Degree of Freedom problem, synergies, and the uncontrolled manifold

Gregor Schöner Institut für Neuroinformatik Ruhr-Universität Bochum, Germany

Degree of freedom problem

 $\begin{aligned} x &= I_1 \cos(\theta_1) + I_2 \cos(\theta_1 + \theta_2) + I_3 \cos(\theta_1 + \theta_2 + \theta_3) \\ y &= I_2 \sin(\theta_1) + I_2 \sin(\theta_1 + \theta_2) + I_3 \sin(\theta_1 + \theta_2 + \theta_3) \end{aligned}$

The degree of freedom problem

- The strongest form of the DoF problem: redundant effector systems
- redundance being defined relative to a task

Redundancy formalized

task variable (x,y)

elemental variables joint angles theta I, theta2, theta 3

 $x = I_1 \cos(\theta_1) + I_2 \cos(\theta_1 + \theta_2) + I_3 \cos(\theta_1 + \theta_2 + \theta_3)$ $y = I_2 \sin(\theta_1) + I_2 \sin(\theta_1 + \theta_2) + I_3 \sin(\theta_1 + \theta_2 + \theta_3)$

Degree of freedom problem

is it relevant?

- yes... in many tasks redundancy occurs
 - e.g., 3D positioning in point vs. >10 joints in an arm
- second level of redundancy:
 - many muscles per joint (e.g. about 750 muscles in the human body vs. about 50 Dof)

Bernstein problem

Nikolai Bernstein... 1930's... in the Soviet Union

"how to harness the many DoF to achieve the task"

Bernstein's workers

- highly skilled workers wielding a hammer to hit a nail... => hammer trajectory in space less variable than body configuration
 - as detected in superposing spatial trajectories of lights on hammer vs. on body..

but:

camera frame anchored to nail/space, while initial body configuration varied

Bernstein's workers

was the hammer position in space less variable than the joint configuration?

that is, does the task structure variance?

so that the solution to the degree of freedom problem lies in the variance/stabilty of the joint configuration?

but: does this make any sense?

different reference frames for body vs. task

different units in the task vs joint space

The concept of a synergy: classical

multiple degrees of freedom/muscles are coactivated in a characteristic pattern

- leading to covariation of these DoF/muscle activations in time
- leading to covariation of these DoF/muscle activation when movement parameters are varied
- "sharing" aspect of synergies

Classical synergy: data analysis

- Throw data from time series under different conditions (sometimes including repetitions of movements) into one big data set and look for principal components
- If a small number of PC's is sufficient to account for most of the variance, conclude that few synergies at at work
- or establish co-variation among DoF/ muscles directly by testing for significant correlation

Classical synergy: accounts

motor commands

- A small number of descending commands specify the synergies
- these are distributed to a large number of DoFs/muscles by a forward neural network
 - the forward connectivity pattern defines the synergy
 - induces the co-variation among the DoF when the command varies.

Synergy: experimental use

Classical synergy: accounts

motor commands

Classical synergy: variance

variance here

motor commands

Variance that arises from stochastic motor commands induces covariance at DoFs

- = opposite of the UCM ("anti-correlation" or "compensation")
- => tension between classical synergy and UCM

leads to covariance here **DoF/muscles**

Classical synergy: variance

motor commands

- variance induced at the level of the individual DoF/muscles is uncorrelated
- = the null hypothesis of UCM: the same variance in all direction
 - => tension between classical synergy and UCM
- variance induced here: is uncorrelated **DoF/muscles**

Classical synergy: DoF problem

classical synergy concept is thought of as a solution to the DoF problem: shared input

uncontrolled manifold (UCM)

the many DoF are coordinated such that variance that affects a smaller number of task variables is smaller than variance that does not affect a task variable

leading to compensation among DoF (or "anti-correlation")

hypothesis testing

- align trials in time, computer variance at each time slices
- formulate hypothesis about task variable
 - compute null-space (tangent to the "uncontrolled manifold")
 - predict there is more variance within null space than perpendicular to it

uncontrolled manifold hypothesis

hypothesis testing

- align trials in time, computer variance at each time slices
- formulate hypothesis about task variable
 - compute null-space (tangent to the "uncontrolled manifold")
 - predict there is more variance within null space than perpendicular to it

hypothesis testing

- align trials in time, computer variance at each time slices
- formulate hypothesis about task variable
 - compute null-space (tangent to the "uncontrolled manifold")
- predict there is more variance within null space than perpendicular to it

- supplement hypothesis testing by checking for correlation (Hermann, Sternad...)
 - look for increase in variance of task variable when correlation within data is destroyed

Example I: pointing with I0 DoF arm at targets in 3D

[from: Tseng, Scholz, Schöner: Motor Control (2002)]

task specificity of the structure of the joint variance

is joint variance always structured by the end-effector spatial position?

no: depends on task

Example 2: shooting with 7 DoF arm at targets in 3D

[from Scholz, Schöner, Latash: EBR 135:382 (2000]

