gregor.schoener@rub.de

April 30, 2015

Exercise 1

1. In the lecture we saw how to generate movement by generating a time course of vehicle heading, $\phi(t)$ from a dynamical system defined over ϕ . The contribution of a single obstacle to this dynamics is given by

$$\dot{\phi} = \alpha(\phi - \psi) \exp\left[-\frac{(\phi - \psi)^2}{2\sigma^2}\right]$$

where ψ is the direction in which an obstacle lies.

- (a) Plot the first factor and describe the geometrical meaning of the two parameters, ψ and α .
- (b) Plot the second factor and describe the geometrical meaning of the two parameters, ψ and σ .
- (c) Plot the product. Is the slope of the dynamics at $\phi = \psi$ affected by the second factor? Why or why not?
- (d) Plot the time course of heading direction that results from this dynamics when the initial heading direction, $\phi(0)$ is (a) $\langle \psi$, (b) $\rangle \psi$, (c) = ψ . These plots are qualitative based on your mental "simulation" of the dynamics.
- (e) Plot the same time courses when α is larger.
- (f) State what happens when the initial heading, $\phi(0)$ is far from ψ : $|\phi(0) \psi| >> \sigma$
- 2. The low-level variant of obstacle avoidance uses force-lets like the one above for every sensor. A vehicle with five distance sensors has five contribution (i = 1, ..., 5) of this kind:

$$f_i(\phi) = \lambda(d_i)(\phi - \psi_i) \exp\left[-\frac{(\phi - \psi_i)^2}{2\sigma(d_i)}\right]$$

These repel from the heading directions, $\psi_i = \phi + \theta_i$, where θ_i is the angle at which the sensor is mounted on the vehicle (counted from vehicle's "nose" from which heading direction, ϕ , is also counted). The strength of repulsion is a decreasing function of the sensed distance, d_i , at each sensor:

$$\lambda(d_i) = \beta_1 \exp\left[-\frac{d_i}{\beta_2}\right]$$

where β_1 and β_2 are parameters. The range of repulsion corrects the sensor sensitivity cone, $\Delta \theta_i$, for the angle subtended by the vehicle of radius, R_{robot} , at the sensed distance:

$$\sigma(d_i) = \arctan\left[\tan\left(\frac{\Delta\theta}{2}\right) + \frac{R_{\text{robot}}}{R_{\text{robot}} + d_i}\right]$$

- (a) Make a drawing of the robot and mark angles ϕ , θ_i , and ψ_i (for one sensor, i, only).
- (b) Make a qualitative drawing of the force-let at two difference distances from an obstacle.
- (c) Draw the superposition of two such force-lets when they are metrically close (overlap) and when they are metrically far (overlap little). Discuss the difference.
- (d) Convince yourself that the contributions of two such obstacles sensors can go through a bifurcation from having an attractor between the two sensor directions, ψ_i and ψ_{i+1} to having a repellor there as the distance between the vehicle and a wall decreases. Use drawings and discussion to make the point.