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Embodied Neural Dynamics

GR EG OR SC HÖNER ,  C HR IS T I A N FAU BEL ,  E V EL INA DINE VA ,  

A ND E S T EL A B IC HO

Over the first three chapters we have seen 
how neural dynamics goes well beyond the 

feed-forward processing of sensory input toward 
motor output. In particular, the neural dynamics of 
activation variables and fields creates stable states. 
We have shown that these stable states may instan-
tiate decisions, which are stabilized even as sensory 
inputs change. Instabilities are the critical points 
at which states change qualitatively, such as when 
a decision is first made. Memory traces keep track 
of past states.

Even though stability was a central postulate in 
our approach exactly because behavior and cogni-
tion may be continuously linked to changing sen-
sory inputs, the organisms we have modeled thus 
far have been entirely passive and static; they were 
sitting and waiting for inputs to arrive. Inputs were 
perhaps structured in space and time, but we did 
not account for how the spatial and temporal struc-
ture of inputs emerges from the behavior of the 
organism as it moves its body or actuator in a struc-
tured environment.

In this chapter we will address how closing 
the sensory-motor loop affects the neural dynam-
ics and, conversely, how neural dynamics may be 
embodied in an organism that behaves in a closed 
sensory-motor loop. This entails recognizing that 
closing the loop through the outer world creates 
another level of dynamics, a level we refer to as 
behavioral dynamics. To formalize these dynamics, 
we will need to introduce new variables that charac-
terize the state of the embodied system within the 
structured environment in which the organism is 
situated. Behavioral dynamics is more than control, 
because it achieves more than keeping the organism 
aligned with a given goal state. Behavioral dynam-
ics may induce decisions that emerge from the 
structure of the environment.

Behavioral variables are not the same as acti-
vation variables. We will need to understand how 
neural dynamics with their activation states are 
linked to behavioral dynamics. That will be a major 
issue in this chapter. Finally, we will show how the 
combined neural and behavioral dynamics of an 
organism brings about autonomy. We will use the 
A-not-B paradigm of perseverative action to illus-
trate these ideas.

BE H AV IOR A L  DY NA M IC S  I N   A 
BR A I T E N BE RG  V E H IC L E
Recall the Braitenberg vehicle evoked in the 
Introduction to Part I of the book. This is a concep-
tual organism defined by four things: It has sensors, 
effectors, a body linking the sensors to effectors 
mechanically, and a nervous system linking the 
sensor to effectors through activation variables. 
The organism is also situated in a structured envi-
ronment, which is critical for organized behavior to 
emerge.

The activation concept introduced in 
Chapters  1–3 now makes it easier to make sense 
of Braitenberg’s ideas (Braitenberg, 1984)  and 
helps us understand the difference between neural 
and behavioral dynamics. We will use the “taxis” 
vehicle depicted in Figure 4.1 to illustrate (this is 
Braitenberg’s vehicle 3a). The taxis organism has 
two sensors and two effectors, whose neural con-
nectivity is organized ipsilaterally. The sensors 
are characterized by a monotonically decreasing 
sensor characteristic, that is, a decreasing mapping 
of a physical intensity onto an activation variable. 
For a light sensor, for instance, this may mean that 
higher light intensity shining onto the sensor leads 
to lower activation levels at the output of the sen-
sor. The motor systems of the taxis organism are 
characterized by a monotonically increasing motor 
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characteristic, that is, an increasing mapping from 
an activation level at input to a physical motor 
action at output. In the conceptual vehicle, physical 
action is the rotation of the wheel, so larger action 
output means a higher rate of wheel rotation.

In the Introduction to Part I, we reviewed 
Braitenberg’s verbal account of how this particu-
lar arrangement of sensors and motors leads to the 
behavior of taxis—the orientation to sources of 
whatever physical intensity the sensors are tuned 

to. This account was based on the assumption that 
the environment provides gradient fields of physi-
cal intensities, so the two sensors pick up a differ-
ence in intensity that indicates the side that the 
source lies on (higher intensity on the side closer 
to the source). This difference translates into a dif-
ference in activation, with lower activation on the 
side closer to the source. That difference is handed 
down to the motors, leading to less wheel rotation 
on the side closer to the source, which leads the 
vehicle to turn toward the source.

In this account, activation plays a very limited 
role; activation merely transduces sensed intensi-
ties into motor actions in a one-to-one mapping. 
We assumed that only positive levels of activation 
arose and thus did not consider sigmoidal thresh-
old functions. The nervous system of this simple 
conceptual organism was, therefore, organized in 
a purely feed-forward fashion. The behavior that 
emerges, however, closes a sensory-motor loop. At 
any moment in time, the difference in intensity at 
the two sensors brings about the turning action of 
the robot. That turning action then determines 
how the orientation relative to the source changes 
as the vehicle advances, leading to a new, reduced 
value of the difference in intensity sensed on the 
left and the right. By mentally iterating this closed 
loop of sensing and acting, we intuitively simulate a 
dynamical system in which the current orientation 
of the vehicle relative to the source determines the 
vehicle’s direction and rate of turning.

Braitenberg’s goal when he proposed his vehicles 
was to illustrate how structural principles of neu-
roanatomy could manifest at the level of function. 
The taxis vehicle, for instance, served to contrast its 
ipsilateral neural organization with the contralateral 
organization of another vehicle (his vehicle 3b) that 
creates avoidance behavior. He did not formalize 
the structure–function relationship in his thought 
experiments with vehicles and did not recognize 
that dynamical stability plays a critical role in the 
emergence of behavior (and of cognition in his more 
advanced vehicles). Our goal now is to formalize the 
intuitive dynamics implicit in the verbal functional 
analysis of the vehicles. We will uncover that the 
function that emerges in the vehicles derives from 
an implied behavioral dynamics and that stability 
determines the functions that emerge.

To achieve this goal, we need two things. First, 
we need a variable that captures the state of the 
organism within the closed sensory-motor loop. 
The obvious candidate for such a “behavioral” vari-
able is the orientation of the organism relative to its 
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FIGURE  4.1: A  “taxis” vehicle of Valentino Braitenberg 
(center) situated in an environment in which one source 
(represented by a star) creates a physical intensity pat-
tern (of sound intensity for a sound source, of chemical 
concentration for a source of some chemical agent, or of 
temperature for a heat source, for instance). The cups at 
the front of the vehicle illustrate sensors that are sensi-
tive to the physical intensity at the location in space that 
they sample. The sensor characteristic shown on the right 
describes the level of activation at the output of the sensor 
as a function of the intensity that impinges on the sensory 
surface. Illustrated is the case where this characteristic is 
monotonically decreasing. The patterned small squares 
represent effectors, conceptualized as two self-motorized 
wheels (seen from above; think of Formula 1 racing tires). 
Their motor characteristic shown on the right is mono-
tonically increasing, so the wheels turn faster when higher 
levels of activation are presented at input. The large square 
represents the body: When the wheels turn, they move the 
body that the sensors are attached to. The two vertical 
lines connecting the sensors to the motors are a simple 
nervous system. They indicate that the activation out-
put by each sensor is passed on as input to the ipsilateral 
motor system. Taxis behavior, turning toward the source, 
is hinted at by the curved arrow:  Because the sensor on 
the left is closer to the source, it is assumed to encounter a 
higher level of intensity than the sensor on the right. As a 
result, the left sensor sends lower levels of activation to its 
motor, which thus turns more slowly than the motor on 
the right, leading the vehicle to drive in a leftward curve.
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environment, the vehicle’s heading direction. The 
heading direction is measured as the angle that the 
long axis of the vehicle’s wheels forms with an arbi-
trary but fixed world axis. (Later we will address how 
that world frame is calibrated.) Second, we need a 
model of the environment that describes the intensi-
ties that the sensors will be exposed to given the cur-
rent orientation of the vehicle relative to the source. 
In Figure 4.2, we use these two ingredients to derive 
a dynamical system model of the taxis vehicle for 
the case in which a single source is present in the 
environment. To make things simple, we look at the 
vehicle as it is heading directly toward the source, 
as sketched at the bottom of the figure. The top 
panel shows a model of the environment in which 
the intensity sensed by the vehicle peaks when the 
vehicle points directly at the source and then falls 
off as the vehicle turns away from the source. The 
two sensors on the vehicle point in slightly different 
directions, so computing the difference between 
intensities picked up by the left and right sensors 
amounts to estimating the inverse slope of the inten-
sity profile. To the left of the source, the difference 
is negative, as the left sensor picks up less intensity 
than the right sensor. To the right of the source, 
the difference is positive. When pointing right at 
the source, the intensities picked up on the left and 
right sides of the vehicle are identical, so the differ-
ence goes through zero at that heading direction. By 
concatenating the sensor and motor characteristics 
shown in Figure 4.1, we eliminate activation as a 
variable and obtain the dependence of each wheel’s 
turning rate on the intensity picked up by the sen-
sor on the same side. That leads to a linear function 
with a negative slope. The difference between the 
left and right sides yields the linearly decreasing 
function shown in the third panel of Figure 4.2. 
Finally, we may concatenate the functions in the 
second and third panels of Figure  4.2, eliminating 
the difference between the intensity sensed on the 
left and right sides, to directly obtain the difference 
in turning rate of the left and right wheel as a func-
tion of heading direction. The difference in turning 
rate of the left and right wheel is proportional to the 
turning rate of the vehicle. This follows from the 
model of the body to which wheels and sensors are 
attached. If left and right wheels turn at the same 
rate, the vehicle moves on a straight path and does 
not turn. If the left wheel turns more than the right 
wheel, the vehicle turns to the right, increasing its 
heading angle. The bottom panel thus shows the 
functional dependence of the vehicle’s turning rate 
as a function of its heading direction.
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FIGURE  4.2: Model of the taxis vehicle of Braitenberg in 
the environment sketched at the bottom of the figure, in 
which the vehicle points toward the single source of inten-
sity. Top:  The environment is modeled by assuming that 
the sensed intensity is a bell-shaped function of the heading 
direction of the vehicle relative to the source, which peaks 
when the vehicle points exactly at the source. That heading is 
marked by the thin vertical line that cuts through all panels. 
Second from top: The difference in intensity sensed at the left 
and right sensors is computed by sampling the model shown 
in the top panel, at two locations corresponding to the two 
sensors and computing their difference. Third from top: The 
difference in turning rate of the left and right wheels as a func-
tion of the difference in intensity sensed at the left and right 
sensors is computed by concatenating the sensor and motor 
characteristic shown in Figure 4.1 and computing the differ-
ence, left minus right. Fourth panel from top: The difference in 
turning rate of the left and right wheels is proportional to the 
turning rate of the vehicle. By concatenating the mappings 
illustrated in the second and third panels, the turning rate of 
the vehicle is obtained as a function of its heading.
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Note how this derivation makes use of five 
ingredients: (1) a model of the environment (top); 
(2)  a sensor model (through the sensor character-
istic of Figure 4.1); (3) a motor model (through the 
motor characteristic of Figure 4.1); (4) a model of 
the body (linking the turning rate of the vehicle to 
the difference in turning rate of the wheels); and 
(5)  a model of the nervous system (that enabled 
concatenating sensor and motor characteristics). 
What we obtain from this derivation is a dynami-
cal system model of the behavior of the taxis vehicle 
in closed loop:  The turning rate of the vehicle is 
nothing other than the derivative in time, �φ, of the 
heading direction, ϕ! Thus, we formally have the 
functional dependence

