
Movement generation
for robot arms

Kinematics and Attractor Dynamics for manipulators

robotic arms
they aren’t vehicles

movement generation for
vehicles

• the floor is a 2D environment

• vehicle treated as point

• task: reach goal

• task: avoid obstacles

• not much more vehicles can
do

arms: what changes?
• where we move: environment: 3D

• what we do: more tasks are
possible at the same time or in
sequence: e.g. manipulation

• an interesting point on the arm is
the end-effector

• what we move: chain-of-links or
segments geometry (kinematic
chain)

• but moving a link can affect other
links. complication.

arms: what changes?

• different tasks active at
different times: system needs
to combine tasks that switch
on/off all the time

• does Attractor Dynamics
approach scale-up? what
happens when multiple tasks
are active at the same time?
does it work? why?

rigid bodies
• cannot treat robot as single point

in space, anymore

• connected links

• orientation and translation for
each link: two times 3 dimensions

• we need a way to relate our task
to the links translation and
orientation

• note: not always require specific
orientation and specific translation
for link at the same time

kinematics and kinetics
• kinematics: movement

without forces

• kinetics: (dynamics, not in the
mathematical sense)
movement with forces

• important acting forces:
gravitation, interaction of links

• we push kinetics out to low-
level controller. modern robots
know their own dynamics.

how does the arm move?

• joints: revolute, spherical,
cylindrical, prismatic

• how many DoF and what kind
of joints does the human arm
have?

• typically position controlled
servo-motors

formal constraints
• workspace: either the environment or sometimes space of reachable positions or

(vectors) of the end-effector. Euclidian.

• configuration space: space of all possible (here:) joint positions (vectors). Also joint
space.

• task constraints: equations (equalities or inequalities) that need to be successfully
satisfied for the task. can be vector-valued.

• holonomic constraints: expressible purely via configuration (and time). Reduces
dimension of workspace.

• non-holohomic constraints: Velocity-based constraints. Introduces path-dependency.
Typically vehicles are non-holonomic robots (can’t move side-ways).

• Degrees of Freedom: dimensionality of configuration space.

• Redundancy: Compare DoF and dimensions of task contraints. More DoF than
necessary? Infinite solutions to constraints possible.

✓

p
x

Kinematics

where is the hand?

• forward kinematics

• example: single revolute joint

•

• generally: is a function of ✓

l1

l1 cos ✓1
l 1
si
n
✓ 1

p(✓)

p(✓1) =

✓
l1 cos ✓1
l1 sin ✓1

◆

p ✓

where is the hand?

• forward kinematics

• example: revolute joint and
prismatic joint

p(✓)

✓1

✓2

l1

l 2

p(✓) = p(✓1, ✓2)

=

✓
l1 + ✓1 + l2 cos ✓2

l2 sin ✓2

◆

what happens if I move a
joint?

• differential (forward)
kinematics

• (kinematic) Jacobian matrix 
 
 
 
 
 
 
 
 
 
 

J =

@p1(✓)
@✓1

@p1(✓)
@✓2

@p2(✓)
@✓1

@p2(✓)
@✓2

!

=

✓
1 �l2 sin ✓2
0 l2 cos ✓2

◆

ṗ = J ✓̇

J

what happens if I move a
joint?

J =

@p1(✓)
@✓1

@p1(✓)
@✓2

@p2(✓)
@✓1

@p2(✓)
@✓2

!

=

✓
1 �l2 sin ✓2
0 l2 cos ✓2

◆

ṗ = J ✓̇

what happens if I move a
joint?

J =

@p1(✓)
@✓1

@p1(✓)
@✓2

@p2(✓)
@✓1

@p2(✓)
@✓2

!

=

✓
1 �l2 sin ✓2
0 l2 cos ✓2

◆

ṗ = J ✓̇

what happens if I move a
joint?

ṗ = J ✓̇

• differential (or instantaneous) kinematics provide a
relationship between velocities

• note: J changes when changes

• what happens when J is singular? kinematic
singularity. rank changes

• since J changes, these singularities can appear and
disappear (at certain configurations) while moving

• nullspace of J: space of all that project to a of 0.

J =
@p(✓)

@✓
✓

ṗ✓̇

how do I get the hand to
where I want it?

• we now need to look at the
inverse problem: what joints do
I need to set to what values to
reach a certain point in
workspace?

• closed form solution (inverse
of the forward kinematics)

• the forward kinematics
can in general not be
analytically inverted

• geometrical construction.
depends on geometry of robot!

p(✓)

how do I get the hand to
where I want it?

� r

l1

l2

↵

✓2 = ⇡ ± ↵

↵ = cos

�1

✓
l21 + l22 � r2

2l1l2

◆

✓1 = arctan2(y, x)± �

� = cos

�1

✓
r2 + l21 � l22

2l1l2

◆

(x, y)

how do I get the hand to
where I want it?

