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Neurorobots1 are robotic devices that have control systems based 
on principles of the nervous system. These models operate on the 
premise that the “brain is embodied and the body is embedded in 

the environment.” Therefore, neurorobots are grounded and situated in a 
real environment. The real environment is required for two reasons. First, 
simulating an environment can introduce unwanted and unintentional biases 
to the model. For example, a computer-generated object presented to a vision 
model has its shape and segmentation defined by the modeler and directly 
presented to the model, whereas a device that views an object hanging on 
a wall has to discern the shape and figure from ground segmentation based 
on its on active vision. Second, real environments are rich, multimodal, and 
noisy; an artificial design of such an environment would be computationally 
intensive and difficult to simulate. However, all these interesting features of the 
environment come for “free” when a neurorobot is placed in the real world.
A neurorobot has the following properties:

• It engages in a behavioral task. 
• It is situated in a real-world environment.
• It has a means to sense environmental cues and act upon its environment.
• Its behavior is controlled by a simulated nervous system having a design 

that reflects, at some level, the brain’s architecture and dynamics.
As a result of these properties, neurorobotic models provide heuristics for 
developing and testing theories of brain function in the context of phenotypic 
and environmental interactions. 
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Although there have been great advances in autonomous systems,2, 3, 4, 5 
the controllers of these machines are still very much tailored to specific missions 
and do not have the behavioral repertoire we normally associate with that of 
biological organisms. Behavior-based robotics6 do not learn from experience 
and cannot adapt to environmental change. Probabilistic robot controllers7 
need an accurate model of their sensors and actuators. Robots controlled by 
reinforcement learning or machine learning8 are driven by reward expectation 
and do not address attention, novelty, and threat assessment.

Neurorobotic models may provide a foundation for the development of 
more effective robots, based on an improved understanding of the biological 
bases of adaptive behavior. A robotic controller modeled after the vertebrate 
nervous system, in which the robot’s behavior approaches the complexity and 
flexibility associated with higher order animals, would be a major step forward 
in the design of autonomous systems. Advances in computational models of 
the brain as well as computation power are making this a distinct possibility in 
the not too distant future. Neurally inspired robotic control would be flexible, 
experience-dependent, and autonomous—just like a biological organism.

Classes of Neurorobotic Models 

There are too many examples of neurobiologically inspired robotic devices to 
exhaustively list in this brief review. However, the approach has been applied 
to several distinct areas of neuroscience research:

• motor control and locomotion
• learning and memory systems
• value systems and action selection.

The remainder of this article will briefly touch on a few representative 
examples.

Motor Control and Locomotion 
Neurorobots have proved useful for investigating animal locomotion and 
motor control and for designing robot controllers. Neural models of central 
pattern generators, pools of motorneurons that drive a repetitive behavior, 
have been used to control locomotion in robots.9, 10, 11 Kimura and colleagues 
have shown how neurorobotics can provide a bridge between neuroscience 
and biomechanics by demonstrating emergent four-legged locomotion 
based on central pattern generator mechanisms modulated by reflexes. Their 
group developed a model of a learnable pattern generator and demonstrated 
its viability using a series of synthetic and humanoid robotic examples. 
Ijspeert and colleagues constructed an amphibious salamander-like robot 
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that is capable of both swimming and walking, and therefore represents a 
key stage in the evolution of vertebrate-legged locomotion. A neurorobotic 
implementation was found necessary for testing whether the models could 
produce locomotion both in water and on ground and investigating how 
sensory feedback affects dynamic pattern generation.

