Motor control and muscles

Gregor Schöner

What is entailed in generating an object-oriented movement?

- scene and object perception
- movement preparation
- movement initiation and termination
- movement timing and coordination
- motor control
- degree of freedom problem

motor control

- how are forces generated that move effectors?
- by muscles, obviously...
- ... and by gravity
- and by inertia...

motor control

posture of the elbow joint with the arm in horizontal position

what about the elbow is "controlled"?

- the elbow does not behave like a passive mechanical system with a free joint at the elbow: $J\ddot{\theta}=0$
- where J is inertial moment of forearm (if upper arm is held fixed)
- Instead, the elbow resists, when pushed => there is active control= stabilization of the joint

the mass spring model

 Anatol Feldman has figured out, what the macroscopic description of this stabilization is

the invariant characteristic

the mass-spring model

- this is an elastic force (because it is proportional to position)
- there is also a viscous component (resistance depends on joint velocity)

$$J\ddot{\theta} = \boxed{-k(\theta - \lambda) - \mu\dot{\theta}}$$

active torques generated by the muscle

agonist-antagonist action

- one lambda per muscle
- tested on muscles detached at one end
- co-contraction controls stiffness

stiffness

- the stiffness, k, can be measured from perturbations
- the viscosity "mu" is more difficult to determine

$$J\ddot{\theta} = -k(\theta \!-\! \lambda) \!-\! \mu \dot{\theta}$$

neural basis of EP model: spinal reflex loops

 alphagamma reflex loop generates the stretch reflex

[Kandel, Schartz, Jessell, Fig. 37-11]

spinal cord: reflex loops

the stretch reflex acts as a negative feedback loop

[Kandel, Schartz, Jessell, Fig. 31-12]

spinal cord: coordination

Ia inhibitory interneuron mediates reciprocal innervation in stretch reflex, leading to automatic relaxation of antagonist on activation of agonist

[Kandel, Schartz, Jessell, Fig. 38-2]

spinal cord: synergies

Renshaw cells produce recurrent inhibition, regulating total activation in local pool of muscles (synergy)

[[]Kandel, Schartz, Jessell, Fig. 38-3]

Posture

muscle-joint systems have an equilibrium point during posture that is stable against transient perturbation

Movement entails change of posture

that equilibrium point is shifted during movement so that after the movement, the postural state exists around a new combination of muscle lengths/joint configurations

Movement entails change of posture

- most models account for movement in terms of generation of joint torques....
- => the shift of the EP is the single most overlooked fact in control models of movement generation

Does the "motor command" specify force/torque?

no! Because the same descendent neural command generates different levels of force depending on the initial length of

Virtual trajectory

- shifting the equilibrium point is necessary, but is it also sufficient?
- first answer: yes... simple ramp-like trajectories of the "r" command ("virtual trajectories") shift the equilibrium point smoothly in time...

time continuous shift of the equilibrium point

during movement an external torque moves a joint to the target position

in the deafferented animal, the joint returns to the "virtual trajectory"

Architecture

[Zibner, Tekülve, Schöner, ICDL 2015]

Architecture

command done

Internal Velocity Profiles Trajectories T_3 Т, angential velocity [cm/s] oosition x₂ [cm] time delay between "command' and movement broad implications for control position x1 [cm] time [s] **End-Effector Velocity Profiles** Internal and End-Effector Velocity Profiles for coordination angential velocity [cm/s] tangential velocity [cm/s] for sequential organization non-isomorphic control signals? time [s] time [s]

[Zibner, Tekülve, Schöner, ICDL 2015]

Experimental data

[Ghafouri Feldman, 2001]

Architecture: online updating

[Zibner, Tekülve, Schöner, ICDL 2015]

Virtual trajectory

- This view of movement generation is "quasistatic": the effector "tracks" the attractor that is shifted by the virtual trajectory
- This seems to trivialize the "optimal control" problem = generating the right time course of motor commands so that the effector arrives at the target in the desired time with zero velocity (and has some desired smooth temporal shape).

But

- is this simplification of movement generation as a "quasi-postural" system feasible for fast movements given the relatively soft muscles, the time delays involved in generating torque from muscles, etc. ?
 - the strong time delay between the command and the movement is a hint that this needs investigation

Virtual trajectory

- uses a simplified version of the Gribble Ostry muscle model
- and examines the demands on virtual trajectories (r and c commands) to achieve realistic movement trajectories

=> Cora Hummert's master thesis

 $F = M[f_1 + f_2 \operatorname{atan}(f_3 + f_4 \dot{l})] + k(l - l_r)$

Biomechanical dynamics

... standard...

bi-articulatory muscles make a proportional contribution

$$T = -H \cdot F$$

with H defined as

$$H = \frac{\partial l}{\partial \theta} = \begin{pmatrix} \frac{\partial l}{\partial \theta_1} & \frac{\partial l}{\partial \theta_2} \end{pmatrix}$$

$$\ddot{\theta} = I^{-1}(T - T_{ext} - C\dot{\theta})$$

$$x = \cos(\theta_1) \cdot l_1 + \cos(\theta_1 + \theta_2) \cdot l_2$$
$$y = \sin(\theta_1) \cdot l_1 + \sin(\theta_1 + \theta_2) \cdot l_2$$

$$l = c + c'\theta + c''\theta^2$$

reproduces Pilon, Feldmann 2006

ramps of "r" command produce realistic movement trajectories only if the cocontraction "c" command is just right

increasing the co-contraction command does not robustly speed up movement

the Latash "N-shape" of the r-command is capable of creating fast movements

n-shape crossing t₁ [s] **N-shape**

interaction torques

interaction torques

0.7

inverse models

- in different places in work space where different inertial and interaction torques arise, the motor commands must be different to achieve realistic trajectories
- => kinetics must be taken into account

Conclusion

muscle dynamics and biomechanical dynamics make that the optimal control problem cannot be entirely trivialized: appropriate space-time virtual trajectories are needed to generate realistic movement behavior