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what is a DoF?

Degree of freedom problem
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The degree of freedom problem

The strongest 
form of the DoF 
problem: 
redundant effector 
systems

redundance being 
defined relative to 
a task

(x,y)



Redundancy formalized

task variable (x,y)

elemental 
variables joint 
angles theta1, 
theta2, theta 3
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is it relevant? 

yes… in many tasks redundancy occurs

e.g., 3D positioning in point vs. >10 joints in an arm

second level of redundancy: 

many muscles  per joint (e.g. about 750 muscles in the 
human body vs. about 50 Dof) 

Degree of freedom problem



Nikolai Bernstein… 1930’s… in the Soviet 
Union

“how to harness the many DoF to achieve 
the task”

Bernstein problem



Bernstein’s workers

highly skilled workers wielding a hammer to 
hit a nail… => hammer trajectory in space 
less variable than body configuration

as detected in superposing spatial trajectories of lights 
on hammer vs. on body.. 

but: 

camera frame anchored to nail/space, while initial body 
configuration varied



Bernstein’s workers

was the hammer position in space less 
variable than the joint configuration? 

that is, does the task structure variance? 

so that the solution to the degree of freedom problem 
lies in the variance/stabilty of the joint configuration? 

but: does this make any sense? 

different reference frames for body vs. task 

different units in the task vs joint space 



multiple degrees of freedom/muscles are co-
activated in a characteristic pattern

leading to covariation of these DoF/muscle activations in 
time

leading to covariation of these DoF/muscle activation 
when movement parameters are varied

“sharing” aspect of synergies

The concept of a synergy: 
classical



Throw data from time series under different 
conditions (sometimes including repetitions 
of movements) into one big data set and 
look for principal components

if a small number of PC’s is sufficient to 
account for most of the variance, conclude 
that few synergies at at work

or establish co-variation among DoF/
muscles directly by testing for significant 
correlation

Classical synergy: data analysis



A small number of descending 
commands specify the synergies 

these are distributed to a large 
number of DoFs/muscles by a 
forward neural network

the forward connectivity pattern defines 
the synergy 

induces the co-variation among the DoF 
when the command varies.

Classical synergy: accounts
motor commands

DoF/muscles



Synergy: experimental use

E.g, Safavynia, Ting, 2012:

In locomotion, a few temporal patterns can be recruited across
step cycles to reproduce electromyographic (EMG) patterns
across different walking speeds (Ivanenko et al. 2004) and
when walking is combined with other voluntary tasks
(Ivanenko et al. 2005). However, it may not be possible to
dissociate spatial from temporal organization during cyclical
locomotor tasks where temporal and spatial features of muscle
activity tend to be correlated.

Recent evidence suggests that low-dimensional temporal
patterns may be used to recruit SF muscle synergies. For
example, fixed-duration temporal pulses are sufficient to ex-
plain muscle activation patterns described by SF muscle syn-
ergies in frog preparations (Hart and Giszter 2004). Similarly,
temporal patterns of muscle activity in postural perturbations
during balance are defined by a low-dimensional sensorimotor
transformation based on feedback control of center of mass
(CoM) motion (Lockhart and Ting 2007; Welch and Ting
2008, 2009). CoM kinematics are task-level variables that must

be estimated from multisensory integration (Peterka 2002) and
encapsulate the net motion of the body. By assigning unique
feedback gains to CoM displacement, velocity, and accelera-
tion for each muscle at a common delay, the model can
reconstruct the entire time course of muscle activity in multiple
muscles throughout the leg and trunk (Lockhart and Ting 2007;
Welch and Ting 2008, 2009). Moreover, the model can explain
temporal patterns of muscle activity that vary with perturbation
characteristics. While it is unknown whether this model can be
used to describe the recruitment of SF muscle synergies, CoM
feedback likely recruits SF muscle synergies because SF mus-
cle synergies produce forces necessary for CoM control across
a range of postural configurations (Chvatal et al. 2011; McKay
and Ting 2008; Ting and Macpherson 2005; Torres-Oviedo et
al. 2006). A hierarchical structure in which low-dimensional
temporal patterns recruit spatial structures defining muscle
activation patterns is also consistent with current theories about
locomotor pattern generation (Hart and Giszter 2004; McCrea
and Rybak 2008) and trajectory formation (Berniker et al.
2009; Kargo et al. 2010).

Here we hypothesized that during human balance control,
low-dimensional temporal feedback mechanisms recruit SF
muscle synergies. Specifically, we predicted that SF muscle
synergies are modulated by delayed feedback of CoM through-
out perturbation responses. To test this hypothesis, we exam-
ined muscle synergy structure and recruitment in 10-ms bins
throughout postural responses to support-surface translations
including later, previously unexplored epochs that extend be-
yond perturbation deceleration and feature very different com-
binations of muscle activity and CoM kinematics compared
with the initial postural response. We explicitly compared SF
versus TF muscle synergies on their ability to reconstruct EMG
activity in reactive postural responses. We then analyzed the
structure and recruitment of SF muscle synergies extracted
from epochs throughout postural responses to perturbations.
We predicted that SF muscle synergies would have consistent
structure regardless of the extraction epoch. Furthermore, we
predicted that a feedback model based on CoM kinematics
would be able to reproduce SF muscle synergy recruitment
patterns and reliably reconstruct SF muscle synergy activity
throughout postural responses to perturbations.

METHODS

Summary

To determine the organization and control of muscle synergies
throughout a postural task, we recorded human postural responses to
multidirectional ramp-and-hold translations of the support surface.
We investigated different hypotheses on muscle synergy organization
by extracting both SF and TF muscle synergies from the entire
postural response. We compared SF versus TF muscle synergy struc-
ture and EMG reconstructions. We then compared SF muscle synergy
structures across epochs to determine their degree of consistency
across the time course of postural responses. We investigated task-
level control of SF muscle synergies by applying a delayed feedback
model based on CoM kinematics to reconstruct muscle synergy
recruitment throughout anterior-posterior (A-P) perturbations. We
compared observed and reconstructed SF muscle synergy recruitment
patterns and examined the ability of the feedback model to reconstruct
trial-by-trial variability in SF muscle synergy recruitment. To ensure
that our models of SF muscle synergy recruitment were adequate to

Fig. 1. Hypotheses and concepts explored in the present study. A: muscle
synergies with fixed spatial weightings [spatially fixed (SF) muscle synergies].
Here the nervous system organizes muscle activity spatially. The nervous
system can variably recruit SF muscle synergies when a specific muscle
combination is desired throughout a task in a feedback or feedforward manner.
B: muscle synergies with fixed temporal recruitment [temporally fixed (TF)
muscle synergies]. In this hypothesis, the nervous system uses fixed temporal
sequences to recruit muscles during a task, consistent with feedforward
control. When a specific temporal sequence is executed, a set of muscles that
can vary across directions and trials is chosen to reproduce EMG activity
necessary to achieve the task.
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Fig. 5. Comparison of SF vs. TF muscle synergy structure and muscle reconstructions. A: muscle synergy structure. SF muscle synergies organize muscle activity
into groups of muscles that have common spatial activation patterns (left). TF muscle synergies organize muscle activity into consistent temporal patterns (right).
As the number of TF muscle synergies increases, temporal patterns of activation become more localized in time. Data are shown for subject 1. B: muscle
reconstructions during a forward-leftward (150°) perturbation. A small subset of SF muscle synergies was recruited to reconstruct each muscle (left). Note that
multiple SF muscle synergies contributed to the reconstruction of muscles with multiple actions [i.e., W4 and W6 for rectus femoris (RFEM)], and separate SF
muscle synergies were recruited in antagonistic muscle pairs [W4 for TA, W2 for medial gastrocnemius (MGAS)]. In contrast, a majority of TF muscle synergies
was recruited to reconstruct each muscle (right). The same TF muscle synergies were used to recruit antagonistic muscle pairs. Gray lines, smoothed EMG; black
lines, reconstructed EMG; colored lines, individual muscle synergy contributions. REAB, rectus abdominus; TFL, tensor fascia lata; BFLH, biceps femoris, long
head; PERO, peroneus; LGAS, lateral gastrocnemius; EXOB, external oblique; GMED, gluteus medius; VLAT, vastus lateralis; SOL, soleus; ADMG, adductor
magnus.
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The forward connectivity 
pattern induces the co-
variation among the DoF 
when the command 
varies.

Classical synergy: accounts
motor commands

DoF/muscles

variation here

leads to 
co-

variation 
here



Variance that arises 
from stochastic motor 
commands induces 
covariance at DoFs

= opposite of the UCM 
(“anti-correlation” or 
“compensation”)

=> tension between 
classical synergy and 
UCM

Classical synergy: variance
motor commands

DoF/muscles

variance here

leads to 
covariance 

here



variance induced at the 
level of the individual 
DoF/muscles is 
uncorrelated

= the null hypothesis of 
UCM: the same variance 
in all direction

=> tension between 
classical synergy and 
UCM

Classical synergy: variance
motor commands

DoF/muscles

variance 
induced 
here: is 

uncorrelated



Classical synergy: DoF problem

classical synergy concept is thought of as a 
solution to the DoF problem: shared input 



the many DoF are coordinated 
such that variance that affects 
a smaller number of task 
variables is smaller than 
variance that does not affect a 
task variable

leading to compensation among DoF 
(or “anti-correlation”) 

uncontrolled manifold (UCM)

(x,y)

more flexed here

less flexed here



hypothesis testing

align trials in time, computer 
variance at each time slices

formulate hypothesis about task 
variable

compute null-space (tangent to the 
“uncontrolled manifold”) 

predict there is more variance 
within null space than 
perpendicular to it

UCM synergy: data analysis
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uncontrolled manifold hypothesis
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Figure 3. Depiction of uncontrolled manifolds (UCMs) for pointer tip positions at 30, 60 and 90% 

of joint range space trajectory #1 in Figure 1. Stick figures indicate that from an identical starting 

joint configuration, abundant combinations of the joints are available to achieve any particular 

pointer tip position along the trajectory. Different UCMs (dashed lines) correspond to different 

pointer tip positions. 

uncontrolled 
manifold



hypothesis testing

align trials in time, computer 
variance at each time slices

formulate hypothesis about task 
variable

compute null-space (tangent to the 
“uncontrolled manifold”) 

predict there is more variance 
within null space than 
perpendicular to it

UCM synergy: data analysis
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hypothesis testing

align trials in time, computer 
variance at each time slices

formulate hypothesis about task 
variable

compute null-space (tangent to the 
“uncontrolled manifold”) 

predict there is more variance 
within null space than 
perpendicular to it

UCM synergy: data analysis

!1 (r
ads)

!
2 (rads)

!
3

 (
ra

d
s)

