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Degree of freedom problem

B what is a DoF!?

Xx= 11 cos(61) + |2 cos(01+62) + I3 cos(61+62+63)
y= 12 sin(61 ) + |2 sin(61+62) + I3 sin(61+62+63)



The degree of freedom problem

(X,y)

B The strongest
form of the DoF
problem:
redundant effector
systems

B redundance being
defined relative to
a task



Redundancy formalized

B task variable (x,y)

B elemental
variables joint
angles thetal,
theta?, theta 3

x= 11 cos(61) + |2 cos(01+62) + I3 cos(01+62+63)
y= 12 sin(61 ) + |2 sin(61+62) + I3 sin(01+62463)



Degree of freedom problem

M is it relevant?
M yes... in many tasks redundancy occurs
M e.g, 3D positioning in point vs. >10 joints in an arm

B second level of redundancy:

B many muscles per joint (e.g. about 750 muscles in the
human body vs. about 50 Dof)



Bernstein problem

B Nikolai Bernstein... 1930’s... in the Soviet
Union

B “how to harness the many DoF to achieve
the task”



Bernstein’s workers

B highly skilled workers wielding a hammer to
nit a nail... => hammer trajectory in space
ess variable than body configuration

B as detected in superposing spatial trajectories of lights
on hammer vs. on body..

B but;

B camera frame anchored to nail/space, while initial body
configuration varied



Bernstein’s workers

Bwas the hammer position in space less
variable than the joint configuration?

B that is, does the task structure variance?

[ so that the solution to the degree of freedom problem
lies in the variance/stabilty of the joint configuration?

B but: does this make any sense!
M different reference frames for body vs. task

M different units in the task vs joint space



The concept of a synergy:
classical

B multiple degrees of freedom/muscles are co-
activated in a characteristic pattern

B leading to covariation of these DoF/muscle activations in
time

B leading to covariation of these DoF/muscle activation
when movement parameters are varied

B “sharing” aspect of synergies



Classical synergy: data analysis

B Throw data from time series under different
conditions (sometimes including repetitions
of movements) into one big data set and
look for principal components

B if a small number of PC’s is sufficient to
account for most of the variance, conclude
that few synergies at at work

B or establish co-variation among DoF/
muscles directly by testing for significant
correlation



Classical synergy: accounts

B A small number of descending
commands specify the synergies

B these are distributed to a large
number of DoFs/muscles by a
forward neural network

B the forward connectivity pattern defines
the synergy

B induces the co-variation among the DoF
when the command varies.

motor commands

v
O O O

DoF/muscles



SF Muscle Synergies

Synergy: experimental use

M E.g, Safavynia, Ting, 2012:
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Classical synergy: accounts

motor commands

variation here —»

B The forward connectivity
pattern induces the co-
variation among the DoF
when the command

varies. leads to |

0 O O O

variation
here DoF/muscles




Classical synergy: variance

motor commands

B Variance that arises variance here "‘"

from stochastic motor
commands induces
covariance at DoFs

B = opposite of the UCM
(“anti-correlation” or
“compensation’)

leads to |

n=> tension between  covariance —¢ O O O
classical synergy and here

UCM DoF/muscles



Classical synergy: variance
motor commands

M variance induced at the
level of the individual
DoF/muscles is
uncorrelated

B = the null hypothesis of
UCM: the same variance

in all direction variance |
B => tension between mduce.d__’ O O O
classical synergy and here: is

UCM uncorrelated DoF/muscles



Classical synergy: DoF problem

B classical synergy concept is thought of as a
solution to the DoF problem: shared input



uncontrolled manifold (UCM)

B the many DoF are coordinated
such that variance that affects
a smaller number of task
variables is smaller than (%.y)
variancg that does not affecta . here =30
task variable

M leading to compensation among DoF  |ess flexed here a—-’
(or “anti-correlation”)



UCM synergy: data analysis

B hypothesis testing

M align trials in time, computer
variance at each time slices

B formulate hypothesis about task
variable

B compute null-space (tangent to the
“uncontrolled manifold”)

B predict there is more variance
within null space than
perpendicular to it

o"
.




uncontrolled manifold hypothesis

uncontrolled
manifold

O; (rads)




UCM synergy: data analysis
Gs[rad]
B hypothesis testing ; /

M align trials in time, computer
variance at each time slices

B formulate hypothesis about task s o
0.6

variable 92[ra$|]4 12 02 04 O lrad]

B compute null-space (tangent to the
“uncontrolled manifold”)

B predict there is more variance
within null space than
perpendicular to it




UCM synergy: data analysis

B hypothesis testing

M align trials in time, computer
variance at each time slices

B formulate hypothesis about task
variable

B compute null-space (tangent to the
“uncontrolled manifold”)

B predict there is more variance
within null space than
perpendicular to it



UCM synergy: data analysis

B supplement hypothesis
testing by checking for
correlation (Hermann,
Sternad...)