 �φ φ= ( )f  (4.1)

where f is the function depicted in the bottom panel 
of Figure 4.2. That is a differential equation that 
mathematically defines a dynamical system. We 
call this the behavioral dynamics of the taxis vehicle.

Figure 4.3 highlights that behavior emerges 
from this behavioral dynamics through an attractor 
state, a stable fixed point of the behavioral variable. 
In the figure, the vehicle is oriented to the right 
of the source. The behavioral dynamics is thus 
sampled at a heading direction to the right of the 
zero-crossing, generating a negative turning rate of 
the vehicle. The vehicle will thus reduce its head-
ing direction, turning to the left, until the turning 
rate becomes zero exactly when the vehicle is ori-
ented toward the source. Analogously, starting out 
at a heading direction to the left of the source will 
lead to positive rates of change, increasing heading 
direction by turning right, again toward the source. 
As we saw in Chapter 1 for the dynamics of neural 
activation, a zero-crossing of the dynamics with a 
negative slope is an attractor, a stable fixed point, 
now of the behavioral dynamics. That attractor 
generates the taxis behavior, the behavior of orient-
ing to the source of intensity.

The attractor dynamics thus determines the 
orientation behavior of the taxis vehicle. This 
dynamics does not really depend on how the head-
ing direction is measured or calibrated. Contrast, 
for instance, a calibration in which heading direc-
tion is measured relative to the magnetic north 
with a calibration in which heading direction is 
measured relative to the magnetic south. The two 
cases merely differ in how the labels read along the 
horizontal axis of the dynamics in Figure 4.3. The 
rate of change is determined by how the vehicle 

is oriented relative to the source, and that relative 
orientation does not depend on the absolute values 
of heading direction. Moreover, what determines 
the movement of the vehicle is the rate of change of 
its heading direction, which is enacted by sending 
different commands to the two wheels (based on a 
simple computation that takes into account the size 
of the wheels and how far apart they are mounted 
on the vehicle). The rate of change of heading direc-
tion is independent of the reference frame used for 
heading direction itself. In a sense, the behavioral 
variable is, therefore, a somewhat abstract concept; 
it abstracts away from the detailed mechanisms of 
the sensory and effector systems. The behavioral 
dynamics provides, however, a process account for 
movement generation, because it enables generat-
ing the modeled behavior using generic sensor or 
motor models.

In this derivation of the behavioral dynamics 
from the architecture of the taxis vehicle, we did 

Heading
direction

Turning rate
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FIGURE  4.3: The dynamics of heading direction has 
a fixed point at the zero-crossing of the rate of change. 
When the vehicle’s heading corresponds to the fixed point, 
the rotation rate is zero, so the vehicle remains oriented in 
that direction. When the vehicle is headed to the right of 
the fixed point as illustrated at the bottom, the negative 
turning rate drives the vehicle’s heading direction toward 
the fixed point, as indicated by the red arrow pointing to 
the left. Similarly, if the vehicle were headed to the left of 
the fixed point, the positive turning rate would drive the 
vehicle’s heading direction toward the fixed point, as illus-
trated by the red arrow pointing to the right. The conver-
gence to the fixed point from neighboring states implies 
that the fixed point is asymptotically stable, a fixed point 
attractor (marked by a red circle).
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not pay attention to the forward movement of the 
vehicle that is controlled by the average turning 
rate of the two wheels. Analogous thinking leads 
to a dynamical system description for that forward 
velocity that depends on the intensity levels in the 
environment and how steeply they vary with the 
distance from the source. Now think of the vehicle 
as moving forward while it is turning. As a result, 
the sensors of the vehicle will sample different 
locations in the environment at different points 
in time. This may change the intensity profile the 
vehicle is exposed to. For instance, at a large dis-
tance from the source, intensity may fall off more 
rapidly as heading direction varies than when the 
vehicle is rather close to the source. (Intuitively, 
a disk centered at the source describes the spatial 
range at which intensity has a given level. That 
disk will loom larger in heading direction when the 
vehicle is close to the source than when it is far from 
the source.) A changing intensity profile implies a 
changing behavioral dynamics! So as the vehicle 
moves around, the attractor and the negative slope 
of the dynamics that determines how strongly the 
heading direction is driven to the attractor may 
change.

This is not a problem. The attractor itself 
ensures that the behavioral variable tracks these 
changes. If the attractor shifts while the vehicle 
is moving, heading direction is continuously 
attracted toward the updated attractor. A problem 
only arises if the shift becomes too rapid for the 
behavioral variable to follow. That is a real problem 
that organisms have, too. For instance, you are able 
to move toward a ball to pick it up. When the ball 
moves while you try to pick it up, you can update the 
direction in which you are headed and may be still 
able to catch the ball. But if the ball moves too fast, 
like a really fast serve in tennis (or, at the extreme, 
a cannon ball), then the same updating mechanism 
will ultimately fail.

The behavioral dynamics changes not only as 
the vehicle moves around a given environment; 
different environments create different behavioral 
dynamics. Figure 4.4 illustrates how an environ-
ment with two sources may induce a bimodal inten-
sity profile. By the same logic we used previously, 
such a profile will give rise to a behavioral dynam-
ics that now has two attractors, one for each local 
maximum of the intensity profile. The attractors 
divide the space of possible heading directions into 
two basins of attraction:  One set of initial head-
ing directions leads the vehicle to turn toward 

one source, the other set leads the vehicle to turn 
toward the other source. The two basins of attrac-
tion are separated by another fixed point, this one 
with a positive slope of the rate of change, making 
it a repellor.

The coexistence of two attractors, called bista-
bility, leads to a selection decision. The initial ori-
entation of the vehicle determines which basin of 
attraction its heading direction lies in. This deter-
mines which attractor the vehicle’s heading direc-
tion converges to und thus leads to selection of one 
of the two sources as the target of taxis behavior. If 
the direction in which the vehicle is headed is ini-
tially close to the boundary of the areas of attrac-
tion as in Figure 4.4, then the attraction to one 
of the two stable fixed points pushes the vehicle’s 
direction away from the boundary. In that sense, 

Intensity

Heading
direction

Source2

Source2

Source1

Source1

Heading
direction

Turning rate
of vehicle

FIGURE  4.4: With two sources of intensity in the envi-
ronment (assumed of equal strength here), the intensity 
profile impinging on the vehicle in the symmetric position 
sketched at the bottom is bimodal, as shown at the top. 
This leads to a behavioral dynamics of heading direction 
shown in the middle. This dynamics has two attractors 
(circles), one at each local maximum of the intensity pro-
file. The third zero-crossing between the two attractors 
is a repellor. Initial heading directions to the right of the 
repellor converge to the rightmost attractor, as indicated 
by the arrows. To see this, consider the sign of the turning 
rate. Similarly, initial heading directions to the left of the 
repellor converge to the leftmost attractor.
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the selection decision self-stabilizes. As the vehi-
cle moves, the behavioral dynamics changes and 
the attractors may shift. Typically, however, the 
behavioral variable will track the attractor within 
the basin of attraction in which the variable was ini-
tially situated.