ṗ =
dp

dt
=

dp

d✓

d✓

dt
= J ✓̇

• the differential kinematics
may be simpler to invert?  
 
 

• … if J is invertible.

• is J singular?

• is J even quadratic?

• iff invertible:  
 
we can calculate a commanded joint
velocity

• integrate to to send commands

✓̇ = J�1ṗ

✓̇ ✓

inverse of differential
kinematics

• if J is not invertible, we can
use the Moore-Penrose
pseudo-inverse  
 

• a generalized matrix inverse

•

• property: minimizes 

J+ = JT
�
JJT

��1

✓̇ = J+ṗ

|✓̇|

Attractor Dynamics
for robot arms

recap: tasks in Attractor
Dynamics

• task as differential equation

• task is adhered-to if system is
in a fixed-point

• move quickly into attractor
state

• in reality: near attractor
suffices

• avoidance: repellors

• task akin “forcelet”

�̇ = f(�)

�̇ = 0

obs

d /dt

repellor

generating complex
movements

different tasks

• hand position, bottle position

• hand orientation, hand
opening, hand closing

• bottle orientation, glass
position, glass filling

• obstacle positions, if any

• reach bottle

• grasp bottle

• pour the drink

• put bottle on table

• avoid obstacles

different tasks
• different variables are

relevant for different tasks

• a task can be expressed as
constraint on that variable (stable
fixed-point in a dynamical system)

• but how do and relate to
and in joints?

• task defines submanifold on
configuration space

• different tasks live on different
sub- manifolds of configuration
space. how can this work?

�̇ = f(�)

� =?

”�”

�̇
✓̇

✓�

independent stabilization
• independent forcelets

• each a (possibly different)
relevant variable

• constraints expressed as
attractors/repellors in
dynamical system over that
relevant variable only

• find joint space changes that
realize this task
(independently)

−2 −1.5 −1 −0.5 0 0.5 1
−0.5

0

0.5

1

1.5

2

reintegration of independent
tasks

• superposition of independent
forcelets

• now new vector field realizes
compromise of tasks

task constraint realized

reintegration of independent
tasks

joint angles  
that realize 

task 1 
(hand position)

reintegration of independent
tasks

joint angles  
that realize 

task 2 
(hand orientation)

reintegration of independent
tasks

joint angles  
that realize 

task 1
and

task 2

�

v
k

p

reaching

reaching
• deviation angle dynamics,

analogously to heading angle
dynamics (define a plane M)  
 

• angle:

• insert a step: In workspace,
what vector would realize the
change?

⇥̇ = fdir = ��� sin⇥

� =](ẋ, k)

v?
�

reaching

v
k

reaching

• from geometry we can find:  
 

• transformation of forcelet into
workspace:

v? =

✓
k� ⇥k,v⇤

⇥v,v⇤v
◆

|v|
|k� hk,vi

hv,viv|

fdir = fdir · v? = ��� sin⇥ · v?

v?
�

v
k

reaching
• transformation from

workspace into joint-space:

• per inverse differential
kinematics: 
 
 
 
 

• we now have a “forcelet” in
joint space

J+ = JT
�
JJT

��1

Fdir = J+ · fdir = ��� sin⇥ · J+ · v?

v?

speed
• analogous to the vehicle

scenario, speed treated as
independent task:

•

• select a desired speed:

•  
 
 

fvel = ��vel(v � vdes)

fvel = fvel · v̂
Fvel = J+ · fvel

v

v = |v|

v̂ =
v

|v|

vdes

obstacle avoidance

obstacle avoidance
• finding a instantaneous joint change that enacts the

required (instantaneous) task change: find direction
that moves the relevant task variable into its
attractor

• other take on it: find direction that moves the
relevant task variable away from its repellor

• problem: all links must be able to avoid. but moving
proximal links also moves distal ones (kinematic
chain)

for every link:
• find closest points on obstacle and on link
• in what direction does link point currently move?
• in what direction should it move?

o s
s

note: does not have the same
forward kinematics and not the
same Jacobian as the end-
effector!

s

segment

construction on normal
plane

“shadow of obstacle” on plane N

segment

avoidance with upwards
bias (rotated)

direct avoidance

d

v

other parameters
• distance range

• angular range

gripper orientation

• angle dynamics

• different geometrical
construction and Jacobian
but same principle

• requires one DoF of the
system, thus preferable
only enforce when
necessary. NOT ALWAY ON

fori = ��� sin ⇥

�

superposition of tasks

• finally, superpose all
independently stabilizing
vector fields:  
 
 
 

• interpret the vector-field as
acceleration command:

F = F
dir

+ F
vel

+
X

obs,seg

F
obs

✓̈ = F

outlook: behavior
organization

sequences of tasks!