B look for increase in variance of
task variable when correlation 03
within data is destroyed




Example |: pointing with 10 DoF arm at targets in 3D
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[from: Tseng, Scholz, Schoner: Motor Control (2002)]



task specificity of the structure
of the joint variance

B is joint variance always structured by the
end-effector spatial position?

B no: depends on task



Example 2: shooting with 7 DoF arm at targets in 3D

0.27
0.157
= back sight
[— 01\ e A
— 2 of gun
= NN g
(&)
'.E 0.057
()
>

-0. 0.4
0

1-
4
0.3 02

0.3
0.1 0.2

POsterior [m ] med‘\a\—\a\era

anterior-

[from Scholz, Schoner, Latash: EBR 135:382 (2000]



Example 2: shooting with 7 DoF arm at targets in 3D

gun spatial position gun orientation to target

K
0 20 E\4o 60 80 100 0 20 40 60 80 100

percent of trajectory percent of trajectory
| [from Scholz, Schoner, Latash: EBR 135:382 (2000)]
variance
within variance
UCM

perpendicular
to UCM



Example 2: shooting with 7 DoF arm at targets in 3D

hypothesis: gun orientation, data from one participant

unsuccessful trials ~ successful trials

0 20 L\ 40 60 80 00 O 20 40 60 80 100
percent of trajectory percent of trajectory

[from Scholz, Schoner, Latash: EBR 135:382 (2000)]

variance .
within variance

UCM  Perpendicular
to UCM

i



limits of redundancy

Example 3:
sit to stand transition as a whole body movement




hypothesis: horizontal CM

Joint Configuration Variance
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hypothesis: vertical CM

hypothesis: vertical head
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UCM synergy: account

B more complex than for classical synergy...
let’s go through case studies first



UCM synergy: accounts.
Case study posture

B UCM non-trivial in
posture because the

classical inverted
pendulum hypothesis

predicts the opposite: m——--- Vuem Vorr

B because the ankle

moves the body in
space, it lies orthogonal
to the UCM predicting

—_——— R \"
UCM VORT

more variance in ORT
than in UCM



UCM synergy: accounts.
Case study posture

x10° CM
1.0

UCM

0.8-
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1.07 Head Position
0.8

M but: find signature of
UCM synergy
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Hsu, Scholz, Schoner, Jeka, Kiemel, 2007

orthogonal to UCM



Multi-segment postural control model
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PhD thesis Hendrik Reimann
Reiman, Scholz, Schoner (in preparation)



Multi-segment postural control model

B bio-mechanical dynamics

M(0)0 +C(0,0)0+N(0) =T

PhD thesis Hendrik Reimann
Reiman, Scholz, Schoner (in preparation)



Multi-segment postural control model

B muscle model

T force
| ]

equilibrium
point

>
joint angle, O




Multi-segment postural control model

B muscle model

S +

Erc :e:aE (@\—)\—I—p—l-,u(@—k))} 0
_ ~ IO muscle
Ean =el (-2=ptu6-D)| " _ 1. activation
E = (—Eac + EAN) Tm
T..=AFE active
. . - <&— muscle
ngzTact + szTact + Tact — Tact torque




Multi-segment postural control model

B muscle model

3 3
Tela,j = GXp(CLjO -+ Z ajiez-) — exp(bjo -+ Z bﬂgz) -+ Cji
1=1 1=1
T = —B6 ¢ passive
torques

total muscle

T = Toet + Tota + Tois torque




Multi-segment postural control model

B sensor model



Multi-segment postural control model

B control model

AN=F, = RIAMIY (—aéE— 0452)

L O

active inertial kinematic sensory
stiffness tensor pseudo- estimate
inverse body in

space




Results: model stands
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Results: model falls

B when the sensory feedback loop about the body
in space is removed

mem gnkle  wess knee === hip

[50cm

2S 3s 4s 4.5s 2 Time (s) 4.5



Results: model falls

B when the spinal reflex loop within muscle
model is removed (constant activation level
of motor neurons)

CoM joint angles

1s 1.5 2s 2.2s



Results: model predicts joint
spectra

human model
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Var. per DoF (rad?)
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Results: model predicts
UCM signature
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Why does this work!?
AN=F. =R 'AMJT (—aCE— aéE)

S

/C\(If) C(t) - motor commands

B model looks like a feed-
forward neural network

B => should not have a UCM
signature: classical synergy?

|
A = O O O

DoF/muscles



Why does this work!?