Recall that the nervous system of this simple 
taxis vehicle is purely feed-forward, thus a given 
input generates a unique output. Even so, when 
situated in an appropriately structured environ-
ment, the behavioral dynamics that emerges 
from the closed loop makes selection decisions. 
In this bistable regime, the sensory input no lon-
ger uniquely determines the motor behavior. The 
motor behavior depends instead on the state of 
the behavioral system. In Chapters 1 and 2 we saw 
how neural dynamics with strong neural inter-
action may lead to bistability (and multistabil-
ity) and how this is a qualitative change from the 
unique input–output mapping of forward neural 
networks. In neural dynamics, the internal (recur-
rent) loops that instantiate neural interaction may 
break the unique input–output mapping. In behav-
ioral dynamics, the sensory-motor loops through 
the environment may break unique input–output 
mappings.

In neural dynamics we saw that instabilities 
lead to such qualitative change. For instance, detec-
tion instability destroys the input-driven activa-
tion pattern. Instabilities play an analogous role in 
behavioral dynamics. This is illustrated in Figure 
4.5, where the two sources are closer to each other 
than in Figure 4.4, so that now the intensity profiles 
induced by each source fuse to form a monomodal 
distribution with a single peak located over the 
averaged heading direction. This leads to a mono-
stable dynamics with a single attractor at that aver-
aged heading direction.

In a mental simulation, imagine an environ-
ment that changes continuously, starting out with 
a single source (as in Figures 4.2 and 4.3), which 
then splits into two sources that gradually move 
apart. Up to a critical separation of the two sources, 
the dynamics is monostable with an attractor at 
the averaged direction toward the sources (as in 
Figure  4.5). At a critical separation, the single 
attractor becomes a repellor, while at the same 
time two new attractors split off. This is an insta-
bility beyond which we find the bistable dynamics 
of Figure 4.4. The dependence of the fixed points 
and their stability on the distance between the two 
sources is illustrated in Figure 4.6. The bifurcation 
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FIGURE  4.5: Shown is the same schema as in Figure 
4.4, but now the two sources are at a closer angle. Their 
individual intensity profiles (top, dashed line) fuse into a 
monomodal intensity distribution (solid line) that peaks 
at a heading direction lying near the average of the head-
ings of the two individual sources (marked by thin verti-
cal lines). The behavioral dynamics is monostable, just as 
the dynamics of a single source is, shown in Figures 4.2 
and 4.3.

Heading
direction, φ  
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Attractor
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Attractor Repellor

FIGURE  4.6: This bifurcation diagram plots the fixed 
points of the behavioral dynamics of Figures 4.2 as a 
function of the distance between two sources. For small 
distances, a single attractor (solid line on the left) is posi-
tioned over the average of the two heading directions 
under which the two sources are seen. At large distances, 
two attractors (solid lines on the right) and one repellor 
(dashed line on the right) exist. The transition occurs at 
an instability, in which the single fixed point becomes 
unstable and gives rise to two new stable states and one 
unstable state.
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is called a pitchfork bifurcation because of the shape 
of this bifurcation. In this mental simulation of 
gradually increasing the separation between two 
sources of intensity, the capacity of the behavioral 
dynamics to make selection decisions thus emerges 
from an instability! This is analogous to how ele-
mentary forms of cognition emerged from neural 
dynamics in the different instabilities discussed in 
Chapters 1 and 2.

Note how the attractors structure the time 
course of behavior in a manner similar to how 
attractors of the neural dynamics structure the 
time course of neural activation. Most of the time, 
the behavioral variables are in or near an attrac-
tor, which they track as the attractors shifts when 
the vehicle moves around and the bearings of the 
sources change. Only exceptionally is there a 
chance to observe a transient where a behavioral 
variable switches to a new attractor. This happens 
exactly at bifurcations when a formerly stable state 
becomes unstable.

The emergence of the capacity to make selec-
tion decisions highlights a conceptual difference 
between the behavioral dynamics introduced here 
and biological cybernetics. Biological cybernet-
ics is an older approach toward understanding the 
closed-loop behavior of organisms (e.g., Reichardt 
& Poggio, 1976). In cybernetic thinking, a sensory 
signal is coupled into a motor system so as to sta-
bilize a particular goal state, the “set-point” of the 
closed-loop control system. The sensory signal is 
often conceived of as an error signal that ref lects 
how the current state of the system deviates from 
the goal state. The control signal is designed to 
reduce this error. This view is conceptually not 
far from information-processing ideas in that the 
control signal is computed from the error signal in 
a feed-forward manner, although the closed loop 
and its stability are taken into account. The selec-
tion between two sources is not an obvious cyber-
netic task, however. It is not clear, for example, how 
the sensory data could be interpreted as an error 
signal—relative to which of the two sources should 
the error be assessed? This conceptual problem 
notwithstanding, even very simple organisms such 
as the house f ly, studied by Reichardt and Poggio 
(1976), are able to make such selection decisions. 
The formalism of biological cybernetics is naturally 
and easily generalized to the behavioral dynamics 
introduced here.

The formalization of the Braitenberg vehicle as 
a behavioral dynamics enables us to make explicit 

the critical role that the structure of the environ-
ment plays in bringing about meaningful behavior. 
Imagine, for instance, that intensity was a highly 
irregular function of orientation (perhaps because 
there would be many sources with a sharp fall-off of 
intensity compared to the size of the vehicle). The 
sampling of such an intensity landscape by the two 
sensors would not lead to a coherent dynamics. The 
sensed intensity differences would appear to be 
largely random, and movement behavior would be 
highly irregular and unpredictable. Only when the 
environment is appropriately structured do attrac-
tor landscapes and consistent behaviors emerge. In 
the next section we will see how we can use neural 
fields to re-present environments such that consis-
tent behavioral dynamics emerges.

L I N K I NG  DY NA M IC  N E U R A L 
F I E L D S  T O   BE H AV IOR A L 
DY NA M IC S
In spite of the capacity to make selection deci-
sions, the behavioral dynamics of the taxis vehicle 
is still very strongly linked to sensory input. Local 
maxima of the sensed intensity profile induce the 
different attractors. If, after selecting one local 
maximum, the vehicle turns due to some other 
behavior (e.g., driven by obstacle avoidance), it has 
no way of “remembering” which source it originally 
chose. It will move toward the attractor whose 
basin of attraction the heading direction falls into 
after the distraction. For selection decisions to 
withstand distraction additional dimensions are 
required. These serve as inner-state variables that 
keep track of the initial selection decision as the 
behavioral variable changes. We know, of course, 
from Chapters 1–3 about activation and activation 
fields that provide the dynamic substrate to achieve 
just that. In this section, we will look at how acti-
vation fields might make decisions less dependent 
on behavioral variables while remaining linked to 
sensory input.

We will use the robotic vehicle illustrated in 
Figure 4.7 to develop this point. This vehicle is 
designed to generate phonotaxis behavior, orienta-
tion to sound sources (Bicho, Mallet, & Schöner, 
2000). For this purpose, it has an only slightly more 
complex sensory array than the Braitenberg taxis 
vehicle:  Five microphones are mounted 45° apart 
so that they roughly sample the angular surround-
ings of the vehicle. Each microphone is direction-
ally sensitive, with a sensitivity cone approximately 
60° wide so that the sensitivity cones of two 
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neighboring microphones overlap slightly. Figure 
4.8 shows how input from these five microphones 
could drive an activation field, representing the 
estimated direction in which a sound source lies. 
The sensitivity cones of the five microphones are 
modeled as Gaussian functions. In the neural jargon 
of Chapter 3, these are tuning curves. If the loud-
ness sensed by each microphone at any moment in 
time is multiplied by its tuning curve (middle panel 
of Figure 4.8), their superposition yields a sampled 
representation of the sound intensity profile at the 
vehicle’s location. As for the taxis vehicle, local 
maxima of this profile could be viewed as estimates 
of the directions in which a sound source lies. Using 
the raw readings of the microphones in conjunction 
with the tuning curves to determine the direction 
in which a sound source lies has a number of limi-
tations, however. First, the sound coming from the 
sound sources may vary over time. For instance, if 
the sound source is a loudspeaker that plays music, 
the intensity varies as dictated by the music. In the 
presence of other ambient sources of sound, the 
direction in which a local maximum of intensity lies 
may f luctuate wildly. To steer the vehicle toward 
the loudspeaker, we need to stabilize the estimate 
of the heading direction in which the loudspeaker 
lies. When the loudspeaker first comes into acous-
tic range of the vehicle, we want the vehicle to make 

a clear decision as to whether a source is present or 
not, a decision that is then stabilized as the music 
waxes and wanes. And, of course, we want the ner-
vous system of the vehicle to select the loudspeaker 
over other distracting sound sources. For instance, 
maximal sound intensity may be detected in the 
direction of the loudspeaker, but ref lection of the 
sound from a nearby wall may create an echo, which 
should be ignored.

