Attractor dynamics approach to behavior generation: vehicle motion

Gregor Schöner, INI, RUB

Embodied nervous system

- effectors
- sensors
- a nervous system
- a body
- situated in a structured environment
- => emergent behavior

Braitenberg vehicle

Emergent behavior: taxis

Emergent behavior: this is a dynamics

- feedforward nervous system
- + closed loop through environment
- => (behavioral) dynamics

Complex environment => complex dynamics

- bistable dynamics for bimodal intensity distribution
- => nonlinear dynamics makes selection decision

Neural dynamics

- "inner dynamic state" of the nervous system that is independent of body or sensors: activation dynamics=neural dynamics
- can create cognitive competences such as "mental selection" (e.g.,, selective attention), or working memory

Neural and behavioral dynamics

couple peak in direction field into dynamics of heading direction as an attractor

Basic ideas of attractor dynamics approach

- behavioral variables
- time courses from dynamical system: attractors
- tracking attractors
- bifurcations for flexibility

Behavioral variables: example

vehicle moving in 2D: heading direction

Behavioral variables: example

constraints: obstacle avoidance and target acquisition

Behavioral variables

- describe desired motor behavior
- "enactable"
- express constraints as values/value ranges
- appropriate level of invariance

- generate behavior by generating time courses of behavioral variables
- generate time course of behavioral variables from attractor solutions of a (designed) dynamical system
- that dynamical system is constructed from contributions expressing behavioral constraints

Behavioral dynamics: example

behavioral constraint: target acquisition

Behavioral dynamics: example

behavioral constraint: obstacle avoidance

- each constribution is a "force-let" with
 - specified value
 - strength
 - range

multiple constraints: superpose "force-lets"

fusion dφ/dt target 2 fused attractor target I individual attractors vehicle

decision making

Bifurcations switch between fusion and decision making

- an example closer to "real life": bifurcations in obstacle avoidance and target acquisition
- constraints not in conflict

constraints in conflict

transition from "constraints not in conflict" to "constraints in conflict" is a bifurcation

- Such design of decision making is only possible because system "sits" in attractor.
- This reduces the difficult design of the full flow (ensemble of all transient solutions) of non-linear dynamical systems to the easier design of attractors (bifurcation theory).

- But how may complex behavior be generated while "sitting" in an attractor?
- Answer: force-lets depend on sensory information and sensory information changes as the behavior unfolds

[Schöner, Dose, 1992]

[Schöner, Dose, Engels, 1995]

So far: "symbolic" approach

high-level implementation: knowledge about objects in the world ("obstacles", "targets", etc)

Now: "sub-symbolic" approach

low-level implementation: use sensory information directly, not via objects

Target acquisition: still symbolic

- targets are segmented... in the foreground
- => need neural fields to perform this segmentation from low-level sensory information: Dynamic Field Theory ...

- obstacles need not be segmented
- do not care if obstacles are one or multiple: avoid them anyway...

- \blacksquare each sensor mounted at fixed angle θ
- \blacksquare that points in direction $\psi = \Phi + \theta$ in the world
- erect a repellor at that angle

$$f_{\text{obs},i}(\phi) = \lambda_i(\phi - \psi_i) \exp\left[-\frac{(\phi - \psi_i)^2}{2\sigma_i^2}\right]$$
 $i = 1, 2, \dots, 7$

Note: only Φ - ψ =- θ shows up, which is constant!

=> force-let does not depend on Φ!

2 VII obst

$$f_{\text{obs},i}(\phi) = \lambda_i(\phi - \psi_i) \exp\left[-\frac{(\phi - \psi_i)^2}{2\sigma_i^2}\right] \qquad i = 1, 2, \dots, 7$$
$$\lambda_i = \beta_1 \cdot \exp\left[-\frac{d_i}{\beta_2}\right]$$

Repulsion strength decreases with distance, d_i

=> only close obstacles matter

$$f_{\text{obs},i}(\phi) = \lambda_i(\phi - \psi_i) \exp\left[-\frac{(\phi - \psi_i)^2}{2\sigma_i^2}\right]$$

$$\sigma_i = \arctan\left[\tan\left(\frac{\Delta\theta}{2}\right) + \frac{R_{\text{robot}}}{R_{\text{robot}} + d_i}\right].$$

Cangular range

2 depends on sensor

cone Δθ and size

over distance

 $\Delta\theta$

=> as a result, range becomes wider as obstacle moves closer

summing contributions from all sensors

$$\frac{d\phi}{dt} = f_{\text{obs}}(\phi) = \sum_{i=1}^{7} f_{\text{obs},i}(\phi)$$

Obstacle avoidance: sub-symbolic

- but why does it work?
- shouldn't there be a problem when heading changes (e.g. from the dynamics itself)?

Obstacle avoidance: sub-symbolic

- but why does it work?
- shouldn't there be a problem when heading changes (e.g. from the dynamics itself)?

Obstacle avoidance: sub-symbolic

- but why does it work?
- shouldn't there be a problem when heading changes (e.g. from the dynamics itself)?

Behavioral Dynamics

Bifurcations

bifurcation as a function of the size of the opening between obstacles

 $\uparrow d\phi/dt$

Bifurcations

- bifurcation as a function of the size of the opening between obstacles
- =>tune distance dependence of repulsion so that bifurcation occurs at the right opening

Bifurcations

Bifurcation on approach to wall

- initially attractor dominates: weak repulsion
- bifurcation
- then obstacles dominate: strong repulsion and total repulsion

Bifurcation on approach to wall

same with small opening

Bifurcation on approach to wall

at larger
 opening:
 repulsion
 weak all the
 way through:
 attractor
 remains stable

Tracking attractor

as robot
 moves around
 obstacles,
 tracks the
 moving
 attractor

Tracking attractor

as robot
moves in
between
obstacles, the
dynamics
changes but
not the
attractor

Tracking attractors

Observation:

- even though the approach is purely local, it does achieve global tasks
- based on the structure of the environment!

Conclusion

- attractor dynamics works on the basis lowlevel sensors information
- as long at the force-lets model the sensorcharacteristics well enough to create approximate invariance of the dynamics under transformations of the coordinate frames

Summary

- behavioral variables
- attractor states for behavior
- attractive force-let: target acquisition
- repulsive force-let: obstacle avoidance
- bistability/bifurcations: decisions
- can be implemented with minimal requirements for perception