B feedback loop through the
world stabilizes
configuration in ORT space

B DoF are effectively coupled
through that loop to
generate the compensatory
sighature




UCM synergy accounts:
Case study: Reaching movements

Target1

Target2
Start3

B Experiment from
John ScholZz’s lab:

B reaching with 4DoF in
2D

Start2 Start1

J3



UCM structure of variance

Movement 1
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UCM structure of variance
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UCM structure of variance

0.08}

0.04

0.08}

0.04

Experiment S1
SD |direction |
0.08;
[rad]
0.04
G0 0.2 0.4 0.6
extent
0.08;
0.04
% 02 02 s

Movement 6

Experiment S2

direction

N —

extent

0.08

0.04

Experiment S3

direction

N \—

0.08;

0.04

0.08

0.04

0 02 04 06

extent

0.08;

0.04

0 02 04 06

Model
directio
UCM
orth
UCM
—/\——-
Y02 02
extent
0 :
0 02 04 ¢[q]



Neural process ¥ —
E scene representation ;
model of 4DoF T
o : spatial representation '
reachi ng PR e :
E premotor cortex E
Ebasal gangliax . motor cortex . 1 cerebellum
+ | movement initiation ;
' movement preparation —
1 | termination Prep
. lA b l A ¥
E movement timing
: uronaI dynamics of | .
. : . . ecoupling
/| virtual joint trajectory

[Martin, Scholz, Schoner. Neural Computation 21, 1371-1414 (2009]

------------------------------------ ==

spinal cord

back-
< coupling

sensori-motor periphery *

proprioception




model

biomechanical dynamics

M) -6+ H(,0)=T,

muscle models
T = K- ((G[an'(ei—/\?)ﬁ — 1) — (e K@i _ 1))

T bl aSinh(éi — >\z) + Lyl (9@



neural dynamics of lambda

Vv =—F,(v—u(t)), €= timing signal

1‘ v(t) = JIA(t)] - A(1),
¥ 1+ ' _IBUJ'X_I_IBvu_j‘X
=07 E) (—,351ET'(X—Od)—ﬂszﬁT'(i—éd)-—ﬁﬂ°5~>

t

back-
coupling



approximation

timing signal
¢
. ‘Z ‘Z l X~ UCM
—B,TJ - A 5 1 I T = null space
t=U0TE) ( ﬁOJ o ) :)'/ﬁ T » ;fcfrfgln

®m=> control is stable in range space

®m=> marginally stable in UCM/null space



UCM structure of variance

Movement 1
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UCM structure of variance

Experiment S1

SD

0.08}
[rad]

0.04

?

direction

%

01 02 03 04

0.08}

0.04

extent

%

01 02 03 04

Movement 3

Experiment S2

direc.tion .
0.08}

0.04

Y0z o4 os

extent
0.08

0.04/\

%0z o2 o6

Experiment S3 Model
direcfion | | directio
0.08} 0.08;
UCM
0.04\/\—\ 0.04 orth
/\ —-/V\IJC’IVI_
02 o4 s 0 02 o4
extent extent
0.08; 0.08;
o.mf 0.04
G0 0.2 0.4 0.6 00 0.2 0.4

t [sl



SD
0.08

[rad]

0.04

UCM structure of variance

Experiment S1

direction

/\,

0.08

0.04

0 0.2

0.4

extent

0 0.2

0.4

Movement 4

Experiment S2 Experiment S3
directio ' ' direction '
0.08 0.08}
0.04 0.04
oz o1 s %0z o1 s
extent extent
0.08 \/ 0.08}
0.04 0.04
oz o1 s % 0z o1  os

