How to ORGANIZE BEHAVIORS in DFT

Movement generation by humans and robots: a dynamical systems perspective
June 09, 2016
RUB, Bochum, Germany

Mathis Richter
SIMULATIONS OF discrete nodes
ORGANIZING behaviors
TRADITIONAL
sequence generation

![Graphs of traditional sequence generation](image-url)
IRREGULAR vs TIMING
• conflict between stability and sequentiality
• there must be a structure in the (neural) representation of an action
Behavior

Elementary BEHAVIOR

u_{int}
intention field

x
sensory-motor system

u_{\cos}
CoS field

y
3 COGNITIVE MODELS of sequences

chaining

A B C

ordinal

A. B. C.

positional

A B C

(Henson, 1998)
2 TYPES of organization

1 Serial order

2 Behavioral organization
1 SERIAL ORDER
arbitrary sequences
serial order architecture

(Sandamirskaya, Schöner, 2010)
a ROBOTIC example
2 Behavioral Organization

flexibility
3 COGNITIVE MODELS of sequences

chaining

ordinal

positional

(Henson, 1998)
PRECONDITION constraint
COMPETITION constraint
a ROBOTIC example
(almost) the whole ARCHITECTURE
GRASPING and POINTING
ACTIVATION over time
\[
\tau \dot{d}_i(t) = -d_i(t) + h_d + c_0 f(d_i(t)) \\
- c_1 \sum_{i' \neq i} f(d_{i'}(t)) + c_2 f(d_{i-1}^m(t)) \\
- c_3 f(d_i^m(t)) - I_c(t)
\]

\[
\tau \dot{d}_i^m(t) = -d_i^m(t) + h_m + c_4 f(d_i^m(t)) \\
- c_5 \sum_{i' \neq i} f(d_{i'}(t)) + c_6 f(d_i(t))
\]