Attractor dynamics
approach to behavior
generation: vehicle
motion

Gregor Schoner, INI, RUB



Embodied nervous system

B effectors —
ﬁ source environment
B sensors

M a nervous system

\J \_J* syetem’
M a body

« 1 nervous
1 system

M situated in a structured
< body

environment = E=. motor
—— — system

B => emergent behavior

Braitenberg vehicle



Emergent behavior: taxis

structured
source environment

\ﬂ Aactivation
e ghar I\,

nervous Intensity
<« system

wheel
<« body A motion

g %(_ motor
system

activation




A intensity

Emergent behavior: AN >

A differences in h'eadir?g
intensity direction

this is a dynamics S

heading

direction
B feedforward nervous system diferences n A
r:lejll”?gghzitvehed differences in
B + closed loop through ensiy
. ert-right )
environment
M => (behavioral) dynamics Aoivane”

heading
direction

source

=

Il




Complex
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Neural dynamics

B “inner dynamic state” o ﬁ
the nervous system that is
independent of body or
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Neural and behavioral dynamics
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Basic ideas of attractor dynamics
approach

B behavioral variables

B time courses from dynamical system:
attractors

B tracking attractors

B bifurcations for flexibility



Behavioral variables: example
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Behavioral variables: example
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Behavioral variables

B describe desired motor behavior
B “enactable”
B express constraints as values/value ranges

M appropriate level of invariance



Behavioral dynamics

B generate behavior by generating time
courses of behavioral variables

B generate time course of behavioral variables
from attractor solutions of a (designed)
dynamical system

B that dynamical system is constructed from
contributions expressing behavioral
constraints



Behavioral dynamics: example

B behavioral constraint: target acquisition
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Behavioral dynamics: example

B behavioral constraint: obstacle avoidance
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Behavioral dynamics
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Behavioral dynamics

B multiple constraints: superpose “force-lets”
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Behavioral dynamics

B decision making
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Behavioral dynamics

o1 bifurcation

M Bifurcations
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Behavioral dynamics

B an example closer to “real life”: bifurcations
in obstacle avoidance and target acquisition
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Behavioral dynamics

Bconstraints in conflict
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Behavioral dynamics

B transition from “constraints not in conflict”
to “‘constraints in conflict” is a bifurcation
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Behavioral dynamics

B Such design of decision making is only
possible because system “sits” in attractor.

B This reduces the difficult design of the full
flow (ensemble of all transient solutions) of
non-linear dynamical systems to the easier
design of attractors (bifurcation theory).



Behavioral dynamics

B But how may complex behavior be
generated while “sitting” in an attractor?

B Answer: force-lets depend on sensory
information and sensory information
changes as the behavior unfolds



heading direction

vehicle R

do/dt




[Schoner, Dose, 1992]



[dm]

Sa@l
40 -

30¢

10k

0
1_ arm ]

[Schoner, Dose, Engel

1 lii.J..I._J..l._illl]_Li.ljil ll_l_l_ll_ll_ll]_]_ll._].l.l‘.ll L k1 1

10 20 5350 40 o

s, 1995]



So far:“symbolic” approach

® high-level
implementation:
knowledge about
objects in the world

(“obstacles”, “targets”,
etc)
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Now: “sub-symbolic” approach

obstacle

B low-level
implementation: use
sensory information
directly, not via
objects




Target acquisition: still symbolic

M targets are segmented... in the foreground

B => need neural fields to perform this
segmentation from low-level sensory
information: Dynamic Field Theory ...
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vehicle



Obstacle avoidance: sub-symbolic

B obstacles need not be segmented

B do not care if obstacles are one or multiple:
avoid them anyway...

A do/at

obstacle

repellor




Obstacle avoidance: sub-symbolic

M each sensor mounted at fixed angle 0

M that points in direction P=®+0 in the world

M erect a repellor at that angle
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[from: Bicho, Jokeit, Schoner]



Obstacle avoidance: sub-symbolic
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Obstacle avoidance: sub-symbolic
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Obstacle avoidance: sub-symbolic
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Obstacle avoidance: sub-symbolic

B => as a result, range becomes wider as obstacle
moves closer

infra-red
Sensor

[from: Bicho, Jokeit, Schoner]



Obstacle avoidance: sub-symbolic

B summing contributions from all sensors

d /
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i=1

Obstacle do /dt/\ resultant

g repeller

377:/2 2[71;(')

[from: Bicho, Jokeit, Schoner]



Obstacle avoidance: sub-symbolic

® but why does it work!?

M shouldn’t there be a problem when heading
changes (e.g. from the dynamics itself)?

Obstacle d(j)/dt/\ resultant
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Obstacle avoidance: sub-symbolic

® but why does it work!?
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Obstacle avoidance: sub-symbolic

® but why does it work!?

M shouldn’t there be a problem when heading
changes (e.g. from the dynamics itself)?
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Behavioral Dynamics
*target

B integrating the two
behaviors
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Bifurcations
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Bifurcations




Bifurcation on approach to wall

M initially
attractor
dominates:
weak
repulsion

M bifurcation

M then obstacles
dominate:
strong
repulsion and
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y 3.5

ARGET

2.5F
4,4 sec OBSTA
1.5F
robot
0.5F

-0

3.5

14,6 sec

2.5r
1.5F

0.5F

3.5¢
2.5F

14,9 sec 15t

0.5F

2

A

39
7

2

| dg/dt obstacle force-let
- - . ¢
T n 27

-1

db/dt total force-let

1
—o— 21
L1

obstacle force-let

dd/dt
H
e _ B
L1 T n 27[
db/dt total force-let




Bifurcation on approach to wall
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Bifurcation on approach to wall

M at larger
opening:
repulsion
weak all the
way through:
attractor
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3.5-
Y SJARGET @
2.5¢
45,2 OBST
sec Y
1.5F
robot
0.5F
'O'“-z 1 0 1
3.5-
X
2.5¢
16,1 sec [ ]
1.5F
0.5F
0% K 0 1
3.5
X
2.5¢
[
17.3 sec 15t
0.5F
-0.53 1 0 1

_1d bt obstacle force-let
; - , 9

» —T B 27

s total force-let

H

» T —~— 2n

b/t obstacle force-le
/-\’;- ~—— (I)
Tﬂﬁ—-—-—-ﬁn




Tracking attractor

M as robot
moves around
obstacles,
tracks the
moving
attractor
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Tracking attractor
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Observation:

B even though the approach is purely local, it
does achieve global tasks

B based on the structure of the environment!



Conclusion

B attractor dynamics works on the basis low-
level sensors information

M as long at the force-lets model the sensor-
characteristics well enough to create
approximate invariance of the dynamics
under transformations of the coordinate

frames



Summary

B behavioral variables

M attractor states for behavior

M attractive force-let: target acquisition

® repu
M bista

sive force-let: obstacle avoidance

vility/bifurcations: decisions

B can be implemented with minimal
requirements for perception