Model
direction
0.08}
UCM
0.04 orth
UCM
02 os
extent
0.08}
0.04
02 os

" tlsl



UCM structure of variance
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where does this come from!
start with pseudo-inverse of: ¢ = J )\
A= Jw
A=J 0 [+J v~ 0]
a neuron, n, encoding rate of change of \: 1 = )\
n=J"0 <=insert timing signal v = —v + u

n = J+(—v + u) <=insert p = J).\

n — J"‘(—J).\ u) <= replace n = A
n=J"(=Jn+u)
n=—-JtJn+J" u




where does this come from?
n=—J"Jn+ J u
n=-n+n-—J Jn+J u

n=-n+(1-J"J)n+ Ju

L

projection feed-
onto null- forward
space from timing

command



where does this come from?

feed-

forward
from timing

commani —»
n=-n+(1-J"J)n+ J u

¢

projection
onto null- —»

space




how does this do the UCM effect!?

projection feed-forward
onto null- from timing
space command

h=-n+(1—Jt)n+ Jtu

within the range-space tn
attractor

n=—n-4+Ju &
n

=> stability within the range-space




how does this do the UCM effect!?

projection feed-forward
onto null- from timing
space command

h=-n+(1—Jt)n+ Jtu

A o

within the null-space n
n=-n+n-+20 no attractor
. n
n=~0 ——
=> no stability within the null-space



UCM synergy accounts:
case study finger movements

B Mark Latash et al: press
with two fingers to
produce fixed total force




model
task variable F

= F + F>
Jacobian
J=(11)

Pseudo-inverse

()

projection onto null space

o= ()



model

two neurons to represent forces

6 e
dynamics $

n=-n+1-J"J)n+J u

N

leads to

N A






compare to Latash et al 2005
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Self-motion

M all this was about variation/variance...

B how about the motion itself, the mean
motion... does that reveal the DoF problem
and its solution?

B => self-motion



Self motion

(x,y)
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reaching in 2D, 4DoF: considerable
amount of self-motion!
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[Martin, Scholz, Schoner. Neural Computation 21, 1371-1414 (2009]
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reaching movement in 3D, 10 DoF also
shows considerable amount of self-motion

Subject |

range space motion

[0 20 30 40 50 60 70 80 90 100

Subject 2

range space
motion

.
.
by
1]
4

[0 20 30 40 50 60 70 80 90 100

030

0204

— |

040+

Subject 3

range sphce motion

'.li..

self-motion '0..

-
‘e

L4
8
......

[0 20 30 40 50 60 70 80 90 100

[Martin, Scholz, Schoner. Neural Computation 21, 1371-1414 (2009]



Motor equivalence

Hcan we see directly the use of the redundant/
abundant DoF to solve some problem!?

Emotor equivalence:“task achieved with a new
joint configuration following perturbation,
different initial condition, or changed conditions”



Motor equivalence

®“task achieved with other than standard joint
configuration following perturbation or other
change”

mbut: task never achieved 100 percent

®how much error on task level compared to how
much error at joint level? how do you compare!

manswer: error lies more within UCM than
perpendicular!



Motor equivalence in quiet stance
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[Scholz, Schoner, Hsu, Jeka, Horak, Martin. Exp Brain Res (2007)]



Motor equivalence in quiet stance

motor equivalence in active response phase
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Length of Projection DOF

Motor equivalence in quiet stance
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Motor equivalence in reaching

UCM

Sphere, 3D Position 12 Cylinder, 3D Position
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Model of UCM with back-coupling

end-effector

decoupling virtual velocity

Loy
:<J+ E) =J . v+E-s
S A

back-coupling
into null space

§= —BaET - (A — 04) — BoET - (A — 6,).



amount of change in joint configuration
induced by perturbation
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Motor equivalence: model
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[Martin, Scholz, Schoner, unpublished]
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Motor equivalence: implications

B UCM structure of variance does not
necessarily predict Motor Equivalence: a
model that accounts for UCM variance does
not predict Motor Equivalence

B But the mechanism that is critical for ME,
back-coupling, also contributes to UCM
variance.



Motor equivalence: Impllrat,lﬁgagyg:s
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Conclusions

B Synergy has two aspects:

B descending neural organization induces co-variation

B recurrent coupling induces UCM structure

B these are caused by two different portions
of a neural network

B the feed-forward projection from motor command to
DoF

B and recurrent connections and/or feedback to the
motor command level

® Back-coupling

B a new hypothesis that goes beyond UCM and synergy



Account for both/all

® forward projection plus
M external or

M internal feedback loop

M back-coupling

® accounts for
M structure of variance
M self-motion

M motor equivalence

T

—( ‘o"

arm in space

[Reimann, Schoner, submitted]
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