A

C

B

D

Figure 4. Depiction of hypothetical clouds of data points combining separate trials and their 

relationship to the UCMs depicted in Figure 3. In Figure 4A, structure of the data is such that the 

major axes of the ellipses is oriented parallel to the UCMs, indicating that variability is compressed 

in the orthogonal direction, stabilizing the pointer position. Figures 4B-D depict possible effects of 

learning, described greater detail in the text. In B, both axes of the data ellipses are compressed. In 

Figure 4C, the orthogonal axis of the ellipses is preferentially compressed while the parallel axes 

increase in size.  In D, the parallel component is compressed more than the orthogonal component. 



supplement hypothesis 
testing by checking for 
correlation (Hermann, 
Sternad...)

look for increase in variance of 
task variable when correlation 
within data is destroyed

UCM synergy: data analysis
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variance within UCM

variance orthogonal 
to UCM

Example 1: pointing with 10 DoF arm at targets in 3D



task specificity of the structure 
of the joint variance

is joint variance always structured by the 
end-effector spatial position? 

no: depends on task



0
0.1 0.2 0.3

0.4

00.10.20.30.4
-0.1

-0.05

0

0.05

0.1

0.15

0.2

Elbow 

[from Scholz, Schöner, Latash: EBR 135:382 (2000]

back sight
of gun

shoulder

wrist

medial-lateral [m]anterior-posterior [m]

ve
rti

ca
l [

m
]

Example 2: shooting with 7 DoF arm at targets in 3D



variance
within
UCM

variance
perpendicular
to UCM

Example 2: shooting with 7 DoF arm at targets in 3D

0 10020 40 60 80
percent of trajectory

0 10020 40 60 80
percent of trajectory

gun spatial position gun orientation to target

[from Scholz, Schöner, Latash: EBR 135:382 (2000)]



variance
within
UCM

variance
perpendicular
to UCM

Example 2: shooting with 7 DoF arm at targets in 3D

0 10020 40 60 80
percent of trajectory

0 10020 40 60 80
percent of trajectory

unsuccessful trials successful trials

[from Scholz, Schöner, Latash: EBR 135:382 (2000)]

hypothesis: gun orientation, data from one participant



limits of redundancy
Example 3: 

sit to stand transition as a whole body movement



UCMhypothesis: horizontal CM

hypothesis: horizontal head position

ort 
UCM



ort 
UCM

UCM

loss of redundancy at the 
limit of workspace

hypothesis: vertical CM

hypothesis: vertical head position



UCM synergy: account

more complex than for classical synergy... 
let’s go through case studies first 



UCM non-trivial in 
posture because the 
classical inverted 
pendulum hypothesis 
predicts the opposite:

because the ankle 
moves the body in 
space, it lies orthogonal 
to the UCM predicting 
more variance in ORT 
than in UCM

UCM synergy: accounts.  
Case study posture 



but: find signature of 
UCM synergy

U
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M

Hsu, Scholz, Schöner, Jeka, Kiemel, 2007

UCM synergy: accounts.  
Case study posture 



Multi-segment postural control model

3.2. The model

Figure 3.2.: Sketch of the kinematic model of the body in upright stance as an in-
verted pendulum with three segments. The body configuration is de-
scribed by the three angles ✓i of the ankle, knee and hip joints.

3.2.4. Biomechanics of the skeleton

The configuration of the body in space can be described by specifying the configura-
tion of each bone as a rigid body and neglecting the shifts of muscle, skin and other
tissues around the bones. The bones do not move freely, though, but are connected
to each other as joints, by structures of muscles, tendons, ligaments and cartilage.
The exact structure of the connection between two bones varies from joint to joint.

A common feature is that parts of two or more bones moving against each other
without losing the surface connection. The two surfaces are usually rounded, implying
that if described in an appropriate coordinate frame, the motion is mostly rotational
and the translational components can be neglected. The relative configuration of
the femur (thigh) and the tibia (shank), e.g., is specified by defining a single axis
of rotation somewhere between the lateral and medial condyles of the femur and an
angle of rotation around that axis relative to some arbitrary reference configuration.
The configuration of the whole body in the sagittal plane can be described by

a number of segments connected by rotational joints. The lower body consists of
the leg segments foot, shank and thigh, connected by the ankle joint between foot
and shank and the knee joint between shank and thigh. The upper body is more
complicated: the spine consists of 24 articulate vertebrae and the fused vertebrae
of the sacrum. The head is attached to the spine by the atlanto-occipital joint,
describing movement between the uppermost vertebra of the cervical spine (atlas, or
C1) and the base of the skull (occipital bone). We have chosen to mostly neglect this
complexity in the current model: The movement of two single vertebrae against each
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Figure 3.1.: Overview of the complete sensorimotor loop for balancing the body in
quiet, upright stance.

we can disregard this level of detail and focus on randomness at the population level.
Firing rates of individual neurons are often weakly correlated (r ⇡ 0.15�0.2) when

they are physically close to each other in the cortex (Zohary, Shadlen, & Newsome,
1994; Bair, Zohary, & Newsome, 2001). One cannot disregard this noise by assuming
that the fluctuations in individual neuron firing rate cancel out over whole popula-
tions. In an in-vivo study of the cat visual cortex, Arieli and colleagues compare
real-time optical imaging data to local field potentials and single neuron firing rate
(Tsodyks, Kenet, Grinvald, & Arieli, 1999). They were able to predict the seem-
ingly random response in single trials from the fluctuations in neural firing rates and
the deterministic response, and conclude that the neural activity is an important
source of the variability. A later study by the same group provides further evidence
of the correlation between single neuron firing rate and population activity, both in
spontaneous and stimulus-driven cases.
The spatio-temporally correlated variability of neural population activation can

be modeled by an Ornstein-Uhlenbeck process (Smith, 2010; Ricciardi & Sacerdote,
1979; Lánský & Sacerdote, 2001). This is expressed mathematically by the solution
of the stochastic di↵erential equation

⌘̇ = �↵⌘⌘ + ⇠, (3.1)

where ⌘ is the colored noise, ↵⌘ the relaxation time parameter and ⇠ is Gaussian white
noise with zero mean and parameterized by the variance of the integrated noise after

31



bio-mechanical dynamics

3.2. The model

other is quite restricted. Furthermore, adding 24 degrees of freedom would make the
model computationally infeasible. Instead, we model the trunk and head as a single
rigid body, linked to the lower body at the hip joint. The body configuration is thus
described by a set of three generalized coordinates ✓i: the angles of the ankle (✓

1

),
knee (✓

2

) and hip joints (✓
3

), as illustrated in Figure 3.2.
The equations describing the kinematics and dynamics of the body can be derived

explicitly using basic trigonometry and mechanics. For the three degrees of freedom
model, the equations are provided in Appendix C. For more degrees of freedom, the
equations become too long to be derived explicitly.
While the equation for the position of the head in anterior-posterior direction p

is comparatively simple, the equations for the dynamic terms are more complex and
depend upon large numbers of parameters, most notably the locations of the joint
axes and segment centers of mass and the weight and moments of inertia of the
segments. These parameters were derived for an ideal male subject of 1.8m height
and 80 kg weight using the methods specified by Winter (Winter, 1990). The values
of the biomechanical parameters are listed in Appendix B.
The configuration of the body in space changes according to torques acting on the

joints, both from muscle-tendon complexes and gravity. The equations of motion
relating the torques to accelerations are given by

M(✓)✓̈ + C(✓, ✓̇)✓̇ +N(✓) = T, (3.16)

whereM is the inertia matrix, C a matrix representing Coriolis and centrifugal forces,
N the vector of gravitational forces and T the vector of torques generated by the
muscle-tendon complexes defined in Equation 3.15.

3.2.5. Sensor data and neural representations

Having modeled how the state of the body in space changes depending upon internal
and external forces, we now move on along the sensorimotor loop to how the CNS
senses these changes of body configuration and derives estimates of variables that
are important for body stability from those sensations. For upright stance, the most
important sensory surfaces are the eyes, the vestibular system, proprioceptive muscle
spindles and pressure sensors in the soles of the feet. Among these sensor modes,
the role of proprioception is unique, because besides contributing to the formation
of central estimates of the body in space, the activation of the proprioceptive muscle
spindles also play a vital role for the stretch reflexes in the spinal cord. We will first
treat this special role of proprioception in the activation of ↵-motorneurons, then
move on to deal with the formation of central estimates of the body in space from
fusing multiple di↵erent sensory channels, including perception.
Proprioception is of paramount importance for postural stability. Nevertheless, the

term is loosely defined and refers to a collection of several di↵erent sensory surfaces
(Taylor, 2009). There are three di↵erent types of a↵erent: Ia, Ib and II. Type Ia and
II a↵erents terminate in the muscle fibers. Type Ia a↵erents mostly fire when the
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Figure 3.2.: Sketch of the kinematic model of the body in upright stance as an in-
verted pendulum with three segments. The body configuration is de-
scribed by the three angles ✓i of the ankle, knee and hip joints.

3.2.4. Biomechanics of the skeleton

The configuration of the body in space can be described by specifying the configura-
tion of each bone as a rigid body and neglecting the shifts of muscle, skin and other
tissues around the bones. The bones do not move freely, though, but are connected
to each other as joints, by structures of muscles, tendons, ligaments and cartilage.
The exact structure of the connection between two bones varies from joint to joint.

A common feature is that parts of two or more bones moving against each other
without losing the surface connection. The two surfaces are usually rounded, implying
that if described in an appropriate coordinate frame, the motion is mostly rotational
and the translational components can be neglected. The relative configuration of
the femur (thigh) and the tibia (shank), e.g., is specified by defining a single axis
of rotation somewhere between the lateral and medial condyles of the femur and an
angle of rotation around that axis relative to some arbitrary reference configuration.
The configuration of the whole body in the sagittal plane can be described by

a number of segments connected by rotational joints. The lower body consists of
the leg segments foot, shank and thigh, connected by the ankle joint between foot
and shank and the knee joint between shank and thigh. The upper body is more
complicated: the spine consists of 24 articulate vertebrae and the fused vertebrae
of the sacrum. The head is attached to the spine by the atlanto-occipital joint,
describing movement between the uppermost vertebra of the cervical spine (atlas, or
C1) and the base of the skull (occipital bone). We have chosen to mostly neglect this
complexity in the current model: The movement of two single vertebrae against each
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muscle model
3.2. The model

Figure 3.2.: Sketch of the kinematic model of the body in upright stance as an in-
verted pendulum with three segments. The body configuration is de-
scribed by the three angles ✓i of the ankle, knee and hip joints.

3.2.4. Biomechanics of the skeleton

The configuration of the body in space can be described by specifying the configura-
tion of each bone as a rigid body and neglecting the shifts of muscle, skin and other
tissues around the bones. The bones do not move freely, though, but are connected
to each other as joints, by structures of muscles, tendons, ligaments and cartilage.
The exact structure of the connection between two bones varies from joint to joint.