An intriguing neural inspiration for the design of robot controllers is 
the mirror neuron system found in primates. Mirror neurons in the premotor 
cortex are active both when a monkey grasps or manipulates objects and when 
it watches another animal performing similar actions.12 Neuroroboticists, 
using this notion of mirror neurons, have suggested that complex movements 
such as reaching and locomotion may be achieved through imitation.13, 14, 15, 16, 17

Another strategy for motor control in neurally inspired robots is to use a 
predictive controller to convert awkward, error-prone movements into smooth, 
accurate ones. Recent theories of motor control suggest that the cerebellum 
learns to replace primitive reflexes with predictive motor signals. The idea is 
that the outcomes of reflexive motor commands provide error signals for a 
predictive controller, which then learns to produce a correct motor control 
signal prior to the less adaptive reflex response. Neurally inspired models 
have used these ideas in the design of robots that learn to avoid obstacles,18, 19 
produce accurate eye,20 and generate adaptive arm movements.21, 22, 23 

Learning and Memory Systems 
A major theme in neurorobotics is neurally inspired models of learning and 
memory. One area of particular interest is navigation systems based on the 
rodent hippocampus. Rats have exquisite navigation capabilities in both the light 
and the dark. Moreover, the finding of place cells in the rodent hippocampus, 
which fire specifically at a spatial location, have been of theoretical interest 
for models of memory and route planning.24 Robots with models of the 
hippocampal place cells have been shown to be viable for navigation in mazes 
and environments similar to those used in rat spatial memory studies.25, 26, 

27, 28 Recently, large-scale systems-level models of the hippocampus and its 
surrounding regions have been embedded on robots to investigate the role of 
these regions in the acquisition and recall of episodic memory.29, 30, 31

Another learning and memory property of importance to the 
development of neurorobotics is the ability to organize the unlabeled signals 
that robots receive from the environment into categories. This organization 
of signals, which in general depends on a combination of sensory modalities 
(for example, vision, sound, taste, or touch), is called perceptual categorization. 
Several neurorobots have been constructed that build up such categories, 
without instruction, by combining auditory, tactile, taste, and visual cues 
from the environment.32, 33, 34 
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Value Systems and Action Selection 
Biological organisms adapt their behavior through value systems that provide 
nonspecific, modulatory signals to the rest of the brain that bias the outcome 
of local changes in synaptic efficacy in the direction needed to satisfy global 
needs. Examples of value systems in the brain include the dopaminergic, 
cholinergic, and noradrenergic systems.35, 36, 37 Behavior that evokes positive 
responses in value systems biases synaptic change to make production of 
the same behavior more likely when the situation in the environment (and 
thus the local synaptic inputs) is similar; behavior that evokes negative value 
biases synaptic change in the opposite direction. The dopamine system and 
its role in shaping icrosys making has been explored in neurorobots and 
brain-based devices.38, 39, 40 Doya’s group has been investigating the effect of 
multiple neuromodulators in the “cyber-rodent,” a two-wheeled robot that 
moves autonomously in an environment.41 These robots have drives for 
self-preservation and self-reproduction exemplified by searching for and 
recharging from battery packs on the floor and then communicating this 
information to other robots nearby through their infrared communication 
ports. In addition to examining how neuromodulators such as dopamine 
can influence decisionmaking, neuroroboticists have been investigating 
the basal ganglia as a model that mediates action selection.42 Based on the 
architecture of the basal ganglia, Prescott and colleagues embedded a model 
of it in a robot that had to select from several actions depending on the 
environmental context. 

Conclusion 

Higher brain functions depend on the cooperative activity of an entire nervous 
system, reflecting its morphology, its dynamics, and its interaction with the 
environment. Neurorobots are designed to incorporate these attributes such 
that they can test theories of brain function. The behavior of neurorobots 
and the activity of their simulated nervous systems allow for comparisons 
with experimental data acquired from animals. The comparison can be 
made at the behavioral level, the systems level, and the neuronal level. These 
comparisons serve two purposes: first, neurorobots can generate hypotheses 
and test theories of brain function. The construction of a complete behaving 
model forces the designer to specify theoretical and implementation details 
that can be easy to overlook in an ungrounded or disembodied theoretical 
model. Moreover, it forces these details to be consistent. Second, by using 
the animal nervous system as a metric, neurorobot designers can continually 
make their simulated nervous systems and resulting behavior closer to those 
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of the model animal. This, in turn, allows the eventual creation of practical 
devices that may approach the sophistication of living organisms.
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