We recognize, of course, that these are the typi-
cal requirements to which dynamic field theory 
(DFT) responds. So what we need is an activation 
field defined over heading direction, in which a 
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direction, φ  
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Position, ψi

World-axis

FIGURE 4.7: A robot vehicle seen from above (gray disk) 
has two active wheels that define an instantaneous head-
ing direction (marked by the thick solid line). The head-
ing direction, ϕ, is measured as the angle between this 
forward axis and a fixed world axis. Five directionally 
sensitive microphones (black filled circles) are mounted 
on the vehicle at fixed angles, ζi. The bearings of these 
sensors, ψ i, are the directions in the world in which these 
sensors point.
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two sound sources
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Heading direction
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Heading direction

FIGURE 4.8: Bottom: Five microphones sample the space 
of possible bearings of a sound source. The sensitivity 
cone of the directionally selective microphones is mod-
eled by a Gaussian, centered over the direction in the 
external frame that the microphone is pointing toward. 
This sensitivity cone can be conceived of as the tuning 
curve of the microphone and describes how input from 
the microphone is distributed within the activation field. 
Middle:  This projection occurs by multiplying every 
tuning curve by the current intensity recorded by each 
microphone. The curves depicted in this panel result from 
exposure of the vehicle to two sound sources whose bear-
ing is marked by thin vertical lines. Top:  The activation 
field defined over heading direction receives the weighted 
tuning curves of the middle panel as input and is able to 
build localized peaks that represent detection and selec-
tion decisions about sound sources. In this example, the 
rightmost source is selected.
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peak of activation represents the detection of a 
sound source and the location of the peak is an esti-
mate of the direction in which the source lies (as 
illustrated in the top panel of Figure 4.8). Dynamic 
fields stabilize detection and selection decisions, 
as discussed in Chapter  2. The dynamic field 
takes the weighted tuning curves as inputs. This 
forward connectivity from the five microphones 
to the field is analogous to the neural connectiv-
ity from a sensory surface to a cortical representa-
tion. The forward projection from any location on 
a sensory surface to the cortical surface is given 
by the point-spread function in neurophysiology. 
Conversely, any location in the cortical surface 
receives input from a range of point-like sources on 
the sensory surface, mapping out the receptive field 
or tuning curve. The Gaussians of Figure 4.8 model 
both of these mappings.

But there is a snag:  The direct mapping from 
the sensory surface to a cortical representation 
would naturally lie in a reference frame anchored 
to the sensory surface, here the vehicle itself on 
which the microphones are mounted at fixed 
angles, ζi  (i = …1 5, ,  counting the microphones, 
compare Figure 4.7). We postulate, however, that 
the field be defined over the heading direction 
measured against a fixed world axis. This makes 
sense, because we want to use the field to steer the 
vehicle toward sound sources. As the vehicle turns 
toward a sound source, the direction to the sound 
source would change if that direction was assessed 
in a frame attached to the vehicle. In contrast, in an 
external frame anchored in the world, the direction 
to the sound source is invariant under any rotation 
of the vehicle. This difference is critical when the 
vehicle selects a source and now needs to keep that 
selection stable even as it reorients under other 
inf luences, such as the obstacle avoidance men-
tioned earlier.

Representing sound sources in a frame anchored 
in the world while also linking the activation field 
to sensors mounted on the vehicle requires that we 
transform vehicle coordinates, ζi , into world coor-
dinates, ψ i . This coordinate transform requires an 
explicit representation of the vehicle’s own heading 
direction, ϕ. In fact, mathematically, the transfor-
mation simply reads:

 ψ ζ φi i= +  (4.2)

as is obvious from Figure 4.7. For the taxis vehicle, 
we did not need to know the vehicle’s heading direc-
tion, only its rate of change. But now, to explicitly 

represent the direction in the world in which a sen-
sor is pointing we do need an estimate of this behav-
ioral variable.

One simple way of obtaining this estimate is 
to solve the behavioral dynamics, Equation 4.1, 
by integrating it in time. This method is called 
path integration or “dead reckoning,” based on an 
analogy with maritime navigation. Sailors used to 
estimate the position of their ship by integrating in 
time the speed of their vessel (which they were able 
to measure by a log). When they did that, the uncer-
tainty about the location of the ship would grow 
over time, limiting how far they could go without 
finding some reference landmark. This was because 
any error in measuring time or speed would remain 
uncorrected and accumulate in the summation 
process. This is the problem of calibration, that is, 
of resetting such an estimate when ground truth 
is available. Miscalibration of the world frame of 
the vehicle does not matter, however, because the 
error in projecting from the sensory surface to the 
field is cancelled by making the same projection in 
reverse from the field to a motor command. We will 
see later that this is what the linking of the dynamic 
field to the dynamics of heading direction does.

Now, using Equation 4.2 is not really a neural 
operation. In Chapter  7 we will discuss in depth 
the neural principles on which such coordinate 
transformations are based. The upshot is that coor-
dinate transforms are tunable mappings from one 
neural representation to another. These mappings 
can be organized to be bidirectional. They can turn 
less invariant sensory or motor variables into more 
invariant representations as required here. But 
they can also be used to predict a variant from an 
invariant representation, such as when you predict 
where on your retina a visual object will fall after 
a planned saccadic eye movement (Schneegans & 
Schöner, 2012).

After this excursion about reference frames, 
let’s return to the dynamics of the activation field 
that represents the heading directions in which 
sound sources lie. Here are a few illustrations of the 
neural dynamics driven directly (via Equation 4.2) 
by sensors mounted on a robot vehicle (see Bicho 
et al., 2000, for details). For now, the vehicle is not 
moving (we disconnected the motors), so we are 
looking only at the neural, not at the behavioral, 
dynamics. Figure 4.9 illustrates the detection deci-
sion. A  loudspeaker playing music is positioned 
in front of the vehicle. The volume of the music is 
gradually increased. The evolution over time of the 

OUP UNCORRECTED PROOF – FIRSTPROOFS, Mon Aug 03 2015, NEWGEN

01_med_9780199300563_part_1.indd   103 8/3/2015   4:06:06 PM



104 Fou n dat ions of Dy na m ic Fi e l d T h eory

raw signals from the five microphones, multiplied 
by the tuning curves of Figure 4.8 and summed, is 
shown at the top of the figure. These input profiles 
drive the activation field shown at the bottom of 
the figure. The detection instability occurs at a par-
ticular point in time when input strength reaches 
a critical level. At that point, the activation pat-
tern switches to a self-stabilized peak that is stabi-
lized from then on, even as input f luctuates. This 
detection event emerges at a discrete time from a 
time-continuous change of input.

Selection is illustrated in Figure 4.10, where the 
same robot is confronted with two loudspeakers. 
The field initially selects one of the two sources and 
suppresses the other. This selection takes place at 
the level of representation rather than at the level 
of overt motor behavior (discussed in Figure 4.4). 
Robust estimation is a variant of this form of selec-
tion. In Figure 4.11, a single loudspeaker is f lanked 
on one side by a ref lecting surface, so that the angu-
lar distance from the loudspeaker at which sound 

is picked up extends further to the right than to 
the left of the loudspeaker. The field positions an 
activation peak over the local maximum of input, 
effectively suppressing the outliers that come from 
ref lected sound. This is a form of robust estimation. 
That the peak of activation is continuously linked 
to input is illustrated in Figure 4.12, in which a 
loudspeaker was moved across the auditory array. 
The activation peak tracks the moving source.

These demonstrations repeat what we learned 
in Chapter  2 about fields, now on an embodied 
system with real sensors placed in a real environ-
ment. So far, however, the vehicle is not moving, 
the loop through the environment is still open. The 
last outstanding issue then is how to drive a behav-
ioral dynamics from neural dynamics. The idea, 
of course, is that the behavioral dynamics should 
control the actual direction in which the vehicle is 
headed so that the vehicle turns toward any sound 
source represented by the field. This would generate 
taxis behavior for sound sources, now implemented 
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FIGURE 4.9: The weighted tuning curves of the five microphones are summed and plotted as a function of time in the 
top panel as a loudspeaker, whose bearing is marked by an arrow, plays music that increases continuously in loudness. 
The bottom panel shows the activation field driven by this input, which undergoes a detection instability at the moment 
in time marked as 50 time units.
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FIGURE 4.10: Shown is the same schema as in Figure 4.9, but with two loudspeakers at the marked bearings. The field 
on the bottom selects the rightmost source and inhibits activation everywhere else.
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FIGURE 4.11: Shown is the same schema as in Figure 4.9, but with a ref lecting surface placed to the right of the loud-
speaker, which leads to an input profile with a broad tail on the right. The field below centers its peak on the local maxi-
mum of input, effectively suppressing the tail in a form of robust estimation.
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with an intermediate neural representation of the 
bearing of the sound source. To achieve that, we 
need the peak to induce an attractor in the behav-
ioral dynamics of heading direction that lies in the 
direction where the peak is located. The attractor 
would then make the robot turn toward the sound 
source represented by the activation peak.