A common feature is that parts of two or more bones moving against each other
without losing the surface connection. The two surfaces are usually rounded, implying
that if described in an appropriate coordinate frame, the motion is mostly rotational
and the translational components can be neglected. The relative configuration of
the femur (thigh) and the tibia (shank), e.g., is specified by defining a single axis
of rotation somewhere between the lateral and medial condyles of the femur and an
angle of rotation around that axis relative to some arbitrary reference configuration.
The configuration of the whole body in the sagittal plane can be described by

a number of segments connected by rotational joints. The lower body consists of
the leg segments foot, shank and thigh, connected by the ankle joint between foot
and shank and the knee joint between shank and thigh. The upper body is more
complicated: the spine consists of 24 articulate vertebrae and the fused vertebrae
of the sacrum. The head is attached to the spine by the atlanto-occipital joint,
describing movement between the uppermost vertebra of the cervical spine (atlas, or
C1) and the base of the skull (occipital bone). We have chosen to mostly neglect this
complexity in the current model: The movement of two single vertebrae against each
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muscle model
3.2. The model

Figure 3.2.: Sketch of the kinematic model of the body in upright stance as an in-
verted pendulum with three segments. The body configuration is de-
scribed by the three angles ✓i of the ankle, knee and hip joints.

3.2.4. Biomechanics of the skeleton

The configuration of the body in space can be described by specifying the configura-
tion of each bone as a rigid body and neglecting the shifts of muscle, skin and other
tissues around the bones. The bones do not move freely, though, but are connected
to each other as joints, by structures of muscles, tendons, ligaments and cartilage.
The exact structure of the connection between two bones varies from joint to joint.

A common feature is that parts of two or more bones moving against each other
without losing the surface connection. The two surfaces are usually rounded, implying
that if described in an appropriate coordinate frame, the motion is mostly rotational
and the translational components can be neglected. The relative configuration of
the femur (thigh) and the tibia (shank), e.g., is specified by defining a single axis
of rotation somewhere between the lateral and medial condyles of the femur and an
angle of rotation around that axis relative to some arbitrary reference configuration.
The configuration of the whole body in the sagittal plane can be described by

a number of segments connected by rotational joints. The lower body consists of
the leg segments foot, shank and thigh, connected by the ankle joint between foot
and shank and the knee joint between shank and thigh. The upper body is more
complicated: the spine consists of 24 articulate vertebrae and the fused vertebrae
of the sacrum. The head is attached to the spine by the atlanto-occipital joint,
describing movement between the uppermost vertebra of the cervical spine (atlas, or
C1) and the base of the skull (occipital bone). We have chosen to mostly neglect this
complexity in the current model: The movement of two single vertebrae against each
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3.2. The model

just on the absolute velocity ✓̇ (de Lussanet, Smeets, & Brenner, 2002). We add the
velocity term and make the activation dependent upon the proprioceptive signals of

the state variables b✓ for ✓ and ḃ✓ for ✓̇ (see below, Section 3.2.5) to get

E
AG

=e
h
↵
E

⇣
b✓��+⇢+µ(ḃ✓� ˙�)

⌘i
+

� 1,

E
AN

=e
h
�↵

E

⇣
b✓���⇢+µ(ḃ✓� ˙�)

⌘i
+

� 1.

(3.9)

Adding up the activation for agonist and antagonist motorneurons with the ap-
propriate sign and including signal-dependent noise (see Section 3.2.1) gives an ex-
pression for the idealized total motorneuron activation

E = (�E
AG

+ E
AN

) ⌘m 2 R3, (3.10)

which is proportional to the total torque generated from active muscle contraction
in both agonists and antagonists.

3.2.3. Torque generation in muscle-tendon systems

Activation of motor neurons is transformed into force by muscle contraction. Muscles
are connected to di↵erent bones in the skeleton via elastic tendons that can store and
release energy. The muscle itself has elastic properties as well (Van Soest & Bobbert,
1993; Brown, Scott, & Loeb, 1996). We model the muscle-tendon complex as a
contractile element in parallel with a viscoelastic element.
The physical characteristics and dynamics of muscle force generation have been

modeled on various levels of detail. Many optimal control models of motor con-
trol assume that the central nervous system can directly generate joint torques or
even accelerations (Peterka, 2000; Todorov & Jordan, 2002; Kiemel et al., 2002).
This is physiologically implausible, due to the spinal reflex loops described in the
previous section. The equilibrium point hypothesis does take these spinal circuits
seriously, assuming that the control variables available to descending commands are
the thresholds of the stretch reflex (see Section 3.2.2). Other researchers have mod-
eled the spinal reflex loop in even more detail (Mileusnic, Brown, Lan, & Loeb, 2006;
Raphael et al., 2010), but the level of complexity of these models is beyond the scope
of the present study.
The �-model specifies how the ↵-motorneuron activation depends upon the propri-

oceptive signals encoded by the activity of the sensory a↵erents – the E in Equation
3.10 signifies a correspondence to electromyographic data (EMG). The relationship
between the motorneuron activation and the actual force or torque generated by the
muscle is not trivial, though (Kandel, Schwartz, Jessell, Siegelbaum, & Hudspeth,
2012). The activity of the ↵-motorneuron causes calcium to be released in the mus-
cle fiber. The calcium facilitates the sliding of actin against myosin layers within
the fibers. The calcium is transported back out of the muscle fiber during this pro-
cess. The sliding process continues as long as calcium is available, i.e. the length of
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the muscle contraction depends on the amount of calcium initially released, which
depends upon the activity of the ↵-motorneurons. This transformation of neural
activity into force takes time. It is usually modeled as a second order low-pass fil-
ter. There are di↵erent versions available in the literature, for the present model we
choose to follow the model of Gribble and colleagues (Gribble et al., 1998):

eT
act

= AE 2 R3, (3.11)

⌧ 2mT̈act

+ 2⌧mṪact

+ T
act

= eT
act

2 R3, (3.12)

where eT
act

is the steady state torque, ⌧m a time constant and T
act

the instantaneous
torque generated by the active contraction process. The physiological parameter
A describes the relationship between motorneuron activity or EMG and generated
torque.
In addition to the active feedback loops that counteract stretch by the reflex loop

described above, muscles also have viscoelastic properties that resist stretch pas-
sively. In addition to that, the tendon is a purely viscoelastic element that cannot be
actively modulated by the nervous system. Joint torques generated by these passive
elastic properties of the muscles and tendons along the leg have been measured ex-
perimentally by Riener and Edrich (1999). These researchers found that the passive
torques can be described well by a double exponential curve of the general form

T
ela,j = exp(aj0 +

3X

i=1

aji✓i)� exp(bj0 +
3X

i=1

bji✓i) + cji, (3.13)

where j indicates the joint. For the knee joint, an additional exponential term ac-
counts for the steep increase in torque when the knee is fully extended (see Section
3.5.1 for further discussion). We adopt this formulation for our model.
The passive viscous properties of muscles and joints are di�cult to determine for

lack of experimental data. The viscosity of muscles and tendons has been modeled
by a linear (Hatsopoulos, 1994; Flash, 1987; Hogan, 1984) or nonlinear (Barto, Fagg,
Sitko↵, & Houk, 1999; Gribble et al., 1998; Loeb, Brown, & Cheng, 1999; Tee, Burdet,
Chew, & Milner, 2004) damping element. As the range of movement in quiet stance
is not large enough for the non-linearity to be significant, we chose to model viscosity
by a linear term

T
vis

= �B✓̇ 2 R3. (3.14)

The total force generated by the muscle-tendon complex is given by the sum of the
active torques generated by muscle contraction and the elastic and viscous passive
torques

T = T
act

+ T
ela

+ T
vis

, (3.15)

which corresponds to a contractile element in parallel with a viscoelastic element.

35

3.2. The model

the muscle contraction depends on the amount of calcium initially released, which
depends upon the activity of the ↵-motorneurons. This transformation of neural
activity into force takes time. It is usually modeled as a second order low-pass fil-
ter. There are di↵erent versions available in the literature, for the present model we
choose to follow the model of Gribble and colleagues (Gribble et al., 1998):

eT
act

= AE 2 R3, (3.11)

⌧ 2mT̈act

+ 2⌧mṪact
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Figure 3.2.: Sketch of the kinematic model of the body in upright stance as an in-
verted pendulum with three segments. The body configuration is de-
scribed by the three angles ✓i of the ankle, knee and hip joints.

3.2.4. Biomechanics of the skeleton

The configuration of the body in space can be described by specifying the configura-
tion of each bone as a rigid body and neglecting the shifts of muscle, skin and other
tissues around the bones. The bones do not move freely, though, but are connected
to each other as joints, by structures of muscles, tendons, ligaments and cartilage.
The exact structure of the connection between two bones varies from joint to joint.

A common feature is that parts of two or more bones moving against each other
without losing the surface connection. The two surfaces are usually rounded, implying
that if described in an appropriate coordinate frame, the motion is mostly rotational
and the translational components can be neglected. The relative configuration of
the femur (thigh) and the tibia (shank), e.g., is specified by defining a single axis
of rotation somewhere between the lateral and medial condyles of the femur and an
angle of rotation around that axis relative to some arbitrary reference configuration.
The configuration of the whole body in the sagittal plane can be described by

a number of segments connected by rotational joints. The lower body consists of
the leg segments foot, shank and thigh, connected by the ankle joint between foot
and shank and the knee joint between shank and thigh. The upper body is more
complicated: the spine consists of 24 articulate vertebrae and the fused vertebrae
of the sacrum. The head is attached to the spine by the atlanto-occipital joint,
describing movement between the uppermost vertebra of the cervical spine (atlas, or
C1) and the base of the skull (occipital bone). We have chosen to mostly neglect this
complexity in the current model: The movement of two single vertebrae against each
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Figure 3.2.: Sketch of the kinematic model of the body in upright stance as an in-
verted pendulum with three segments. The body configuration is de-
scribed by the three angles ✓i of the ankle, knee and hip joints.

3.2.4. Biomechanics of the skeleton

The configuration of the body in space can be described by specifying the configura-
tion of each bone as a rigid body and neglecting the shifts of muscle, skin and other
tissues around the bones. The bones do not move freely, though, but are connected
to each other as joints, by structures of muscles, tendons, ligaments and cartilage.
The exact structure of the connection between two bones varies from joint to joint.

