe both live plots as the robot
approaches the obstacle. Try it with obstacles made from different materials.
Once all of this works, make the robot stop at a distance of 2 cm before it
runs into the obstacle.

Educational objectives of the problem:

• Understanding how to read out and integrate the infrared sensors
of the e-puck robot

• Understanding how the material of the obstacle influences the in-
frared sensors

• Programming live plots in Matlab

Theoretical questions:

• Explain how you use the infrared sensors to detect obstacles.

• What kind of influence does the material of the obstacle have on the
robot’s behavior? Describe and explain the effect you observed.

• How well does the approximation of the distance to obstacles work?
Explain and show plots.

Educational objectives of the theoretical questions:

• Understanding the sensors and their integration

• Understanding the approach for obstacle avoidance

• Understanding how much knowledge the robot has about its sur-
roundings and about itself

6



200

190

180

170

160

150

140

130

120

10

100

90

80

70

60

50

40

30

20

110

380

370

360

350

340

330

320

310

210

300

290

280

270

260

250

240

230

220

390

400

2001901801701601501401301201009080706050403020 110 210 270260250240230220

10

10 2001901801701601501401301201009080706050403020 110 210 270260250240230220

200

190

180

170

160

150

140

130

120

100

90

80

70

60

50

40

30

20

110

380

370

360

350

340

330

320

310

210

300

290

280

270

260

250

240

230

220

390

400

10

[mm]

start or target

obstacle

start or target

0°

22.5°

180°

90°

45°

67.5°112.5°

135°

157.5°

202.5°

225°

247.5°
270°

292.5°

315°

337.5°

0°

22.5°

180°

90°

45°

67.5°112.5°

135°

157.5°

202.5°

225°

247.5°
270°

292.5°

315°

337.5°

0°

22.5°

180°

90°

45°

67.5°112.5°

135°

157.5°

202.5°

225°

247.5°
270°

292.5°

315°

337.5°

0°

22.5°

180°

90°

45°

67.5°112.5°

135°

157.5°

202.5°

225°

247.5°
270°

292.5°

315°

337.5°

0°

22.5°

180°

90°

45°

67.5°112.5°

135°

157.5°

202.5°

225°

247.5°
270°

292.5°

315°

337.5°

0°

22.5°

180°

90°

45°

67.5°112.5°

135°

157.5°

202.5°

225°

247.5°
270°

292.5°

315°

337.5°

A1

(50,50)

name:

coordinates [mm]:

A2

(140,50)

name:

coordinates [mm]:

A3

(230,50)

name:

coordinates [mm]:

B3

(230,360)

name:

coordinates [mm]:

B2

(140,360)

name:

coordinates [mm]:

B1

(50,360)

name:

coordinates [mm]:

Figure 3: The environment for the rest of the lab class.

7



2.2 Odometry & obstacle avoidance

Problem: Write a program that makes the robot drive from a starting position
(e.g., one of A1, . . . , A3) to an end position (e.g., one of B1, . . . , B3), while
avoiding an obstacle in the environment (Figure 3). While navigating the
environment, the robot may not stop. It also may not touch the obstacle.
Do not hard-code the obstacle’s position into your program. Instead, use the
infrared sensors to detect when the robot is close to an obstacle and then
avoid it by changing course. The robot has to reach the target after avoiding
the obstacle. (It is fine if the robot drives off the paper for a while.) Track
the robot’s position in a live plot.
Make the obstacle avoidance dependent on the position of the obstacle, that
is, if the obstacle is right in the middle of the robot’s path, avoid it more
strongly than if it is off to the side of the path.
Once this works, extend the program further so that the robot drives back
and forth indefinitely between the starting position and the ending position.
(Hint: The current position and orientation of the robot can be determined
by integrating sensor readings, i.e., encoder values, over time.)

Educational objectives of the problem:

• Programming a live plot of position

• Understanding the equations and trigonometry involved in odome-
try

• Creating your own approach to obstacle avoidance

Theoretical questions:

• Explain the technical term ‘odometry’ and its connection to the prob-
lem. Why is it vital for obstacle avoidance?

• Could you calculate the current position from the generated motor
commands instead of the encoder values? Does it have advantages over
calculating the position from the encoders? If so, name them. Does it
have disadvantages? If so, what are they?