How can we make this transformation from an 
activation peak to an attractor for a behavioral vari-
able? One might be tempted to think of this trans-
formation as a problem of information processing 
in which we would first compute the peak’s loca-
tion and provide that information to the behavioral 
dynamics. The peak’s location is something like 
its “center of mass” if we consider above-threshold 
activation as mass. This idea is formalized by treat-
ing the supra-threshold activation, g(u(ψ)) (g is the 
sigmoid function), as a probability density. The 
theoretical mean of that probability density is an 
estimate of the peak location:

 ψ
ψ ψ ψ

ψ ψpeak =
( )( )

( )( )
∫
∫

g u d

g u d
.  (4.3)

Note that this probabilistic interpretation requires 
a normalization of the supra-threshold activation 
by dividing by the total supra-threshold activation. 
Without such normalization, a less activated peak 
would lead to a smaller estimate, biasing ψ peak  to 
the left, a more activated peak to a larger estimate, 
biasing ψ peak  to the right, even if the peak location 
was the same. But this normalization also causes 
problems. What if there is no peak? That will be the 
case whenever input is not strong enough to drive 
the field through detection instability. In that case, 
the probabilistic interpretation leads to a division 
by zero, which is not well defined and computation-
ally unstable.

This information-processing view is not useful, 
nor is it necessary. We do not really need to explic-
itly compute the peak position. What we need is a 
behavioral dynamics with an attractor at the right 
location. When there is no supra-threshold peak 
in the activation field, the field’s contribution to 
the behavioral dynamics should be zero across all 
heading directions: The activation field that repre-
sents sound sources should not impact the heading 
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FIGURE 4.12: Shown is the same schema as in Figure 4.9, but the sound source is moved from the leftmost to the right-
most bearing at a constant rate. The peak in the activation field tracks the moving local maximum of the input profile.
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direction of the vehicle at all as long as the field has 
not yet detected a sound source. There may be other 
contributions to heading direction from other sen-
sors, for example, to avoid obstacles, and these will 
then dominate (see Box 4.1).

So let’s think strictly dynamically. The activa-
tion field must generate a dynamics with an attrac-
tor at the location of a peak when such a peak is 
present, but must make no contribution to the rate 

of change of heading direction when no peak is 
present (Figure 4.14). The simple idea is to make 
the (negative) slope of the contribution that is 
attracted to the peak location proportional to the 
strength of the supra-threshold peak. The math 
goes as follows:

 �φ ψ ψ φ ψ= − ( )( )



 −( )∫g u d peak  (4.4)

BOX 4.1  OBSTACLE AVOIDANCE

Taxis, orienting to sources of stimulation, is one of the most basic behaviors of organisms (see, 
for instance, the classical treatise by Loeb, 1918, on “tropisms,” another word for taxis behav-
ior). Because animals tend to live near interfaces, on a land surface, at the bottom of the sea, or 
hidden in foliage, they cannot successfully move to sources without at the same time steering 
clear of the many obstacles such interfaces present. Obstacle avoidance, however, has not been 
studied anywhere nearly as well as taxis behavior. In fact, how humans avoid obstacles when 
walking has only recently been studied quantitatively (see Warren, 2006, for a review).

In robotics, by contrast, obstacle avoidance has been a topic from the very start of 
autonomous-movement generation because it is difficult to move in any natural environment 
without actively preventing collisions. Among the robotic approaches to obstacle avoidance, 
the potential field approach comes closest to the ideas we address in this book (Khatib, 1986). 
In the potential field approach, the position of an effector is the behavioral variable. An attrac-
tor is erected in a dynamical system that generates a movement plan as the time course of the 
behavioral variable. This attractor pulls the effector toward the target. Obstacles are contribu-
tions to the dynamical system that repel the behavioral variable. You can think of the move-
ment as being a downhill journey in a potential landscape where the minimum is the target 
(the attractor) and the obstacles are hills.

We have argued throughout this book that behavior needs to be generated by stable states 
so that it is robust in the face of competing demands and fluctuating sensory information. 
The dynamics of heading direction offers a variation of the potential field approach, in which 
the system is at all times in or near an attractor. An attractor dynamics approach to obstacle 
avoidance was proposed by Schöner and Dose (1992; see Schöner, Dose, and Engels, 1995, for 
a comprehensive review). The idea is that the direction, ψobst, in which an obstacle is detected, 
adds a contribution to the dynamics of heading direction that repels from that direction. We 
call this contribution a “force-let,” formalized as

 �φ φ ψ
φ ψ

= … + −( ) −
−( )











obst
obstexp

2

22∆
 (4.9)

and plotted in Figure 4.13. This contribution has a zero-crossing at the direction, ψobst, in which 
the obstacle lies, and has a positive slope at that point. That leads to repulsion from that direc-
tion: If the vehicle is headed to the right of that direction, the turning rate is positive, leading 
the vehicle to turn even further to the right. If it heads to the left of the obstacle, its turning rate 
is negative, making the vehicle turn even further to the left. The contribution has limited angu-
lar range (hence the term “force-let,” a play on “wave-let”), reflecting the fact that an obstacle 
can be ignored as soon as the vehicle is heading in a direction far enough away from the bear-
ing of the obstacle. This shows that, in a sense, an obstacle contribution of this kind defines 
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two “half-attractors”:  Heading direction is attracted toward the boundaries of the repulsive 
range. If an attractive force is added, these half-attractors can become real attractors, as illus-
trated in Figure 4.13. Incidentally, the repulsive force-let constructed here is a formalization 
of Braitenberg’s avoidance vehicle (his vehicle 3b), which has a contralateral neural organiza-
tion. By switching the mapping of sensors to motors, the dynamics we derived in Figure 4.2 is 
inverted, leading to repulsion from rather than attraction to a source of intensity.

Even though this approach to obstacle avoidance was initially invented to enable robots to 
autonomously navigate, it turned out to describe in quantitative detail obstacle avoidance by 
humans. Fajen and Warren (2003) used a virtual reality cave to have humans walk toward a 
visible target. At defined points in the trajectory, they presented an obstacle at varied angles 
to and distances from the path and observed how the human walker modified his or her path. 
It turned out that an ensemble of such obstacle avoidance paths could be captured with only a 
small number of adjustable parameters from a model similar to Equation 4.9. (The human data 
required the introduction of an inertial term, so the dynamics was one derivative higher than 
we have used so far.)

In Bicho, Mallet, and Schöner’s (2000) study, they showed that the attractor dynamics of 
obstacle avoidance could be directly linked to sensory input. There is no need to recognize 
an object as an obstacle and erect a repellor at the direction in which this object lies. What 
is needed for obstacle avoidance is distance sensing, for instance, by equipping the vehicle 
with infrared light-emitting diodes and matching infrared light-sensitive resistors arranged 
in a similar fashion as the microphones illustrated in Figure 4.7. The further away a reflecting 
surface is from the vehicle, the less infrared light is reflected from that surface and the smaller 
the detected signal. Every distance sensor erects a repellor in the heading direction that it is 
currently pointing toward, its strength modulated by the amount of light detected. Sensors that 
receive very little reflected light contribute only a weak repulsive force-let. The angular range 
of repulsion reflects the angular range of the sensor. This is the form of obstacle avoidance 
used in the various demonstrations in this chapter.

ψobs

φ

dφ/dt

Repellor

FIGURE 4.13: An obstacle “force-let” is a contribution to the dynamics of heading direction with a zero-crossing at 
the heading direction, ψobs, in which an obstacle lies. The positive slope of the force-let at the zero-crossing makes 
this fixed point a repellor. Heading directions in the vicinity of the fixed point diverge from the repellor, as indicated 
by the arrows.

where a linear function of ϕ has a zero-crossing at 
the peak location, ψ peak. The strength of the peak is 
the integral over its supra-threshold values, which 
becomes zero if there is no supra-threshold activa-
tion. Resolve the equation in parentheses on the 
right by multiplying by the integral to obtain:

�φ ψ ψφ ψ ψ ψ= − ( )( ) − ( )( )



∫ ∫g u d g u d peak

 
(4.5)

Now insert on the right Equation 4.3 for the theo-
retical mean, ψ peak. The normalization factor can-
cels out! This leads to

�           g u d g u dψ ψ ψ ψ ψ 1
 

(4.6)

where we have used the fact that we can move 
the heading direction, ϕ, under the first integral. 

OUP UNCORRECTED PROOF – FIRSTPROOFS, Mon Aug 03 2015, NEWGEN

01_med_9780199300563_part_1.indd   108 8/3/2015   4:06:33 PM



 Embodied Neural Dynamics 109

Finally, we pull the common factor in front, now 
under a single integral, to obtain:

 �φ ψ φ ψ ψ= − ( )( ) −[ ]∫g u d  (4.7)

Because the normalization factor cancels out, there 
is no longer the problem of division by zero.

Equation 4.7 illustrates consistent dynamical 
thinking:  The activation field ties directly into the 
dynamics of heading direction. It does so by each field 
location, ψ, “voting” for a contribution, −[ϕ – ψ], to the 
rate of change of heading direction, which creates an 
attractor at ϕ = ψ. The strength of that contribution 
is proportional to the supra-threshold activation, 
g(u(ψ)), at that field location, ψ. So field sites specify 
attractors, not computed values.