A common feature is that parts of two or more bones moving against each other
without losing the surface connection. The two surfaces are usually rounded, implying
that if described in an appropriate coordinate frame, the motion is mostly rotational
and the translational components can be neglected. The relative configuration of
the femur (thigh) and the tibia (shank), e.g., is specified by defining a single axis
of rotation somewhere between the lateral and medial condyles of the femur and an
angle of rotation around that axis relative to some arbitrary reference configuration.
The configuration of the whole body in the sagittal plane can be described by

a number of segments connected by rotational joints. The lower body consists of
the leg segments foot, shank and thigh, connected by the ankle joint between foot
and shank and the knee joint between shank and thigh. The upper body is more
complicated: the spine consists of 24 articulate vertebrae and the fused vertebrae
of the sacrum. The head is attached to the spine by the atlanto-occipital joint,
describing movement between the uppermost vertebra of the cervical spine (atlas, or
C1) and the base of the skull (occipital bone). We have chosen to mostly neglect this
complexity in the current model: The movement of two single vertebrae against each
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functional models on this level (van der Kooij et al., 1999; Maurer & Peterka, 2005;
Asai et al., 2009).
After these considerations, we can state the sensory estimates of our model as

b✓(t) = ✓(t� d✓) + ⌘✓,
ḃ✓(t) = ✓̇(t� d✓) + ⌘

˙✓,

ḃp(t) = ṗ(t� dp) + ⌘ṗ, b̈p(t) = p̈(t� dp) + ⌘p̈,

ḃc(t) = ċ(t� dc) + ⌘ċ, b̈c(t) = c̈(t� dc) + ⌘c̈,

bo(t) = o(t� do) + ⌘o,

(3.17)

where ✓ 2 R3 is the vector of joint angles, p, c 2 R the head and CoM positions in the
anterior-posterior direction, and o is the head orientation around the media-lateral
axis. The ⌘⇤ are random processes as described in Section 3.2.1.
Di↵erent sensory modes that estimate the same functional variable have di↵erent

levels of accuracy (Fitzpatrick & McCloskey, 1994). Adding or blocking a sensory
channel during quiet stance has a significant e↵ect upon the magnitude of the postural
sway. A well known phenomenon is that the postural sway increases when subjects
close their eyes (Nashner, Black, & Wall, 1982; Kiemel et al., 2002; Krishnamoorthy,
Yang, & Scholz, 2005; Hsu et al., 2007). If, on the other hand, an additional sensor
mode is provided by lightly touching a fixed reference object with a finger, sway is
reduced (Zhang et al., 2007; Wing, Johannsen, & Endo, 2011). We model the loss of
reliability when closing the eyes by an increase in the noise for estimates of variables
where vision plays a role, i.e. the position and orientation of the head.

3.2.6. Neural dynamics in the brain

How does the central nervous system utilize the available sensor information to gen-
erate descending commands that generate appropriate muscle activations to stabilize
the body in space? While all other parts of the motor loop described in the preceding
sections are constrained by anatomical or physiological data to some degree, these
constraints apply much less to the dynamics of the brain areas involved in movement
generation.
The interfaces for these neural dynamics are the sensory signals ḃc, b̈c, ḃp, b̈p and bo,

on one side and the descending motor commands �̇ on the other side. The neural
dynamics then formalize as any function

�̇(ḃc, b̈c, ḃp, b̈p, bo) 2 Rn. (3.18)

The role of the brain dynamics is to detect deviations from the stable state of
upright stance and counter them with appropriate motor commands. The stable
state is usually defined as any state where the center of mass position in anterior-
posterior direction is within the support surface, i.e. between the toes and the heel of
the feet when standing on normal ground. This is a region in the three-dimensional
state space defined by the joint angles. Regardless of where exactly within that region
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Figure 3.2.: Sketch of the kinematic model of the body in upright stance as an in-
verted pendulum with three segments. The body configuration is de-
scribed by the three angles ✓i of the ankle, knee and hip joints.

3.2.4. Biomechanics of the skeleton

The configuration of the body in space can be described by specifying the configura-
tion of each bone as a rigid body and neglecting the shifts of muscle, skin and other
tissues around the bones. The bones do not move freely, though, but are connected
to each other as joints, by structures of muscles, tendons, ligaments and cartilage.
The exact structure of the connection between two bones varies from joint to joint.

A common feature is that parts of two or more bones moving against each other
without losing the surface connection. The two surfaces are usually rounded, implying
that if described in an appropriate coordinate frame, the motion is mostly rotational
and the translational components can be neglected. The relative configuration of
the femur (thigh) and the tibia (shank), e.g., is specified by defining a single axis
of rotation somewhere between the lateral and medial condyles of the femur and an
angle of rotation around that axis relative to some arbitrary reference configuration.
The configuration of the whole body in the sagittal plane can be described by

a number of segments connected by rotational joints. The lower body consists of
the leg segments foot, shank and thigh, connected by the ankle joint between foot
and shank and the knee joint between shank and thigh. The upper body is more
complicated: the spine consists of 24 articulate vertebrae and the fused vertebrae
of the sacrum. The head is attached to the spine by the atlanto-occipital joint,
describing movement between the uppermost vertebra of the cervical spine (atlas, or
C1) and the base of the skull (occipital bone). We have chosen to mostly neglect this
complexity in the current model: The movement of two single vertebrae against each
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where the active sti↵ness matrix

R =
dE

d�
. (3.31)

describes the relationship between changes in lambda and changes in muscle activa-
tion.
Calculating the partial derivatives that make up R is rather straightforward: The

muscle activation is the sum of agonist and antagonist activation, as specified in
equation 3.10. The diagonal terms of R are given by
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whereas the o↵-diagonal terms simply vanish.
Combining equations 3.28 and 3.30 provides a relationship

M
...
✓ = AR�̇ (3.34)

between joint jerks and threshold changes. This allows us to refine the implication
3.26 to

�̇ = R�1A�1MJ+

c fc =) ...
c = fc. (3.35)

With the simplification we made, this implication holds because
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Using the actual feedback term we stated in equation 3.20 we arrive at the formula

�̇ = Fc = R�1A�1MJ+

c
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b̈c
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2 R3 (3.40)

describing the neural dynamics that stabilize upright stance by reducing sensed move-
ment of the center of mass.

3.2.6.1. Sensory integration

The brain has more sensory information available than just about the movement
state of the center of mass. Sensory integration is the process of combining di↵erent
sensory channels into a coherent percept of the body in space. There are two layers
to the problem of sensory fusion. The first problem is to integrate two or more
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3.4. Results
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Figure 3.3.: Example trajectories of the joint angles and anterior-posterior center of
mass position from one model simulation (solid) and one human trial
(dashed).
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Results: model falls

when the sensory feedback loop about the body 
in space is removed

3.4. Results
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Figure 3.5.: Results of removing the higher feedback dynamics. The simulated body
falls over and hits the floor after ⇡ 5 s. The left panel shows a series of
body configurations during falling. The right panel gives the time course
of the joint angles and the anterior-posterior position of the center of
mass.
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Figure 3.6.: Results of removing the spinal reflex loop and assuming the activation
level of the motorneurons to be constant. The simulated body buckles
and falls down after ⇡ 2 s. The left panel shows a series of body configu-
rations during falling. The right panel gives the time course of the joint
angles and the anterior-posterior position of the center of mass.

after about 3 seconds the body starts falling forward. All joint angles increase under
the gravitational pull, until the body hits the floor. The center of mass in anterior-
posterior shows the same movement pattern as the joint angles. Note that the final
part of the movement is not realistic, as the heel would lift o↵ the floor at some point.
It is worth comparing this to the case where spinal feedback is also taken away, as

shown in Figure 3.6. In this case, instead of toppling over at the ankle with all joint
angles decreasing, the body buckles: the knee angle starts increasing, while ankle and
hip angle decrease, resulting in a folding movement. The center of mass movement in
anterior-posterior direction is much smaller than for the case with spinal and without
higher feedback.
These movement patterns are persistent. Table 3.4 summarizes the results of 1000

trials each with no higher feedback and no spinal feedback by giving the percentage of
trials that are currently in the toppling mode at a given point in time, i.e. for which
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Figure 3.5.: Results of removing the higher feedback dynamics. The simulated body
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body configurations during falling. The right panel gives the time course
of the joint angles and the anterior-posterior position of the center of
mass.
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Figure 3.6.: Results of removing the spinal reflex loop and assuming the activation
level of the motorneurons to be constant. The simulated body buckles
and falls down after ⇡ 2 s. The left panel shows a series of body configu-
rations during falling. The right panel gives the time course of the joint
angles and the anterior-posterior position of the center of mass.

after about 3 seconds the body starts falling forward. All joint angles increase under
the gravitational pull, until the body hits the floor. The center of mass in anterior-
posterior shows the same movement pattern as the joint angles. Note that the final
part of the movement is not realistic, as the heel would lift o↵ the floor at some point.
It is worth comparing this to the case where spinal feedback is also taken away, as

shown in Figure 3.6. In this case, instead of toppling over at the ankle with all joint
angles decreasing, the body buckles: the knee angle starts increasing, while ankle and
hip angle decrease, resulting in a folding movement. The center of mass movement in
anterior-posterior direction is much smaller than for the case with spinal and without
higher feedback.
These movement patterns are persistent. Table 3.4 summarizes the results of 1000

trials each with no higher feedback and no spinal feedback by giving the percentage of
trials that are currently in the toppling mode at a given point in time, i.e. for which
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Results: model predicts joint 
spectra

3.4. Results
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Figure 3.8.: Power spectral density of the joint angles and anterior-posterior center
of mass position during quiet stance with eyes open. Solid lines show
mean data from human subjects, dashed lines show mean data from the
model simulations.

model captures these di↵erences in the high frequency range, the pattern in the range
below 0.5Hz is di↵erent. While human postural sway shows a peak in the ankle joint
power around 0.2–0.3Hz, in the model this pattern is shifted to the knee joint and
absent in the ankle joint. Again, these di↵erences are discussed below in Section
3.5.2.
A comparison of sway power between the eyes-open and eyes-closed conditions is

made in Figure 3.9, showing the PSD in both conditions from both experimental and
model data. In general, the slight increase in power across all frequencies is captured
well by the model, with approximately the right magnitude. There is a noticeable
change in this power di↵erence depending on the frequency: the di↵erence between
conditions starts to disappear for frequencies above 1Hz in the human data. For
the joint angles, this e↵ect is reproduced by the model. For the center of mass, the
model still exhibits the same di↵erence for high frequencies.
The mean joint excursion variability in both conditions is plotted in Figure 3.10.