Example 2: shooting with 7 DoF arm at targets in 3D

Example 2: shooting with 7 DoF arm at targets in 3D

limits of redundancy

Example 3:

sit to stand transition as a whole body movement

hypothesis: horizontal CM

hypothesis: horizontal head position

[from: Scholz, Schöner EBR 126:289 (1999)]

hypothesis: vertical CM

loss of redundancy at the

hypothesis: vertical head position

Joint Configuration Variability

[from: Scholz, Schöner, EBR 126:289 (1999)]

UCM synergy: account

more complex than for classical synergy... let's go through case studies first

UCM synergy: accounts. Case study posture

- UCM non-trivial in posture because the classical inverted pendulum hypothesis predicts the opposite:
 - because the ankle
 moves the body in
 space, it lies orthogonal
 to the UCM predicting
 more variance in ORT
 than in UCM

UCM synergy: accounts. Case study posture

x10⁻³ CM Σ U 1.0 orthogonal to UCM DOF (radians² 0.8 0.6 0.4 0.2 0.0 Variance per 1.0 **Head Position** 0.8 0.6 0.4 0.2 0.0 EC EO

but: find signature of UCM synergy

Hsu, Scholz, Schöner, Jeka, Kiemel, 2007

Multi-segment postural control model

PhD thesis Hendrik Reimann Reiman, Scholz, Schöner (in preparation)

Multi-segment postural control model

bio-mechanical dynamics

PhD thesis Hendrik Reimann Reiman, Scholz, Schöner (in preparation)

Multi-segment postural control model

muscle model

muscle model

$$\theta_3$$

 θ_2
 θ_1

$$E_{AG} = e^{\left[\alpha_{E}\left(\hat{\theta} - \lambda + \rho + \mu(\hat{\theta} - \dot{\lambda})\right)\right]^{+}} - 1,$$

$$E_{AN} = e^{\left[-\alpha_{E}\left(\hat{\theta} - \lambda - \rho + \mu(\hat{\theta} - \dot{\lambda})\right)\right]^{+}} - 1.$$

$$E = \left(-E_{AG} + E_{AN}\right) \eta_{m}$$

$$\widetilde{T}_{act} = AE$$

$$\tau_{m}^{2}\ddot{T}_{act} + 2\tau_{m}\dot{T}_{act} + T_{act} = \widetilde{T}_{act}$$

$$active$$

$$muscle$$

$$muscle$$

$$torque$$

sensor model

$$\widehat{\dot{c}}(t) = \dot{c}(t - d_c) + \eta_{\dot{c}},$$
$$\widehat{\ddot{c}}(t) = \ddot{c}(t - d_c) + \eta_{\ddot{c}},$$

control model

Results: model stands

Results: model falls

when the sensory feedback loop about the body in space is removed

of motor neurons)

2s

Results: model predicts joint spectra

Results: model predicts UCM signature

Why does this work? $\dot{\lambda} = F_c = R^{-1} A^{-1} M J_c^+ \left(-\alpha_{\dot{c}} \hat{\vec{c}} - \alpha_{\ddot{c}} \hat{\vec{c}} \right)$ $\hat{\dot{c}}(t) \hat{\ddot{c}}(t) \rightarrow \text{motor commands}$

DoF/muscles

- model looks like a feedforward neural network
- should not have a UCM signature: classical synergy?

Why does this work?

- feedback loop through the world stabilizes configuration in ORT space
- DoF are effectively coupled through that loop to generate the compensatory signature

UCM synergy accounts: Case study: Reaching movements

Experiment from John Scholz's lab:

reaching with 4DoF in 2D

Neural process model of 4DoF reaching

[Martin, Scholz, Schöner. Neural Computation 21, 1371–1414 (2009]

model

biomechanical dynamics

$$M(\boldsymbol{\theta}) \cdot \ddot{\boldsymbol{\theta}} + H(\boldsymbol{\theta}, \dot{\boldsymbol{\theta}}) = \mathbf{T}_{\mathrm{m}}$$

muscle models

$$T_{i} = K_{l} \cdot \left(\left(e^{[K_{nl} \cdot (\theta_{i} - \lambda_{i}^{p})]^{+}} - 1 \right) - \left(e^{-[K_{nl} \cdot (\theta_{i} - \lambda_{i}^{m})]^{-}} - 1 \right) \right) + \mu_{bl} \cdot \operatorname{asinh}(\dot{\theta}_{i} - \dot{\lambda}_{i}) + \mu_{rl} \cdot \dot{\theta}_{i}.$$

neural dynamics of lambda

$$\dot{\mathbf{v}} = -\beta_v (\mathbf{v} - \mathbf{u}(t)), \qquad \text{timing signal}$$
$$\mathbf{v}(t) = \mathbf{J}[\boldsymbol{\lambda}(t)] \cdot \dot{\boldsymbol{\lambda}}(t),$$

$$\ddot{\boldsymbol{\lambda}} = (\mathbf{J}^{+} \mathbf{E}) \cdot \begin{pmatrix} -\beta_{v} \mathbf{J} \cdot \dot{\boldsymbol{\lambda}} + \beta_{v} \mathbf{u} - \dot{\mathbf{j}} \cdot \dot{\boldsymbol{\lambda}} \\ -\beta_{s1} \mathbf{E}^{T} \cdot (\boldsymbol{\lambda} - \boldsymbol{\theta}_{d}) - \beta_{s2} \mathbf{E}^{T} \cdot (\dot{\boldsymbol{\lambda}} - \dot{\boldsymbol{\theta}}_{d}) - \mathbf{E}^{T} \cdot \dot{\boldsymbol{\lambda}} \end{pmatrix}$$

$$back-coupling$$

=> control is stable in range space

=> marginally stable in UCM/null space

where does this come from?