In practice, variants of Equation 4.7 may be used 
in which the contributions of each field site to the 
behavioral dynamics are not necessarily linear. For 
instance, we may use a range limiting factor, as in

 �φ ψ φ ψ φ ψ ψ= − ( )( ) −[ ] − −( ) ∫g u dexp /2 22∆
 (4.8)

with an angular range, ∆, of the attractive 
“force-let” that each field location specifies. 
Figure 4.14 illustrates these two forms of cou-
pling, Equations 4.7 and 4.8. As desired, a 
self-stabilized peak in the activation field induces 
a dynamics for heading direction that has an 
attractor (zero-crossing with negative slope) 
at the heading direction over which the peak is 
positioned. In the absence of a peak, the dynam-
ics is f lat at zero rate of change. Without other 

contributions to the dynamics of heading direc-
tion, all heading directions are fixed points that 
are marginally stable.

So imagine that the vehicle is driving around, 
far from sound sources. There is no peak in the field 
representing sound sources and no contribution 
from the field to the dynamics of heading direction. 
Assume we have obstacle avoidance in place, based 
on a few distance sensors installed on the vehicle. 
The dynamics of heading direction would then be 
determined entirely by the contributions of obstacle 
avoidance, reviewed in Box 4.1. These would push 
the vehicle’s heading direction away from obstacles. 
A  few obstacles scattered throughout the environ-
ment would lead the vehicle to turn each time it 
approaches an obstacle, in effect, exploring the envi-
ronment. At some point, the vehicle may come suf-
ficiently close to a sound source for the activation 
field to go through a detection instability. The peak 
induces a contribution to the dynamics of heading 
direction that now begins to attract the vehicle to 
head toward the direction in which the sound source 
is seen. The peak is self-stabilized, so even if obsta-
cle avoidance forces the vehicle to brief ly turn away 
from the sound source, it will typically turn back 
once it has cleared an obstacle and may ultimately 
reach the sound source.

Imagine in this scenario that there were actu-
ally two sound sources in the environment. Figures 
4.15 and 4.16 illustrate this scenario. Initially, the 
vehicle may be closer to one sound source whose 
input then induces the detection instability. This 
sound source is selected by the neural dynam-
ics. In Figure 4.15, the vehicle is initially closer to 
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FIGURE  4.14: Top:  An activation field representing the direction, ψ, in which a sound source lies, is shown with a 
self-stabilized peak of activation (left) and with constant subthreshold activation (right). Bottom left: Coupling of the 
activation peak into the behavioral dynamics of heading direction creates an attractor at the peak location (marked by a 
thin vertical line). The linear dynamics according to Equation 4.7 is shown in red, the range-limited dynamics according 
to Equation 4.8 is shown in blue. Bottom right: The same coupling produces a f lat dynamics with rate of change, �φ = 0, 
when only subthreshold activation is present.
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the leftmost sound source, which wins the selec-
tion competition in the dynamic neural field. The 
arrangement of the obstacles guides the robot 
toward the central location between the two sound 
sources where sensed intensities from both sound 
sources are approximately equal. Because the ini-
tial decision is stabilized by the activation field, the 
robot turns to the left once it has passed the last 
obstacle. In Figure 4.16, the vehicle starts out on 
the right, so it selects the rightmost sound source. 
When it passes through the same central location, 
it sticks to that decision and turns right once it has 
moved past the obstacles.

A final note about the dynamics of Equations 4.7 
and 4.8:  The absolute calibration of the reference 
frame in which the bearing, ψ, of sound sources is 
represented and of the estimated heading direction, 
ϕ, matters because only the difference, ϕ – ψ, shows 

up in these equations. That difference lies in the 
body-centered reference frame of ζ (compare with 
Equation 4.2)! So really only the body-centered 
coordinates matter. The reference frames of the 
bearing angle, ψ, and heading direction, ϕ, are 
needed only make the dynamics invariant under 
rotations of the vehicle on the spot. We do not need 
to calibrate the reference frames of ψ and ϕ as long as 
we make the same errors in both of them. Equation 
4.2 (or its neural implementation in Chapter  7) 
ensures that any miscalibration of ϕ is copied over 
to ψ, so this ensures that we make the same errors 
in both representations. These errors cancel out in 
Equations 4.7 or 4.8 and thus do not matter.

Although we have used an autonomous robotic 
vehicle to lay out the ideas, the principles of how 
neural representations in activation fields can 
be linked to behavioral dynamics match what is 

FIGURE 4.15: Series of snapshots from a robotic demonstration, time running from left to right and then from top to 
bottom. Two loudspeakers are sound sources, marked by S1 and S2, top left. Boxes form obstacles in front of the sound 
source. The robotic vehicle is driven by the dynamics of heading direction described in the text that combines a contri-
bution from a dynamic field representing sound sources and contributions for obstacle avoidance described in Box 4.1. 
The forward speed of the vehicle is constant. The vehicle approaches the scene from the bottom left and moves to the 
center under the inf luence of obstacle avoidance. The fact that it turns to the left once it has passed the obstacles ref lects 
the earlier selection of the leftmost sound source by its neural field.
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known about the organization of movement in 
organisms. In Chapter  3 we reviewed how neural 
fields capture the way populations of neurons in 
cortex and subcortical structures like the superior 
colliculus represent motor parameters. The gen-
eration of limb movements based on such motor 
plans is much more complex than generating move-
ment in the simple vehicle model used here as a 
metaphor. Even so, limb movement is ultimately 
brought about by setting attractors for a behavioral 
dynamics. A brief outline of how that happens is as 
follows. Limb movements are driven by muscles. 
The biophysics of muscles, together with the local 
neural circuitry, including spinal ref lex arcs, makes 
muscles tunable, damped springs (Feldman, 1986). 
Figure 4.17 provides a simplified illustration of 
that notion. We have lumped all muscles acting on 
one particular joint together and described them 
by a single invariant characteristic that predicts 
the amount of torque generated by these muscles 
as a function of the joint angle. Given an external 
level of torque (e.g., the torque that the weight of 

the limb creates at that joint), the joint angle will 
converge to the equilibrium point where the mus-
cles produce the torque that exactly compensates 
for the external torque. If the joint angle falls short 
of that equilibrium point, the spinal ref lex loops 
activate extensor muscles and deactivate f lexor 
muscles, decreasing torque generation until the 
external torque is matched. If the joint extends 
beyond the equilibrium point, the ref lex loops will 
activate f lexor muscles and deactivate extensor 
muscles, increasing torque generation, again until 
the external torque is matched. Roughly speaking, 
the motor periphery acts therefore like an attrac-
tor dynamics in which the invariant characteristic 
together with the external torque sets the attractor 
state (this requires taking viscosity into account 
as well, but we will disregard that here for simplic-
ity). Descending input to the motor periphery sets 
the invariant characteristic to achieve a particular 
equilibrium point. Movement amounts to shift-
ing the equilibrium point by the descending com-
mand, a process that conceptually is analogous 

FIGURE 4.16: Same series as in Figure 4.15, but now the vehicle starts out at bottom right. It turns right once it has 
passed the obstacles, revealing an earlier selection decision of the rightmost sound source.
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to how peaks in activation fields set attractors for 
behavioral dynamics. In reality, human volun-
tary movement generation is much more complex, 
encompassing issues of movement initiation and 
termination, movement timing, and inverse kine-
matics (see, e.g., Martin, Scholz, & Schöner, 2009, 

for a discussion), but the basic dynamical principles 
are analogous.

E M BODI E D  A   NO T   B
In Chapter 2, we used Piaget’s A-not-B paradigm to 
illustrate the basic instabilities in DFT. Now we will 
refer back to that paradigm to demonstrate how the 
DFT account can be embodied—that is, how the 
neural dynamics in that model can be linked to real 
sensors and to real motor systems to control a body 
acting in the world. The robotic demonstration 
of the DFT account of perseveration uses a video 
camera as sensory surface. Its visual system filters 
out those parts of the image that match a particular 
color (here, an interval of hue values around yellow). 
The result is a salience image in which only pixels 
that match the target color have values larger than 
zero (Figure 4.18). The salience image is summed 
along the vertical dimension and convolved with 
an angular kernel for smoothing in a highly simpli-
fied account for early visual processing. The angular 
distribution of salience that results from this opera-
tion provides input to an activation field defined 
again over the heading direction of the vehicle. This 
entails the same coordinate transform to an allocen-
tric frame detailed previously. The motor system is 
organized exactly as described for the phonotaxis 
vehicle. So the A-not-B robot is a taxis vehicle that 
seeks “yellowness” sources, in a manner of speaking.