The general magnitude of the human JEV is captured well by the model. The
increase in JEV between conditions is similar for the di↵erent joints, in accordance
with the human data. The distribution of the variance across joints is di↵erent
though: compared to the experimental data, the model exhibits more variance in the
ankle and slightly less variance in the knee joint.
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Figure 3.7.: Comparison of the geometrical structure of the postural sway patterns
generated by the model with those of humans. The top row shows the
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3.2. The model

where the active sti↵ness matrix

R =
dE

d�
. (3.31)

describes the relationship between changes in lambda and changes in muscle activa-
tion.
Calculating the partial derivatives that make up R is rather straightforward: The

muscle activation is the sum of agonist and antagonist activation, as specified in
equation 3.10. The diagonal terms of R are given by
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whereas the o↵-diagonal terms simply vanish.
Combining equations 3.28 and 3.30 provides a relationship

M
...
✓ = AR�̇ (3.34)

between joint jerks and threshold changes. This allows us to refine the implication
3.26 to

�̇ = R�1A�1MJ+

c fc =) ...
c = fc. (3.35)

With the simplification we made, this implication holds because
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Using the actual feedback term we stated in equation 3.20 we arrive at the formula

�̇ = Fc = R�1A�1MJ+

c
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ḃc� ↵c̈
b̈c
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2 R3 (3.40)

describing the neural dynamics that stabilize upright stance by reducing sensed move-
ment of the center of mass.

3.2.6.1. Sensory integration

The brain has more sensory information available than just about the movement
state of the center of mass. Sensory integration is the process of combining di↵erent
sensory channels into a coherent percept of the body in space. There are two layers
to the problem of sensory fusion. The first problem is to integrate two or more
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3.2. The model

functional models on this level (van der Kooij et al., 1999; Maurer & Peterka, 2005;
Asai et al., 2009).
After these considerations, we can state the sensory estimates of our model as

b✓(t) = ✓(t� d✓) + ⌘✓,
ḃ✓(t) = ✓̇(t� d✓) + ⌘

˙✓,

ḃp(t) = ṗ(t� dp) + ⌘ṗ, b̈p(t) = p̈(t� dp) + ⌘p̈,

ḃc(t) = ċ(t� dc) + ⌘ċ, b̈c(t) = c̈(t� dc) + ⌘c̈,

bo(t) = o(t� do) + ⌘o,

(3.17)

where ✓ 2 R3 is the vector of joint angles, p, c 2 R the head and CoM positions in the
anterior-posterior direction, and o is the head orientation around the media-lateral
axis. The ⌘⇤ are random processes as described in Section 3.2.1.
Di↵erent sensory modes that estimate the same functional variable have di↵erent

levels of accuracy (Fitzpatrick & McCloskey, 1994). Adding or blocking a sensory
channel during quiet stance has a significant e↵ect upon the magnitude of the postural
sway. A well known phenomenon is that the postural sway increases when subjects
close their eyes (Nashner, Black, & Wall, 1982; Kiemel et al., 2002; Krishnamoorthy,
Yang, & Scholz, 2005; Hsu et al., 2007). If, on the other hand, an additional sensor
mode is provided by lightly touching a fixed reference object with a finger, sway is
reduced (Zhang et al., 2007; Wing, Johannsen, & Endo, 2011). We model the loss of
reliability when closing the eyes by an increase in the noise for estimates of variables
where vision plays a role, i.e. the position and orientation of the head.

3.2.6. Neural dynamics in the brain

How does the central nervous system utilize the available sensor information to gen-
erate descending commands that generate appropriate muscle activations to stabilize
the body in space? While all other parts of the motor loop described in the preceding
sections are constrained by anatomical or physiological data to some degree, these
constraints apply much less to the dynamics of the brain areas involved in movement
generation.
The interfaces for these neural dynamics are the sensory signals ḃc, b̈c, ḃp, b̈p and bo,

on one side and the descending motor commands �̇ on the other side. The neural
dynamics then formalize as any function

�̇(ḃc, b̈c, ḃp, b̈p, bo) 2 Rn. (3.18)

The role of the brain dynamics is to detect deviations from the stable state of
upright stance and counter them with appropriate motor commands. The stable
state is usually defined as any state where the center of mass position in anterior-
posterior direction is within the support surface, i.e. between the toes and the heel of
the feet when standing on normal ground. This is a region in the three-dimensional
state space defined by the joint angles. Regardless of where exactly within that region
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on one side and the descending motor commands �̇ on the other side. The neural
dynamics then formalize as any function
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dependency on ✓, so we have to solve this equation for
...
✓ . As the Jacobian Jc is

not square, we cannot invert it. We can use a right inverse to get the relationship
we want, though. We choose the Moore-Penrose pseudo-inverse (Siciliano & Khatib,
2008), given by

J+

c = JT
c (JcJ

T
c )

�1. (3.25)

This specific choice of right inverse has the property of minimizing the summed
squares of the resulting solution in joint space.
Using this right-inverse, we arrive at the implication

...
✓ = J+

c fc =) ...
c = Jc

...
✓ = JcJ

+

c fc = fc. (3.26)

For any desired center of mass jerk
...
c , we can now calculate a joint jerk

...
✓ that will

result in the desired center of mass jerk.
How can the brain generate this joint jerk vector? Deriving the equation of motion

3.16 by time yields
M

...
✓ + Ṁ ✓̈ = Ṫ � C ✓̈ � Ċ ✓̇ � Ṅ . (3.27)

Again we can assume that during quiet stance, the inertia matrix M is constant,
so Ṁ = 0. The term of velocity-dependent forces is so small that we neglect it as
well, assuming C = Ċ = 0. The changes in the gravitational force matrix depend
nonlinearly upon ✓̇. While these changes are not small, it is not feasible to assume
that the CNS can estimate them fast and accurately enough to actually benefit from
doing so. Instead, we can assume that the changes in N are treated as a quasi-
random perturbation that has to be stabilized against: we set Ṅ = 0 as well. The
equation then simplifies to

M
...
✓ = Ṫ , (3.28)

which can be used to transform a desired joint jerk vector into a desired torque
change vector.
From the point of view of the brain, each joint can be seen as a damped mass-spring

system that can be influenced by shifting its threshold parameter �. How should the
threshold parameters be changed in order to get a desired change in torques? Again,
we need several simplifications to approach this question. First, we neglect changes in
the passive sti↵ness – while they are not zero, estimating them is not straightforward,
so we assume they are treated as unpredictable perturbations similar to changes
in gravitational force. Furthermore, we neglect the time delay introduced by the
transformation of motorneuron activation into muscle force (Equation 3.12). With
these simplifications and equation 3.11, we get

T = eT
act

= AE. (3.29)

Deriving this by time and applying the chain rule yield

Ṫ = A
d

dt
E = A

dE

d�

d�

dt
= AR�̇, (3.30)
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functional models on this level (van der Kooij et al., 1999; Maurer & Peterka, 2005;
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ḃc(t) = ċ(t� dc) + ⌘ċ, b̈c(t) = c̈(t� dc) + ⌘c̈,

bo(t) = o(t� do) + ⌘o,

(3.17)

where ✓ 2 R3 is the vector of joint angles, p, c 2 R the head and CoM positions in the
anterior-posterior direction, and o is the head orientation around the media-lateral
axis. The ⌘⇤ are random processes as described in Section 3.2.1.
Di↵erent sensory modes that estimate the same functional variable have di↵erent

levels of accuracy (Fitzpatrick & McCloskey, 1994). Adding or blocking a sensory
channel during quiet stance has a significant e↵ect upon the magnitude of the postural
sway. A well known phenomenon is that the postural sway increases when subjects
close their eyes (Nashner, Black, & Wall, 1982; Kiemel et al., 2002; Krishnamoorthy,
Yang, & Scholz, 2005; Hsu et al., 2007). If, on the other hand, an additional sensor
mode is provided by lightly touching a fixed reference object with a finger, sway is
reduced (Zhang et al., 2007; Wing, Johannsen, & Endo, 2011). We model the loss of
reliability when closing the eyes by an increase in the noise for estimates of variables
where vision plays a role, i.e. the position and orientation of the head.

3.2.6. Neural dynamics in the brain

How does the central nervous system utilize the available sensor information to gen-
erate descending commands that generate appropriate muscle activations to stabilize
the body in space? While all other parts of the motor loop described in the preceding
sections are constrained by anatomical or physiological data to some degree, these
constraints apply much less to the dynamics of the brain areas involved in movement
generation.
The interfaces for these neural dynamics are the sensory signals ḃc, b̈c, ḃp, b̈p and bo,

on one side and the descending motor commands �̇ on the other side. The neural
dynamics then formalize as any function

�̇(ḃc, b̈c, ḃp, b̈p, bo) 2 Rn. (3.18)

The role of the brain dynamics is to detect deviations from the stable state of
upright stance and counter them with appropriate motor commands. The stable
state is usually defined as any state where the center of mass position in anterior-
posterior direction is within the support surface, i.e. between the toes and the heel of
the feet when standing on normal ground. This is a region in the three-dimensional
state space defined by the joint angles. Regardless of where exactly within that region
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ḃ✓(t) = ✓̇(t� d✓) + ⌘

˙✓,
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dependency on ✓, so we have to solve this equation for
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✓ . As the Jacobian Jc is
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we want, though. We choose the Moore-Penrose pseudo-inverse (Siciliano & Khatib,
2008), given by
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This specific choice of right inverse has the property of minimizing the summed
squares of the resulting solution in joint space.
Using this right-inverse, we arrive at the implication

...
✓ = J+

c fc =) ...
c = Jc

...
✓ = JcJ

+

c fc = fc. (3.26)

For any desired center of mass jerk
...
c , we can now calculate a joint jerk

...
✓ that will

result in the desired center of mass jerk.
How can the brain generate this joint jerk vector? Deriving the equation of motion

3.16 by time yields
M

...
✓ + Ṁ ✓̈ = Ṫ � C ✓̈ � Ċ ✓̇ � Ṅ . (3.27)

Again we can assume that during quiet stance, the inertia matrix M is constant,
so Ṁ = 0. The term of velocity-dependent forces is so small that we neglect it as
well, assuming C = Ċ = 0. The changes in the gravitational force matrix depend
nonlinearly upon ✓̇. While these changes are not small, it is not feasible to assume
that the CNS can estimate them fast and accurately enough to actually benefit from
doing so. Instead, we can assume that the changes in N are treated as a quasi-
random perturbation that has to be stabilized against: we set Ṅ = 0 as well. The
equation then simplifies to

M
...
✓ = Ṫ , (3.28)

which can be used to transform a desired joint jerk vector into a desired torque
change vector.
From the point of view of the brain, each joint can be seen as a damped mass-spring

system that can be influenced by shifting its threshold parameter �. How should the
threshold parameters be changed in order to get a desired change in torques? Again,
we need several simplifications to approach this question. First, we neglect changes in
the passive sti↵ness – while they are not zero, estimating them is not straightforward,
so we assume they are treated as unpredictable perturbations similar to changes
in gravitational force. Furthermore, we neglect the time delay introduced by the
transformation of motorneuron activation into muscle force (Equation 3.12). With
these simplifications and equation 3.11, we get

T = eT
act

= AE. (3.29)

Deriving this by time and applying the chain rule yield

Ṫ = A
d

dt
E = A

dE

d�

d�

dt
= AR�̇, (3.30)
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UCM synergy accounts:  
Case study: Reaching movements

Experiment from 
John Scholz’s lab: 

reaching with 4DoF in 
2D
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Neural process 
model of 4DoF 
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[Martin, Scholz, Schöner. Neural Computation 21, 1371–1414 (2009]
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model

� = (�1, �2, �3, �4)T :

x = g(�), (14)

(the upper index T indicates the transpose, so that the joint configuration is a column

vector; the equations are listed in Appendix A). The model is derived assuming an

articulated rigid body with four revolute joints whose axes of rotation are perpendicular

to the two-dimensional plane of motion.