start with pseudo-inverse of: $v=J\lambda$

$$\dot{\lambda} = J^+ v$$
$$\ddot{\lambda} = J^+ \dot{v} \quad [+\dot{J}^+ v \approx 0]$$

a neuron, n, encoding rate of change of $\,\lambda\colon\,n=\lambda\,$

$$\dot{n} = J^+ \dot{v} \quad \text{<= insert timing signal} \quad \dot{v} = -v + u$$

$$\dot{n} = J^+ (-v + u) \quad \text{<= insert } v = J\dot{\lambda}$$

$$\dot{n} = J^+ (-J\dot{\lambda} + u) \quad \text{<= replace } n = \dot{\lambda}$$

$$\dot{n} = J^+ (-Jn + u)$$

$$\dot{n} = -J^+ Jn + J^+ u$$

where does this come from?

where does this come from?

how does this do the UCM effect?

how does this do the UCM effect?

UCM synergy accounts: case study finger movements

Mark Latash et al: press with two fingers to produce fixed total force

model

task variable F

$$F = F_1 + F_2$$

Jacobian

$$J = (1 \ 1)$$

Pseudo-inverse

$$J^+ = \begin{pmatrix} 1/2\\1/2 \end{pmatrix}$$

projection onto null space

$$1 - J^+ J = \begin{pmatrix} 1/2 & -1/2 \\ -1/2 & 1/2 \end{pmatrix}$$

model

two neurons to represent forces

compare to Latash et al 2005

candidate for recurrent inhibitory interaction: Renshaw system

Self-motion

all this was about variation/variance...

how about the motion itself, the mean motion... does that reveal the DoF problem and its solution?

Self-motion

[Martin, Scholz, Schöner. Neural Computation 21, 1371–1414 (2009]

reaching movement in 3D, 10 DoF also shows considerable amount of self-motion

[Martin, Scholz, Schöner. Neural Computation 21, 1371–1414 (2009]

Motor equivalence

- can we see directly the use of the redundant/ abundant DoF to solve some problem?
- motor equivalence: "task achieved with a new joint configuration following perturbation, different initial condition, or changed conditions"

Motor equivalence

- "task achieved with other than standard joint configuration following perturbation or other change"
- but: task never achieved 100 percent
- how much error on task level compared to how much error at joint level? how do you compare?
- answer: error lies more within UCM than perpendicular!

Motor equivalence in quiet stance

[Scholz, Schöner, Hsu, Jeka, Horak, Martin. Exp Brain Res (2007)]

Motor equivalence in quiet stance

[Scholz, Schöner, Hsu, Jeka, Horak, Martin. Exp Brain Res (2007)]

Motor equivalence in quiet stance

[Scholz, Schöner, Hsu, Jeka, Horak, Martin. Exp Brain Res (2007)]

Motor equivalence in reaching

[D. J. S. Mattos, M. L. Latash, E. Park, J. Kuhl, J. P. Scholz J Neurophysiol 106:1424 (2011)]

Model of UCM with back-coupling

 $\dot{\mathbf{s}} = -\beta_{s1}\mathbf{E}^T \cdot (\boldsymbol{\lambda} - \boldsymbol{\theta}_d) - \beta_{s2}\mathbf{E}^T \cdot (\dot{\boldsymbol{\lambda}} - \dot{\boldsymbol{\theta}}_d).$

Motor equivalence: model

[Martin, Scholz, Schöner, unpublished]

Motor equivalence: implications

- UCM structure of variance does not necessarily predict Motor Equivalence: a model that accounts for UCM variance does not predict Motor Equivalence
- But the mechanism that is critical for ME, back-coupling, also contributes to UCM variance.

Motor equivalence: implications

- back-coupling reflects that movement plans are in a loop, in which they "yield" to sensory information about the periphery
- => we need a better understanding of backcoupling

Conclusions

Synergy has two aspects:

descending neural organization induces co-variation

recurrent coupling induces UCM structure

- these are caused by two different portions of a neural network
 - the feed-forward projection from motor command to DoF
 - and recurrent connections and/or feedback to the motor command level

Back-coupling

a new hypothesis that goes beyond UCM and synergy

Account for both/all

forward projection plus

external or

🛋 internal feedback loop

back-coupling

accounts for

- structure of variance
- self-motion
- 🗖 motor equivalence

[Reimann, Schöner, submitted]

Conclusion

Principles

