Timing and
coordination

Gregor Schoner



movement timing

B generating actual time courses of movement

B organizing movements in time: coordination



How is timing generated!?
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Relative vs. absolute timing
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Absolute timing

B examples: music, prediction,
estimating time

B typical task: tapping

B self-paced vs. externally paced



Clocks

B activation growth (hour glass)
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Clocks

B oscillators: stable period
solutions=limit cycle attractors
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Clocks

B hour glasses are oscillators as well
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[from: Schoner, Brain & Cogn 48:31 (2002)]



Absolute timing diffusion

B provides
an account
for
increase of
timing
variance
with
duration
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Reduced timing variance for

bimanual movement

B observed
by lvry and
colleagues

B accounted
for by
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of two
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Relative timing: movement
coordination

B |ocomotion, interlimb and intralimb
B speaking

B mastication

B music production

B .. approximately rhythmic



Examples of coordination of
temporally discrete acts:

B reaching and grasping
B bimanual manipulation

B coordination among fingers during
grasp
B catching, intercepting



Definition of coordination

B Coordination is the maintenance of
stable timing relationships between
components of voluntary movement.

B Operationalization: recovery of
coordination after perturbations

B Example: speech articulatory work
(Gracco, Abbs, 84; Kelso et al, 84)

B Example: action-perception patterns



Is movement always timed/
coordinated!?

® No, for example:

B |Jocomotion: whole body
displacement in the plane

M in the presence of obstacles takes longer

B delay does not lead to compensatory acceleration

® but coordination is pervasive...

M e.g., coordinating grasp with reach



Relative vs. absolute timing

activation

threshold /\

relative phase=DT/T



Two basic patterns of
coordination

B in-phase

B synchronization, moving through like phases
simultaneously

M e.g., gallop (approximately)

B anti-phase or phase alternation
B syncopation

Meg,trott



An instability in rhythmic
movement coordination

B switch from
anti-phase to
in-phase as
rhythm gets
faster

Kelso, 1984
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Instability

B experiment
involves finger
movement

It

tstDI  A1st DI

® why fingers!?

B TRAN
B no mechanical coupling -
B constraint of maximal
L FDI
frequency irrelevant
B => pure neurallly based
coordination IS N I R A A I

Schoner, Kelso (Science, 1988)



Instability

B frequency imposed by metronomes
and varied in steps

B either start out in-phase or anti-
phase



EXT

FLEX

0.5

Oo
180° [

A. TIME SERIES
HHHH R R R R AR RN LiEibatiqidgd

o1
llllll

~—— Position of Right Index Finger

————— Position of Left Index Finger

B. CYCLE ESTIMATE OF RELATIVE PHASE

| ! ] | I | | | | 1secy 1

C. INDIVIDUAL SAMPLE ESTIMATE OF RELATIVE PHASE
MMMWW\W

/
W\'WWMWN\W%M Time —

data example (Scholz, 1990)




computation
of continuous

relative phase
(Scholz, 1990)
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Pattern stability

B instability: anti-phase pattern no
longer persists

B thus: even though mean pattern is
unchanged up to transition, its
stability is lost

B => stability is an important property
of coordination patterns, that is not

captured by the mean performance
alone



Measures of stability

B variance: fluctuations in time are an
index of degree of stability

M stochastic perturbations drive system away from the
coordinated movement

M the less resistance to such perturbations, the larger
the variance



Measures of stability

B relaxation time

M time need to recover from an outside perturbation

B e.g., mechanically perturb one of the limbs, so that
relative phase moves away from the mean value, then
look how long it takes to go back to the mean pattern

B the less stable, the longer relaxation time



data example
perturbation of
fingers and
relative phase

Scholz, Kelso, Schoner, 1987
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Signatures of instability
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Neuronal basis of the two basic
patterns

B rhythmic movement patterns are
driven by neuronal oscillators

B their excitatory interaction leads to
in-phase

B their inhibitory interaction leads to
anti-phase



® coordination

Movement timing

A
activation

=stable relative A /.

timing emerges from coupling time

of neural osci

® marginal stabi

lators ,
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[Schoner:Timing, Clocks, and Dynamical Systems. Brain and Cognition 48:31-51 (2002)]



Dynamical systems account of
instability

B coordination patterns are stable
states

B stability may vary and may be lost

B instability leads to pattern change



Dynamical systems account of
instability

dynamical system

B state of  dwdt=f(x)
dynamicalA
system
x=relative

phase T

fixed point, which is stable (attractor)




Dynamical systems account of

instability
B at low  dx/dt=f(x)
frequencie
s this
system is
bistable

in-phase anti-phase



Dynamical systems account of
instability
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Predicts increase in variance
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Predicts increase in relaxation time

® “critical
slowing
down’
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Conclusion

B to understand coordination patterns,
we need to understand the
underlying coordination dynamics

B = stabilization mechanisms
® and their strength

B from which the mean pattern
emerges



What level does the instability of
coordination come from!?

B from peripheral motor control?
® from central motor control?

B from perceptual representations of
movement!?



What level does
instability come
from?

Is the instability tied to the motor system?
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Mechsner, Kerzel, Knoblich, Prinz, Nature 2001



Position, congruous; Instruction, symmetry b Position, congruous; instruction, parallel
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=> coordination in space

BMrather than in effector space
BMso coordinated oscillators are central

Brather than peripheral



Coordination of discrete movement

® coupling can account for
coordination of discrete
movement based on the idea that
oscillator is “on” (stable) only for a

cycle...

® back and forth components of
rhythmic movement are driven by
different neural populations
M so even rhythmic movement coordination

may exploit this mechanism of discrete
movement coordination
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Robotic demonstration: timed
movement with online updating
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... deeper issue in timing...

® movement as relaxation to an attractor
M as in potential field approach

M as in old Kelso, Turvey conception

M as in the EP hypothesis?

®vs. movement being generated while system is in
an attractor

M as in the limit cycle picture

M as in the attractor dynamics approach for heading
direction=velocity variable



next issue: motor commands

# linking the low
dimensional timing
signal (in space) to
the high-
dimensional space in
which joints and
muscles are

controlled ‘
508 0

DoF/muscles