The only new ingredient in this model compared 
to the phonotaxis robot is a memory trace that was 

Torque

Joint angle

EP EP
External
torque

FIGURE  4.17: The invariant characteristic of a muscle-  
joint system describes the active torque generated by the 
muscles that converge to a single joint as a function of 
the joint angle. The invariant characteristic captures the 
active and passive elastic properties of agonist and antago-
nist muscles ref lected in the monotonic dependence of 
torque on f lexion and extension. The intersection of the 
invariant characteristic with an external torque (marked 
by the horizontal line) defines the equilibrium point (EP) 
to which the joint-muscle system will relax. Movement is 
induced by shifting the invariant characteristic (e.g., from 
the instance plotted in red to that plotted in blue). After a 
shift of the characteristic, the torque induced at the joint 
through the new invariant characteristic drives the joint to 
its new attractor posture.

FIGURE 4.18: Left: View through the A-not-B robot vehicle’s camera of the A-not-B experimental scenario. The yellow 
cue cards can be moved on two red tracks to move them closer to the robot as needed. Right: Salience input into the field 
is obtained by applying a color filter to the camera image that lets through only those pixels with high enough saturation 
in a hue interval around yellow. The number of pixels in every vertical bin of the salience image provides input to the 
activation field that represents the bearning of the visual targets. The count of salient pixels of each column is multiplied 
by a Gaussian function of heading direction. During the final boost phase of the A-not-B paradigm, a broader Gaussian 
function is applied.
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introduced in Chapter  2 to account for the inf lu-
ence of the motor habit. The memory trace takes 
the same form as in Chapter  2:  Supra-threshold 
activity in the activation field drives up the mem-
ory trace at matching field locations, whereas the 
memory trace at all other locations decays. When 
there is no peak in the activation field, however, the 
memory trace remains unchanged across the entire 
field, so memory does not decay spontaneously.

We now put the vehicle into an experimental 
setting, illustrated in Figure 4.19, that mimics the 
A-not-B paradigm used with infants. Rather than 
reach toward locations, the robot vehicle turns to 
orient toward one of two yellow cue cards located at 
the A and B locations. When a cue card is closer or 
larger, it subtends a larger angle on the visual array. 
This generates a stronger salience input (more ver-
tical pixels to sum and more horizontal pixels that 
overlap). Thus, a cue to the A location is delivered on 
A trials by presenting a larger cue card closer to the 
vehicle at the A location for a time interval, followed 
by a delay. At the end of the delay, a “go” signal is 
given to the vehicle by moving both cue cards at both 
locations closer to the vehicle. This input was broad-
ened additionally by applying a broad spatial filter to 
the salient input at this point. This models the box 
with the two reaching locations that is being pushed 
closer to the baby at the end of the delay. After the 

“go” signal, the robot orients to the selected cue by 
rotating on the spot—it “reaches” toward A. This is 
caused by a peak induced by the “go” signal which 
creates an attractor for heading direction and initi-
ates turning (we will examine this later in Figure 
4.21). At the end of a trial, the robot is turned back 
to its starting orientation. After a small number of 
A trials (4 or 6, depending on which experiment we 
model), the same sequence of events occurs but with 
the cue card presented at the B location.

Figure 4.18 shows what the visual array looks like 
to the robot vehicle. The two yellow cues cards are 
picked up by the salience filter, which provides input 
to the two heading directions in which the yellow 
cards are seen. Note that both cards are always visible, 
which models the babies seeing lids at both the A and 
B locations throughout the experiment. In Chapter 2 
this input was called “task input,” but it simply comes 
from the visual array and is as sensory input not dif-
ferent from the “specific input” and “boost” referred 
to in Chapter 2. All three inputs arise from the visual 
salience system and are separate only in the sense 
that the environment is manipulated in the manner 
of the A-not-B paradigm outlined in Figure 4.19.

Figure 4.20 compares the evolution over time 
of the activation field and of its memory trace dur-
ing the first A trial to their time evolution on the first 
B trial. Initially, the activation field has small bumps 

Time

FIGURE 4.19: A-not-B paradigm as implemented for a robot vehicle that embodies the A-not-B dynamic field model. 
The vehicle, in light blue, is equipped with a camera that faces a scene in which yellow cue cards mark targets. In an 
A trial (top row, time increases from left to right), the cue cards are initially equidistant and of the same size. Then a cue 
at location A is given by replacing the cue card at that location with a larger copy closer to the robot. During the delay, the 
cue cards were placed back in their initial position. After the delay, both cue cards are moved closer to the vehicle. The 
bottom row shows the same time steps on a B trial. The only difference is that in the second step, the larger and closer cue 
card is positioned in the B direction.
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at both locations that are induced by the salience 
signals coming from the cue cards in their baseline 
positions. The specific cue to A generates just a small 
boost at the A  location, which then decays during 
the delay period. When both cue cards are moved 
toward the vehicle at the end of the delay period, the 
broad boost drives the field through the detection 
instability. A peak forms at the A location, which is 

still slightly favored from the earlier input. Figure 
4.21 shows the activation field at this point together 
with the dynamics of heading direction. A peak has 
formed at the A location, which is stable, even though 
the B location also receives sizeable input at this 
point. The peak has induced an attractor at the head-
ing that matches the bearing of the A location. The 
vehicle is still oriented toward the center of the two 
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FIGURE 4.21: Top: The activation field (top, red solid line) is shown after the end of the delay in the A-not-B paradigm. 
Input to the field from the visual salience system (blue solid line) has two local maxima over the locations of the two cue 
cards. At this point, the field has selected the rightmost cue card, even though the current visual input there is weaker. 
A memory trace has already accumulated and provides input at the selected location (green solid line). Bottom: The 
dynamics of heading direction is driven by the activation peak, which has created an attractor at the heading direction 
specified by the peak location (dashed vertical line and red circle). The vehicle is still facing toward the center between 
the two targets, its heading is marked by the black open circle. The vehicle will now start to turn toward the attractor.

Activation �eld Activation �eld Activation �eld

Memory trace Memory trace Memory trace

First A trial: “Young” First B trial: “Young” First B trial: “old”

FIGURE 4.20: The activation field (top) and the associated memory trace (bottom) are shown as functions of time on 
different trials in the A-not-B paradigm. Left: The first A trial for a young robot unable to sustain peaks of activation. 
Middle: The first B trial for a young robot. Right: The first B trial for a older robot capable of sustaining peaks.
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locations (zero in the coordinate frame used) but will 
turn now driven by the attractor. Note in Figure 4.20 
that as the peak forms, the memory trace at A builds 
up. Figure 4.21 registers that memory trace at the 
beginning of the turning action.

By the time of the first B trial, a sizeable mem-
ory trace has built up at the A  location, as seen in 
the middle portion of Figure 4.20. Even though 
relatively clear input at B drives activation around 
B close to threshold, this activation decays enough 
during the delay that the memory trace at A domi-
nates, leading to a peak forming at A and the model 
making the A-not-B error. The first B trial of an 
“older” model is shown on the right in Figure 4.20. 
Here, the field is in the regime in which peaks 
of activation can be sustained without localized 
input. The peak induced near B by the cue card is 
sustained through the delay, so the model responds 
at B after the delay. The “older” vehicle does not 
perseverate.

We have used this embodied model of the 
A-not-B phenomenon to quantitatively account for 
data from a meta-analysis of the behavior of 400 
babies (which is not yet published as this book goes 
to press). Although the sensory and motor details are 
different, we were able to reproduce the basic signa-
tures of perseverative behavior as well as a wealth of 
different conditional probabilities that measure how 
the history of reaches determines future reaches.

Now that we have an embodied variant of the 
A-not-B model, we may take the system out of the 
restricted experimental paradigm to ask more gen-
erally what the functional significance of persevera-
tion is in object-oriented action. Why would infants 
make the “stupid” error? Why give habit so much 
weight that it may overturn perceptually cued action 
plans? To address this, we put the robotic vehicle into 
an arena in which there was a visual target with the 
yellow color that matched the vehicle’s salience filter 
(Figure 4.22). We added obstacles, which the vehicle 
was able to avoid with the technique reviewed in Box 
4.1. The obstacles merely served to force the robot to 
turn and thus lose the target from view. So is “out of 
sight” truly “out of mind” for the young robot? How 
does the memory trace help? And what does the older 
robot gain from its capacity to build a working mem-
ory of the cued action plan?

Figure 4.22 compares on the left a young and an 
old robot as they head to a visible target. An obstacle 
early in the path forces the robot to turn and lose the 
target from sight. For the young robot, the peak in 
its target field decays when it is no longer supported 
by salience input; the robot “forgets” the target, now 
truly “out of mind,” and the robot continues on a 
straight path past the obstacle, no longer trying to 
turn back to the original target. The older robot, 
by contrast, sustains the peak at the direction to 
the target while it avoids the obstacle. This enables 

FIGURE 4.22: A-not-B vehicle moving in the presence of a visual target that its salience system is sensitive to (yellow 
circle on top). Obstacles (brown rectangles) are placed in the scene. The vehicle is initially oriented toward the target 
(blue circles at the bottom), so its target field builds a peak of activation at the the target’s bearing. The left panel con-
trasts the path generated by the “young” robot without a memory trace (dashed red line) with the path generated by the 
“old” robot (red solid line). The right panel shows the path generated by a young robot vehicle with a memory trace. The 
data were recorded from real robots performing the task. The obstacles were low enough to not occlude the target for the 
camera mounted high on the vehicle as long as the vehicle was pointing in the direction of the target.
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the older robot to turn back toward the target after 
it has passed the obstacle. When the target thus 
comes back into view, the peak is updated by current 
salience input and steers the robot to the target. So 
clearly, the capacity to sustain peaks through peri-
ods when sensory information about the target is no 
longer available adds stability and enables the older 
robot to reach the goals under a broader set of envi-
ronmental conditions than that of the younger robot.