The equations of motion of the arm are derived from the Lagrangian equations

within the Screw theory framework (Murray et al., 1994). The general form of these

equations is

M(�) · �̈ + H(�, �̇) = Tm (15)

where M(�) is the inertial matrix of the rigid body, H(�, �̇) is the vector of interac-

tion torques (Coriolis and Centrifugal forces) and Tm is the vector of active torques

generated at the skeleton joints by muscle forces (all terms listed in Appendix B).

Simulations. The model was implemented in Matlab version 13 (MathWorks, Inc.,

2002) using the numerical Euler method to solve the di�erential equation. Appendices

E and C list the parameter values of the model which were used for all movements

anywhere in the workspace.

3 Experimental methods and analysis

Participants in the experiments were three healthy individuals from University of

Delaware community, 21 to 35 years of age. Participants gave informed consent before

participation. All participants were right handed and reached with their right arms to

the targets.

19

of the various arm segments are computed following (Hanavan, 1964). Data for the

scapular joint are not available and are estimated to be a quarter of the upper torso

biometrics data.

Parameter name Symbol Value Units

Body mass M 55 kg

First segment length l1 0.2024 m

Second segment length l2 0.3035 m

Third segment length l3 0.2586 m

Fourth segment length l4 0.1658 m

Table 2: Biometric parameters.

C Muscle model

This joint-muscle system contains two components, which represent respectively the

groups of all agonist and all antagonist muscles. Each component is characterized

by a nonlinear function, the “+” sign indicating half-wave rectification, so that each

component generates torques in only one direction, negative for the agonist component

and positive for the antagonist component. The associated torques reach zero at the

equilibrium lengths, �i = ⇥p
i = ⇥i � Co and �i = ⇥m

i = ⇥i + Co, which are o�-set

from a joint equilibrium length, ⇥i, by a constant amount of co-contraction, Co. The

combined torque, Ti, generated at joint i by the agonist and antagonist components

Ti = Kl ·
�
(e[Knl·(�i�⇥p

i )]+ � 1) � (e�[Knl·(�i�⇥m
i )]� � 1)

⇥

+ µbl · asinh(�̇i � ⇥̇i) + µrl · �̇i. (20)
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neural dynamics of lambda
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This hypothesis says that when the estimated real joint configuration, θd ,
deviates from the virtual joint configuration, λ, this leads to an update of
the virtual joint configuration within the null-space of the Jacobian (brought
about by projecting the difference onto the basis vectors of the null-space,
ET ). The same kind of mechanism may occur at the level of joint velocities
(second term). The real joint configuration must be sensed and estimated,
leading to processing delays (index d ; see appendix D for details). This form
of back-coupling of the real into the virtual joint configuration dynamics
implies both stabilization of the joint configuration within the uncontrolled
manifold (through the terms dependent on λ and λ̇) and driving virtual self-
motion (when the terms (λ − θd ) and (λ̇ − θ̇d ) are different from zero). The
projection of the back-coupling term onto the null-space ensures that the
dynamics within the space of self-motion depends on only the components
of λ and λ̇ within that subspace, so that the range-space and null-space
remain decoupled.

That this neuronal dynamics is a closed description in the space of the
virtual joint configuration λ and velocity λ̇ is seen by replacing all references
to the end-effector velocity, v, and the self-motion velocity, s, by virtual joint
velocities using equations 2.5 and 2.6:

λ̈ =
(

J+ E
)
·
(

−βvJ · λ̇ + βvu − J̇ · λ̇

−βs1ET · (λ − θd) − βs2ET · (λ̇ − θ̇d ). − ĖT · λ̇

)

. (2.11)

To implement the model, the matrices J(λ), E(λ), J̇(λ), and ĖT(λ) are com-
puted analytically.

2.7 Muscle-Joint Model. The virtual joint configuration λ and velocity
λ̇ drive the muscle joint systems. These are modeled by reducing a detailed,
nonlinear muscle model (Gribble et al., 1998) to its essentials, limiting the
number of parameters. First, we fuse all muscles acting onto a given joint
into an effective muscle joint model that covers both agonist and antagonist
activity. As a result, the descending commands are condensed into the
virtual joint angle, λ(t), and virtual joint velocity, λ̇(t). The state-dependent
generation of muscle torques at a given joint, i , can then be characterized
by a single function,

Ti (λ, λ̇, θ , θ̇ ) (2.12)

(listed in appendix C), where θ (t) and θ̇ (t) are the real joint angle and
velocity. At rest and in the absence of external forces, the muscle joint
system is at equilibrium at T = 0 and θ = λ. Depending on the time course
of the virtual joint trajectory, λ(t) and on the biomechanics of the arm, the
realized joint trajectory may deviate significantly from the virtual trajectory.
This is why taking into account the nonlinear dependence of muscle force
generation on muscle state is important (Gribble et al., 1998).

back-
coupling

timing signal

1380 V. Martin, J. Scholz, and G. Schöner

on the predicted state of the end effector, and this dependence turns the
movement state off at the end of the movement (see appendix D for details).
Inhibitory coupling between these two activation variables, mediated by a
sigmoidal nonlinearity, σ (u) = 1/(1 + exp[−ar u]), makes that only one of
the two variables can be activated at the same time.

2.5 Timing. We model the distributed neural networks that generate the
time course of the end effector along its path by a single, lumped neuronal
oscillator. The two-dimensional timing signal, u(t) = (u1, u2), determines
the virtual end-effector velocity, v(t) = (v1, v2), through

v̇ = −βv(v − u(t)), (2.2)

so that the virtual end-effector velocity tracks the timing signal. The indices
refer to the two Cartesian components of the end effector, and βv is a positive
constant. Although it is not neuronally realistic, we use the Hopf normal
form (Perko, 1991) as the simplest mathematical representation of a stable
limit cycle oscillator that stands for a class of neuronal dynamics that exhibit
this type of solution (Schöner, 2002). For each (“excitatory”) component, u,
the Hopf equation contains a second (“inhibitory”) component, z:

(
u̇i

żi

)

= σ (um) fh(ui , zi ) + σ (ur)βr

(
−ui

−zi

)

. (2.3)

Herein, the Hopf equation,

fh(ui , zi ) =
(

αh −ωh

ωh αh

)

·
(

ui − Ui

zi

)

−αhU2
i ·

(
(ui − Ui )2 + z2

i
)
·
(

ui − Ui

zi

)

, (2.4)

generates a stable limit cycle solution with cycle time, T = 2π/ωh , relaxation
time, 1/2αh , and amplitude, Ui . This oscillator is active while the initiation
system is in the movement state (σ (um) = 1). When the resting state is
activated (σ (ur) = 1), the timing signal has a stable fixed point at u = 0.

2.6 Neural Dynamics of the Virtual Joint Configuration. In this core
module of our model, the timing signal, u(t), is transformed into a virtual
joint trajectory, λ(t). This requires inversion of the Jacobian equation,

v(t) = J[λ(t)] · λ̇(t), (2.5)
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movement state off at the end of the movement (see appendix D for details).
Inhibitory coupling between these two activation variables, mediated by a
sigmoidal nonlinearity, σ (u) = 1/(1 + exp[−ar u]), makes that only one of
the two variables can be activated at the same time.
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the virtual end-effector velocity, v(t) = (v1, v2), through

v̇ = −βv(v − u(t)), (2.2)

so that the virtual end-effector velocity tracks the timing signal. The indices
refer to the two Cartesian components of the end effector, and βv is a positive
constant. Although it is not neuronally realistic, we use the Hopf normal
form (Perko, 1991) as the simplest mathematical representation of a stable
limit cycle oscillator that stands for a class of neuronal dynamics that exhibit
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generates a stable limit cycle solution with cycle time, T = 2π/ωh , relaxation
time, 1/2αh , and amplitude, Ui . This oscillator is active while the initiation
system is in the movement state (σ (um) = 1). When the resting state is
activated (σ (ur) = 1), the timing signal has a stable fixed point at u = 0.

2.6 Neural Dynamics of the Virtual Joint Configuration. In this core
module of our model, the timing signal, u(t), is transformed into a virtual
joint trajectory, λ(t). This requires inversion of the Jacobian equation,

v(t) = J[λ(t)] · λ̇(t), (2.5)
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This hypothesis says that when the estimated real joint configuration, θd ,
deviates from the virtual joint configuration, λ, this leads to an update of
the virtual joint configuration within the null-space of the Jacobian (brought
about by projecting the difference onto the basis vectors of the null-space,
ET ). The same kind of mechanism may occur at the level of joint velocities
(second term). The real joint configuration must be sensed and estimated,
leading to processing delays (index d ; see appendix D for details). This form
of back-coupling of the real into the virtual joint configuration dynamics
implies both stabilization of the joint configuration within the uncontrolled
manifold (through the terms dependent on λ and λ̇) and driving virtual self-
motion (when the terms (λ − θd ) and (λ̇ − θ̇d ) are different from zero). The
projection of the back-coupling term onto the null-space ensures that the
dynamics within the space of self-motion depends on only the components
of λ and λ̇ within that subspace, so that the range-space and null-space
remain decoupled.

That this neuronal dynamics is a closed description in the space of the
virtual joint configuration λ and velocity λ̇ is seen by replacing all references
to the end-effector velocity, v, and the self-motion velocity, s, by virtual joint
velocities using equations 2.5 and 2.6:

λ̈ =
(

J+ E
)
·
(

−βvJ · λ̇ + βvu − J̇ · λ̇

−βs1ET · (λ − θd) − βs2ET · (λ̇ − θ̇d ). − ĖT · λ̇

)

. (2.11)

To implement the model, the matrices J(λ), E(λ), J̇(λ), and ĖT(λ) are com-
puted analytically.

