April 21, 2016

Exercise 1

In the lecture we saw how to generate movement by generating a time course of vehicle heading, $\phi(t)$ from a dynamical system defined over ϕ . The contribution of a single obstacle to this dynamics is given by

$$\dot{\phi} = \alpha(\phi - \psi) \exp\left[-\frac{(\phi - \psi)^2}{2\sigma^2}\right]$$

where ψ is the direction in which an obstacle lies.

- 1. Plot the first factor and describe the geometrical meaning of the two parameters, ψ and α .
- 2. Plot the second factor and describe the geometrical meaning of the two parameters, ψ and σ .
- 3. Plot the product. Is the slope of the dynamics at $\phi = \psi$ affected by the second factor? Why or why not?
- 4. Plot the time course of heading direction that results from this dynamics when the initial heading direction, $\phi(0)$ is (a) $< \psi$, (b) $> \psi$, (c) $= \psi$. These plots are qualitative based on your mental "simulation" of the dynamics.
- 5. Plot the same time courses when α is larger.
- 6. State what happens when the initial heading, $\phi(0)$ is far from ψ : $|\phi(0) \psi| >> \sigma$