In this demonstration, the memory trace was 
not active in the two robots. The right panel of 
Figure 4.22 shows a run of the younger robot, but 
now with a memory trace in place. Surprisingly, 
this makes the young robot look like an old 
robot:  It does not lose the target from its mind 
as it loses it from sight! What happens is that the 
robot has quickly built a memory trace when it 
first builds the peak at the initial bearing of the 
target. This memory trace stabilizes the peak 
and slows its decay when sensory input from the 
target is lost. The peak is still there to make the 
robot turn back toward the source once the first 
obstacle has been passed. Renewed sensory input 
then keeps the robot on course. So sustained acti-
vation is not the only mechanism for keeping in 
mind what is out of sight. The memory trace also 
serves to stabilize movement plans. In light of the 
sensory-motor challenges to goal-directed move-
ment for young infants, such stabilization is sup-
portive of goal-oriented action. The limitation of 
the memory trace as a stabilization mechanism 
is that it is less f lexible than sustained activation. 
A  new, sustained peak can be set by sufficiently 
strong sensory input, and this setting of a new tar-
get may overwrite the previous target. This is what 
happens in the A-not-B paradigm on the switch 
from the A  to the B trials. The memory trace, by 
contrast, cannot be switched as rapidly by sensory 
information. A  new memory trace only forms as 
the system “experiences” a new neural activation 
pattern. So neither the younger nor the older robot 
loses from mind what is out of sight. The older 
robot is more f lexible in what is on its mind and the 
A-not-B paradigm is sensitive to that f lexibility.

Why would a younger infant or robot rely on the 
slower memory trace to stabilize decisions rather 
than on the faster mechanism of sustained acti-
vation? The reason is not really known. One pos-
sibility is that the kinds of coordinate transforms 
postulated here are harder to achieve for younger 
systems. A fast switch may induce categorical errors 
when coordinate frames become misaligned during 

the occlusion of a target. The slower memory trace 
may filter out what has been reliably tracked in 
spite of a system’s difficulty of stabilizing and align-
ing reference frames. In Part 2 of this book we will 
provide the theoretical tools to address processes 
of transforming and aligning reference frames. In 
Part 3 we will introduce concepts and models that 
begin to address some of the developmental issues 
implied in this interpretation.

C ONC LUSION
We have seen that the closed loop through which 
overt motor action controls sensory input to an 
organism generates a second type of dynamics. 
This behavioral dynamics can be captured through 
variables that characterize the state of the physi-
cal, embodied system relative to its environment. 
Attractors are critical to bringing about consistent 
behavior in the face of f luctuations and distrac-
tors and stabilizing simple sensory-motor deci-
sions. Behavioral dynamics is inherently limited 
in f lexibility, however, requiring the continuous 
availability of sensory inputs. We saw how the 
neural representations provided by DFT enhance 
the f lexibility of behavior. In fact, returning to the 
phenomenon of infant perseverative behavior first 
used in Chapter  2 to illustrate the core concepts 
of DFT, we were able to get a concrete sense of the 
developmental trajectory of increasing f lexibility as 
the system goes from more strongly input-driven to 
interaction-dominated dynamics. This topic will 
be a central theme of Part 3.

Ultimately, overt behavior always entails both 
neural and behavioral dynamics. We examined in 
detail how neural dynamics ties into behavioral 
dynamics, recognizing that there was no need to 
“read out” the estimates or decisions generated 
by activation fields. Instead, peaks of activation 
directly create attractors of behavioral dynamics. 
This was a beautiful instance of pervasive dynami-
cal thinking that is useful to keep in mind as we move 
forward to increasingly abstract, cognitive levels of 
processing. Having laid the conceptual foundations 
for both the dynamics of behavior and the dynamics 
of elementary forms of cognition, we will address 
in Parts 2 and 3 more ambitious forms of cognitive 
processing. In Part 2, we will discover new cogni-
tive functions that derive from multidimensional 
dynamic fields, including a neural-process account 
for how the coordinate transforms can be achieved 
that were assumed in the present chapter. This will 
enable us to provide a neural dynamic foundation 
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of visual cognition. In Part 3 we will address learn-
ing and development and extend our investigation 
into cognition by looking at cognitive control and 
sequence generation.
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E X E RC I SE S  F OR   C H A P T E R   4
The simulator for this exercise is provided in the file 
launcherRobotSimulator. Running this 
file will open a main graphical user interface (GUI) 
window showing a dynamic neural field with a 
coupled attractor dynamics and control elements, 
and an additional window showing a top-down 
view of a simulated robot in a small arena. The 
robot is depicted as a gray circle with an arrow 
indicating its heading direction (think of a simple 

differential-drive robot like the Khepera here). It 
has nine directional sensors (such as light sensors) 
placed equidistant along its front half. The noisy 
outputs of these sensors are shown in the bar plot 
in the top part of the window. The sensors respond 
to targets in the arena, with intensity depending on 
distance to the target. These targets are shown as 
smaller red circles in the arena plot. You can add or 
remove targets at any time by clicking on the cor-
responding button at the bottom of the window and 
then clicking on a location in the arena.

In the main GUI window, the top plot shows 
the activation of a one-dimensional field receiving 
inputs from the robot’s sensors. The field is defined 
over the space of robot orientations in an allocentric 
reference frame (fixed in the world, not rotating with 
the robot). Note that the x-axis is f lipped to allow a 
more intuitive mapping to the sensor geometry on 
the robot while retaining the mathematical conven-
tions for specifying orientations. The field provides 
input to the attractor dynamics shown in the bottom 
plot, in the form introduced in this chapter. The red 
plot gives the turning rate (rate of change in head-
ing direction) for every possible heading direction; 
the red circle on this plot indicates the actual head-
ing direction and instantaneous turning rate of the 
simulated robot. You can control field parameters 
and strength of coupling between field and attrac-
tor dynamics via the sliders at the bottom (hover 
over the slider to get a description of the controlled 
parameter). In addition, you can control the forward 
speed of the robot via the slider on the bottom right. 
Clicking the Reset button will reset the field activa-
tion and also put the robot back in its initial position.

The goal of this exercise is to explore the role of 
the detection and selection instabilities for the ori-
entation behavior of the robot.

Exercise 1: Detection Instability
When you start up the interactive simulator the 
robot environment is created with a single target in 
the upper left. As it is quite far from the robot, the 
target affects the activation field only weakly. This 
is the perfect setup to study the detection instabil-
ity. You can start with the preset parameter values. 
Use the slider v_r to set the forward speed of the 
robot to positive values. The robot will drive until 
it has reached the target and then automatically sets 
its speed back to zero. You can re-place the robot at 
its initial position by clicking the “reset robot” but-
ton. At some point during the robot’s movement, a 
detection instability will occur. You can pause the 
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simulator when this happens and also reproduce 
this event several times by using the reset button.

1. How does the detection instability manifest 
itself? Input f luctuates due to noise 
modeled for the sensors. Does the peak 
f luctuate with input after the detection 
instability?

2. What happens to the behavioral dynamics 
at the detection instability? How does this 
affect the motor behavior of the robot?

3. After the detection instability, the peak 
tracks sensory input from the target. What 
does this do to the behavioral dynamics?

4. If you run through this path at a higher 
speed, the robot turns later in the 
path. Why?

Exercise 2: Selection Instability
For selection instability, add a second target and 
place it to the upper right of the robot. Try to place it 
at a distance equal to that of the other target. Again, 
activate the forward velocity and let the robot run.

1. Observe the input profile (green curve) 
and watch how detection instability occurs. 
What happens to the alternate peak when 
one target is selected?

2. Reset the robot and repeat the trial. Can 
you observe different selection outcomes?

3. By removing and then again adding a 
target, you can vary its location. Can you 

manipulate the probability that the target 
will be selected over the default target?

4. Set up a situation with symmetric targets in 
which either target can be selected. Turn off 
the neural interaction by setting all three 
parameters of the interaction kernel to zero. 
What happens now when the robot heads 
for the targets?

5. Go back to the initial setting by quitting 
and restarting the simulator. Add several 
targets near the initial target. What does 
that do to the detection instability?

6. What happens in this case as you approach 
the target? Do you see a transition from 
monomodal input to the field to multimodal 
input? What happens to the self-stabilized 
peak itself?

7. You can play with the h-level to enable 
sustained peaks or not. Try removing a 
target right as the robot is heading toward 
a target, perhaps in the presence of another 
target. Can you see the effect of sustained 
activation?

Exercise 3: Avoidance
You can explore a simple form of avoidance by 
changing the sign of the coupling from the field into 
the attractor dynamics to negative (use the “param-
eters” button to get access to the parameter values 
for the attractor dynamics). Explore avoidance 
behavior as a form of obstacle avoidance.
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