2.7 Muscle-Joint Model. The virtual joint configuration λ and velocity
λ̇ drive the muscle joint systems. These are modeled by reducing a detailed,
nonlinear muscle model (Gribble et al., 1998) to its essentials, limiting the
number of parameters. First, we fuse all muscles acting onto a given joint
into an effective muscle joint model that covers both agonist and antagonist
activity. As a result, the descending commands are condensed into the
virtual joint angle, λ(t), and virtual joint velocity, λ̇(t). The state-dependent
generation of muscle torques at a given joint, i , can then be characterized
by a single function,

Ti (λ, λ̇, θ , θ̇ ) (2.12)

(listed in appendix C), where θ (t) and θ̇ (t) are the real joint angle and
velocity. At rest and in the absence of external forces, the muscle joint
system is at equilibrium at T = 0 and θ = λ. Depending on the time course
of the virtual joint trajectory, λ(t) and on the biomechanics of the arm, the
realized joint trajectory may deviate significantly from the virtual trajectory.
This is why taking into account the nonlinear dependence of muscle force
generation on muscle state is important (Gribble et al., 1998).

timing signal

0

UCM
null space
of local 
Jacobian

=> control is stable in range space

=> marginally stable in UCM/null space 
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where does this come from?

a neuron, n, encoding rate of change of     : 

�̈ = J+v̇ [+J̇+v ⇡ 0]

�̇ = J+v

v̇ = �v + uṅ = J+v̇

n = �̇�

<= insert timing signal

ṅ = J+(�v + u)

ṅ = J+(�J �̇+ u)

start with pseudo-inverse of: 

<= insert

v = J �̇

v = J �̇

ṅ = J+(�Jn+ u)

<= replace n = �̇

ṅ = �J+Jn+ J+u



where does this come from?

ṅ = �n+ (1 � J+J)n+ J+u

ṅ = �n+ n � J+Jn+ J+u

ṅ = �J+Jn+ J+u

projection 
onto  null-

space

feed-
forward 

from timing 
command 



where does this come from?

ṅ = �n+ (1 � J+J)n+ J+u
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how does this do the UCM effect?

ṅ = �n+ (1 � J+J)n+ J+u

projection 
onto  null-

space

feed-forward 
from timing 
command 

within the range-space

=> stability within the range-space

ṅ = �n+ J+u

ṅ

n

J+u

attractor



how does this do the UCM effect?

ṅ = �n+ (1 � J+J)n+ J+u

projection 
onto  null-

space

feed-forward 
from timing 
command 

within the null-space

ṅ = �n+ n+ 0

ṅ = 0

=> no stability within the null-space

ṅ

n
no attractor



Mark Latash et al: press 
with two fingers to 
produce fixed total force

UCM synergy accounts:  
case study finger movements

280  Latash, Scholz, and Schöner

have been associated with thresholds ( ) of the tonic stretch reflex of participating 
muscles. In the simplest case, single muscles composed of multiple motor units 
may be viewed as a multi-element system. When the CNS defines a time shift of 

, this results in a certain pattern of motor unit recruitment.
A set of involved motor units may show both preference for particular sharing 

patterns (for example, based on the well-established size principle, Henneman et 
al., 1965) and the stability/flexibility feature. Imagine, for instance, that for some 
reason, in one of the trials, one motor unit stops firing. The muscle force will drop, 
and given unchanged external load, the muscle fibers will stretch. This will lead 
to an increase in the spindle activity and an increase in the excitatory input into 
the alpha-motoneuron pool via the tonic stretch reflex loop. Other motor units will 
increase their firing rate and/or new motor units will be recruited such that the 
muscle will reach the same equilibrium state defined by  and the external load. In 
this example, a particular neurophysiological mechanism, the tonic stretch reflex, 
unites motor units within a muscle into a synergy. Such co-varied changes in the 
contributions of alpha-motoneurons to muscle activation may be analyzed both in 
time (as above) and across repetitive attempts to oppose the same external force 
at the same muscle length.

Figure 1—An illustration of the two basic features of synergies. A person tried to produce 
the same total force of 20 N with two fingers. Three sharing patterns are illustrated: 5:15 N, 
10:10 N, and 15:5 N. This means that with changes of total force (FTOT) both finger forces 
change in the same direction (i.e., positive co-variation along the dashed lines). Data distri-
butions over repetitive trials may form circles (not a synergy) or ellipses (force stabilizing 
synergies, or negative force co-variation). Individual finger force variations are similar for the 
circles and ellipses while the total force (FTOT) shows smaller variations for the ellipses.



model
task variable F 

F = F1 + F2

Jacobian
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compare to Latash et al 2005

candidate for recurrent 
inhibitory interaction: 
Renshaw system
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slow ramp force production and the emergence of a force-stabilizing synergy (see 
the right panel of Figure 7; cf. Shim et al., 2003; Latash et al., 2004).

A comprehensive model of both features of synergies in redundant effector 
systems has been developed by Martin and colleagues (Martin, 2005; Martin et 
al., 2004). A biomechanical model of the effector system is augmented by physi-
ologically based muscle models. At each joint, the group of agonist and antagonist 
muscles is described by a simplified version of the nonlinear equilibrium-point 
model of Gribble et al. (1998). The equilibrium points of these muscle-joint sys-
tems are considered dynamical variables, whose temporal evolution is described 
by a dynamical neural network. The network receives input from a set of neural 
oscillators that generate a timing signal defining the progression of the end-effec-
tor along its trajectory. The model has been validated in experiments involving 
planar movement of a four-DOF system to various targets. In particular, the model 
has been able to account for the structure of variance observed in the experiment, 
including the amount and temporal evolution of self-motion (joint motion that does 
not move the end-effector) and of the variance within the UCM during the move-
ment. In the model, three factors contribute to the observed structure of variance: 
First, the neuronal computations of equilibrium-point trajectories are assumed to 
be noisy. Second, the dynamics of the equilibrium points within the two subspaces 
(UCM and orthogonal to the UCM) of joint space are assumed to be decoupled. 

Figure 7—A scheme illustrating the back-coupling (CBC) hypothesis. Control signal (A) 
is shared among four “neurons” (B) with added noise. The outputs of the “neurons” excite 
inhibitory “interneurons” (C) that project back to all four “neurons” at the B level. Further, 
the outputs of the B “neurons” are modified with a finger interconnection matrix (enslaving 
matrix) producing finger forces. Modified with permission from Latash et al., 2005.



Self-motion

all this was about variation/variance… 

how about the motion itself, the mean 
motion… does that reveal the DoF problem 
and its solution? 

=> self-motion
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[Martin, Scholz, Schöner. Neural Computation 21, 1371–1414 (2009]

reaching in 2D, 4DoF: considerable 
amount of self-motion! 
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Figure 12: Top: End-e�ector paths in three dimensions obtained from three partici-

pants in a pointing task performed with 10 degrees of freedom (thin lines reflect dif-

ferent trials). Bottom: Range-space and self-motion as a function of time observed

while these participants performed the pointing movements (mean across trials). Both

components are normalized to the number of dimensions of the respective sub-spaces.
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[Martin, Scholz, Schöner. Neural Computation 21, 1371–1414 (2009]

reaching movement in 3D, 10 DoF also 
shows considerable amount of self-motion



can we see directly the use of the redundant/
abundant DoF to solve some problem? 

motor equivalence: “task achieved with a new 
joint configuration following perturbation, 
different initial condition, or changed conditions”

Motor equivalence



“task achieved with other than standard joint 
configuration following perturbation or other 
change”

but: task never achieved 100 percent

how much error on task level compared to how 
much error at joint level? how do you compare? 

answer: error lies more within UCM than 
perpendicular!

Motor equivalence
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motor equivalence in active response phase

motor equivalence in steady state phase

Motor equivalence in quiet stance



length of difference joint vector in UCM

length of difference joint vector 
perpendicular to UCM

[Scholz, Schöner, Hsu, Jeka, Horak, Martin. Exp Brain Res (2007)]

Motor equivalence in quiet stance



Quantification of the joint configuration differences between
perturbed and nonperturbed conditions revealed that most of
that difference did not contribute to differences in the pointer-
tip path or the hand orientation. Moreover, as predicted, the
magnitude of motor equivalence depended on the strength of
the perturbation, but only after !40% of the reach trajectory,
at approximately the time that elbow joint motion was affected
by the perturbation (Fig. 2). The strongest perturbation
(High-K condition) resulted in a larger ME component than the
weaker perturbation (Low-K), while the perturbation magni-
tude had a weaker effect on the Non-ME component of the
JDV. This result is consistent with motor equivalence results
computed at the termination of pointing in a recent report of the
effect of reaching at different movement speeds (Scholz et al.
2011).

Contrary to one of our hypotheses, however, the target type
had no affect on the amount of motor equivalence with respect

to either the pointer-tip path or the hand orientation. For the
spherical target, the projection components (i.e., ME vs. Non-
ME) were not that different when computed relative to pointer-
tip path versus hand orientation (Fig. 5, left). If anything, the
Non-ME component related to the stabilization of hand orien-
tation was greater early in the reach. For reaching to the
cylindrical target, for which the pointer had to be oriented to
insert it properly, the perturbation had a substantially larger
effect on control of 3D position (higher Non-ME component)
than for control of 3D orientation. Motor equivalence related to
hand orientation was always larger than that for pointer-tip
path regardless of the target type, a somewhat unexpected
finding. Note that the ME and Non-ME variables were quan-
tified per DOF in corresponding subspaces, so by itself, the
number of constraints could not affect the proportion of ME
value. The larger Non-ME values computed with respect to the
pointer-tip path suggest that in perturbed trials the subjects

Table 2. Targeting error

Stiffness x-Coordinate y-Coordinate z-Coordinate

CE 0-K 0.0043 " 0.0020 #0.0104 " 0.0032 #0.0008 " 0.0014
Low-K 0.0022 " 0.0021 #0.0130 " 0.0034 #0.0020 " 0.0016
High-K 0.0002 " 0.0020 #0.0160 " 0.0037 #0.0022 " 0.0016

VE 0-K 0.0055 " 0.0016 0.0064 " 0.0018 0.0040 " 0.0005
Low-K 0.0062 " 0.0019 0.0068 " 0.0024 0.0062 " 0.0026
High-K 0.0044 " 0.0002 0.0051 " 0.0006 0.0043 " 0.0005

Averages " SE across subjects of targeting error (meters) for each target coordinate are presented. Data are also averaged across target type due to a
nonsignificant effect of target type. CE, constant error; VE, variable error. 0-K, Low-K, and High-K refer to no elastic band, low-stiffness band, and high-stiffness
band crossing the elbow joint.