• Explain in detail how you have programmed the obstacle avoidance.
How and when does the robot avoid an obstacle? In which direction
does it drive to avoid it? How long does it keep avoiding the obstacle?

8



• How does your obstacle avoidance depend on the position of the obsta-
cle in the path of the robot?

• Are there other ways of estimating the current position? Name at least
one and sketch how it would work. You may assume that you could
equip the robot and the environment with sensors.

• Write about what you notice when the robot drives back and forth
between the two positions. For how long does it work? If there are
any problems, explain how they might come about. Can you think of
a way of resolving these issues?

Educational objectives of the theoretical questions:

• Understanding the link between odometry and obstacle avoidance

• Understanding odometry and its limitations

• Thinking about other methods of estimating the current position

3 Attractor dynamics

3.1 Target approach

Problem: You will now solve the last problem again, but this time, using an
attractor dynamics approach.
Write an attractor dynamics that rotates the robot on the spot toward the
target. Use a sine dynamics that is defined over the orientation of the robot.
Once turning on the spot works, add a constant forward speed to drive the
robot to the target while turning.

Educational objectives of the problem:

• Understanding how attractor dynamics can orient the robot toward
the target

• Understanding a numerical method for solving dynamics

• Investigating the properties of dynamics as a mechanism for con-
trolling a robot

9



Theoretical questions:

• Explain the dynamical system and why it makes the robot turn toward
the target. Explain the concepts of attractors and repellors using a
plot of this dynamical system. Over which variable is it defined?

• Create at least two different figures (i.e., a phase plot and a plot that
shows how the system develops over time) and refer to your figures
while explaining. What does each figure mean with respect to the
robot?

• Create another phase plot of a dynamical system that shows both an
attractor and a repellor and mark them accordingly.

• In which cases does the robot fail to reach its target? Explain how this
depends on the chosen parameter values using exemplary plots of the
robot’s trajectory.

Educational objectives of the theoretical questions:

• Understanding the difference between the time course of a dynamics
and the dynamics itself, and how these map to the robot’s behavior

• Understanding the importance of parameterization

• Thinking through what makes attractors attractive

3.2 Obstacle avoidance

Problem: Extend your program so that the robot can avoid obstacles while it
is driving toward the target. The robot should still move forward and turn at
the same time. Additionally, it should be repelled from obstacles and avoid
them in smooth trajectories. Solve the obstacle avoidance by modifying the
dynamical system you have implemented for the last problem.
Hint: Use the force-lets described in the background material for obstacle
avoidance. You will need to choose values for various parameters; make sure
you understand the equations involved here first.

Educational objectives of the problem:

10



• Understanding the equation for obstacle force-lets and its parame-
ters.

• Understanding the properties of a combination of different influ-
ences on the heading direction.

Theoretical questions:

• In the environment the robot is navigating, which elements represent
attractors and which represent repellors? Why? Explain.

• Explain the equations you use to generate the influence of the obstacles.
Explain how each parameter of the equation influences the shape of the
function and how this impacts the robot’s behavior. Make plots where
appropriate.

• Discuss the robot’s perception of obstacles: Does it perceive them as a
discrete set of obstacles? (How) does this correspond with the expla-
nation of the attractor dynamics in the background material?

• Explain the bifurcation that the dynamics undergoes between Fig-
ures 12 and 13 in the background material. Why is there a repellor
for each obstacle in Figure 12, while there is only a single repellor
in Figure 13? What does this mean for the robot’s behavior? Make
drawings and explain.

• Compare the dynamic obstacle avoidance approach to your solution for
the previous problem. In doing so, also compare plots of the robot’s
trajectory generated with the two approaches.

Educational objectives of the theoretical questions:

• Understanding the different components of the obstacle part of the
dynamics.

• Observing emergent behavior that was not programmed in explic-
itly.

• Understanding the relation between bifurcations and behavior (de-
cisions), and how these emerge from the chosen dynamical system

11


	Controlling the e-puck
	Basic movement commands
	Kinematics

	Obstacle avoidance
	Detecting obstacles with sensors
	Odometry & obstacle avoidance

	Attractor dynamics
	Target approach
	Obstacle avoidance