Fig. 5. Time series ("SE) of the motor
equivalent (ME, solid lines) and non-motor
equivalent (Non-ME, dashed lines) compo-
nents of the joint difference vector (JDV).
Results are presented for each target (left and
right) and in relation to the 2 performance
variables (top and bottom).
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placed. The participants sat with their trunk upright, feet flat on the
floor, and arms supported laterally by the table (Fig. 1). The heights
of both chair and table were adjusted to keep the shoulder of the arm
that performed the task immediately next to the trunk in a slightly
adducted position, the elbow in !90° of flexion, and the forearm
resting on the table in a neutral position. The subjects were instructed
to hold a cylindrical shaped handle (5 cm in diameter and 11 cm high)
with their most comfortable grasp. Solidly embedded in the center of
one end of the handle was a 12-cm-long knitting needle that served as
a pointer. To maintain the handle’s orientation in the hand during
the trials, the handle and the subject’s palm were covered with the
loop-and-hook type of Velcro strips. Once the subjects held the
handle, they were not allowed to change their grasp until the end of
the data collection. After the subject was positioned, the chair was
locked in place and the subject’s trunk was secured to the chair with
a harness to limit compensatory trunk movements, but still allowing
normal scapular motion. To guarantee the reliability of the initial
position throughout the experiment, a vacuum air bag was fitted
underneath and around the lateral, medial, and back sides of the
participants’ arm, leaving their elbow, forearm, wrist, and hand
secured in a depression with rigid sides.

The experiment included reaching to two target types, providing
different constraints on reaching: a spherical target (2.54-cm diameter;
3 positional constraints) and a cylindrical target (2.54-cm diameter,
5.08 cm wide; 3 positional and 2 orientation constraints). Each
target’s center was positioned at a distance corresponding to 95% of
the subject’s extended arm length (defined as the distance from the
lateral aspect of the acromion process of the shoulder to the proximal
interphalangeal joint of the index finger) and at 70% of the height of
the subject’s eye from the table while in the sitting position. The
targets were suspended from a rigid pole by a string to require greater
final position control than if subjects were able to forcefully hit the
target. The cylindrical target was oriented at 45° relative to the global
coordinate system, for which the y-axis pointed forward from the
subject’s body, rotated in the counterclockwise direction so that the
opening in the cylinder into which the pointer was inserted faced
toward the subject. The targets were suspended so that the centers of
the spherical and cylindrical targets were in the same spatial location.

Instructions. The subjects were instructed as follows: “Following
my ‘go’ command, begin reaching when you are ready and then move
the pointer as quickly as possible to the target while still maintaining
accuracy. You should stop at the target location without disturbing its
position.” It was emphasized that this was not a reaction time task. For

the spherical target, subjects were instructed to lightly touch the target
with the pointer-tip. For the cylindrical target they were told to insert
the pointer-tip halfway into the opening of the cylinder. Subjects were
asked to try to perform all trials at the same speed and to touch/insert
the pointer-tip as accurately as possible.

Experimental conditions. Each target condition involved 75 trials
of reaching, 25 in each of three perturbation conditions that were
completely randomized: 1) no perturbation (0-K); 2) a single elastic
band (Thera-Band) placed across the elbow joint (stiffness " 4.8 N/m;
Low-K); and 3) two elastic bands (stiffness " 12.5 N/m; High-K).
Participants wore goggles with the brim of a hat attached, permitting
them to see the targets clearly while eliminating the view of their arm.
Cuffs with D-rings were placed around the upper arm and proximal to
the wrist, to which hooks attached on each end of the Thera-Band
could be attached. Prior to each trial, one experimenter attached the
appropriate band (perturbed conditions) or pretended to attach the
band (no perturbation condition) with a tug on the D-rings so that
subjects could not tell whether or not there would be a perturbation.
The bands were at their resting lengths in the initial position so that
the subjects felt no pull in this position. This was confirmed verbally
with subjects. Individuals performed practice trials or reaching with-
out a band before the beginning of the experimental task. A break was
permitted when requested by the subjects. Participants never reported
fatigue.

Data Collection

Three-dimensional kinematic data were collected with an eight-
camera Vicon MX-13 motion-measurement system (Vicon, Oxford
Metrics) at a sampling frequency of 120 Hz. The cameras were spread
out in a circle around the subject and were spatially calibrated before
each data collection. Rigid bodies with four reflective markers each
were placed on the right arm at 1) two-thirds of the distance between
the neck and the acromion process, to acquire clavicle/scapula motion,
and midway and along the lateral part of the 2) upper arm, 3) the
dorsum of the forearm, and 4) the posterior surface of the hand.
Individual markers used to estimate the joint locations were placed on
the sternum notch, which served as the base frame of the local
coordinate system, 2 cm below the acromion process, on the medial
and lateral humeral epicondyles to estimate the elbow joint axis and
on the radial and ulnar styloid processes of the forearm to estimate the
wrist joint axes. An additional reflective marker was placed near the
base of the pointer. The spherical and cylindrical targets were cali-
brated after each session by using the known fixed position of the
pointer-tip relative to the hand rigid body and recording the hand
while the subject held the pointer-tip statically at the target locations.

One static calibration trial was recorded with the arm extended
forward prior to the experiment. In this trial, the arm was facing
forward from the shoulder, with the upper arm, forearm, and hand
aligned and held parallel to the floor with the thumb pointing upward.
In this position, the arm was parallel to the global y-axes and all joint
angles were defined as zero. The positive axes of each joint coordinate
system in this position pointed laterally (x-axis), forward (y-axis), and
vertically upward (z-axis). Joint angle computation involved comput-
ing the rotation matrices required to take the arm rigid bodies from the
dynamic trial into the calibration position.

Data Processing

Vicon Nexus 1.6.1 software was used to label the reflective mark-
ers and create the geometric model of their kinematic motion. The
signals were then processed with a customized Matlab program
(version 7.1, Mathworks). Marker coordinates were low-pass filtered
at 5 Hz with a bidirectional 4th-order Butterworth filter. The resultant
velocity of the pointer-tip marker was obtained after differentiation of
its x, y, and z coordinates. Kinematic variables of each trial were
time-normalized to 100% for most analyses after differentiation.

Fig. 1. Cartoon depicting the experimental setup. Subjects wore safety goggles
with a cardboard brim attached to the bottom to block vision of their arm and
hand during approximately the first half of the reach. Either a spherical target
or a cylinder (illustrated here) was hung from strings from a post to increase
the need to control the terminal reach precisely. The Thera-Band was attached
with hooks to padded cuffs placed around the upper arm and distal forearm so
that they spanned the elbow joint.
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[D. J. S. Mattos, M. L. Latash, E. Park, J. Kuhl, J. P. Scholz J Neurophysiol 106:1424 (2011)]

UCM

perp UCM



Model of UCM with back-coupling

Jacobian divide the space of virtual joint velocities into two subspaces (Fig. 3, left).

Note that these subspaces depend on the joint configuration at which the Jacobian is

computed.

Given the virtual joint velocity, �̇, the associated self-motion is

s = ET · �̇ (6)

This equation can be joined to the Jacobian equation 5 to form an augmented Jacobian

equation ⇤

⌥⌥⇧
v

s

⌅

��⌃ =

⇤

⌥⌥⇧
J

ET

⌅

��⌃ · �̇ (7)

in which an explicit description of self-motion, s, is added to the virtual end-e�ector

velocity, v. This augmented Jacobian equation is invertable:

�̇ =

⇤
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J+ E

⇥
·
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v

s

⌅

��⌃ = J+ · v + E · s (8)

where the matrix, J+, is the Moore-Penrose pseudoinverse (see, for instance, Murray,

Li, & Sastry, 1994). This equation decomposes the joint configuration velocity, �̇, into

two components: J+ · v is the range space and E · s the null space component (see left

panel of Fig. 3).

The key idea of our model is to use this inversion to derive a dynamical system from

which the virtual joint trajectory emerges as a solution. The appropriate equation

�̈ =
�
J+ E

⇥
·

⇤

⌥⌥⇧
v̇ � J̇ · �̇

ṡ � ĖT · �̇

⌅

��⌃ (9)

is obtained by taking the time derivative of Eq. 7. In this formulation, the dynamics in

the two subspaces of range-space and null-space motion are decoupled! The range-space

dynamics generates motion that tracks the timing signal via Eq. 5. The vector-field

15

is assumed to be much weaker within the uncontrolled manifold (see right panel of

Fig. 3), leading to reduced stability of joint configurations that lead to the same end-

e�ector state. We test di�erent hypotheses for this component of the dynamics. The

most radical formulation of “uncontrol” is that ṡ = 0, so that virtual self-motion is not

stabilized at all. Any initial self-motion will continue undamped. This is clearly not

realistic (joint configurations could reach joint limits, for instance) but is nevertheless

a useful limit case. The more general hypothesis may be formulated mathematically

as

ṡ = ��s1E
T · (⇥ � �d) � �s2E

T · (⇥̇ � �̇d). (10)

This hypothesis says that when the estimated real joint configuration, �d, deviates

from the virtual joint configuration, ⇥, then this leads to an update of the virtual joint

configuration within the null space of the Jacobian (brought about by projecting the

di�erence onto the basis vectors of the null space, ET ). The same kind of mechanism

may occur at the level of joint velocities (second term). The real joint configuration

must be sensed and estimated, leading to processing delays (index d, see Appendix D

for details). This form of back-coupling of the real into the virtual joint configuration

dynamics implies both stabilization of the joint configuration within the uncontrolled

manifold (through the terms dependent on ⇥ and ⇥̇), as well as driving virtual self-

motion (when the terms (⇥��d) and (⇥̇� �̇d) are di�erent from zero). The projection

of the back-coupling term onto the null space ensures that the dynamics within the

space of self-motion depends only on components of ⇥ and ⇥̇ within that subspace, so

that the range-space and null-space remain decoupled.

That this neuronal dynamics is a closed description in the space of the virtual joint

configuration ⇥ and velocity ⇥̇ is seen by replacing all references to the end-e�ector

16
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Motor equivalence: model
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[Martin, Scholz, Schöner, unpublished]
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Motor equivalence: implications

UCM structure of variance does not 
necessarily predict Motor Equivalence: a 
model that accounts for UCM variance does 
not predict Motor Equivalence

But the mechanism that is critical for ME, 
back-coupling, also contributes to UCM 
variance. 



Motor equivalence: implications

back-coupling reflects that 
movement plans are in a 
loop, in which they “yield” 
to sensory information 
about the periphery

=> we need a better 
understanding of back-
coupling

movement timing

neuronal dynamics of 
virtual joint trajectory

muscle-joint model

biomechanics

movement preparation

back-
coupling

decoupling

basal ganglia cerebellum

premotor cortex

spatial representation

scene representation

visual system

parietal cortex

motor cortex

proprioception

spinal cord

sensori-motor periphery

movement initiation/
termination



Synergy has two aspects:

descending neural organization induces co-variation

recurrent coupling induces UCM structure

these are caused by two different portions 
of a neural network

the feed-forward projection from motor command to 
DoF

and recurrent connections and/or feedback to the 
motor command level 

Back-coupling

a new hypothesis that goes beyond UCM and synergy 

Conclusions



Account for both/all

forward projection plus

external or 

internal feedback loop

back-coupling

accounts for 

structure of variance

self-motion

motor equivalence 

arm in space

[Reimann, Schöner, submitted]
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metaphor
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