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“We will talk only about machines with very simple
internal structures, too simple in fact to be interesting from
the point of view of mechanical or electrical engineering.
Interest arises, rather, when we look at these machines or
“vehicles” as if they were animals, in a natural
environment. We will be tempted, then, to use
psychological language in describing their behavior. And
yet we know very well that there is nothing in these
vehicles that we have not put there ourselves.”

— Valentino Braitenberg
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1 E-PUCKS

Figure 1: The e-puck robot

1 The e-puck robot

The e-puck is a small mobile robot that was developed primarily for research.
Figure 1 shows a photo of an e-puck. On each side of its body, they have a
wheel with a motor that can be individually controlled. The wheels have a
diameter of 40 mm and the distance between the two wheels is 53 mm. Ad-
ditionally, the robot is equipped with eight infrared sensors, a VGA camera
(resolution of 640x480 pixels), three microphones, a loudspeaker, and several
LEDs. The power for the e-puck is provided by a rechargable battery, which
can be attached to its bottom side. The robot can be controlled via a wireless
bluetooth connection.

1.1 Drive mechanism

The e-puck is moved by its two wheels, each of which is driven by an individ-
ual servo motor. The smallest distance that the robot can move is achieved
by applying a single electric pulse to the motors. This distance measures
about 0.13 mm. On this low level, the unit of velocity for the e-puck can be
measured in pulses per second. The maximal velocity is 1023 pulses/s. If
that velocity is set for both wheels, the e-puck can therefore cover a distance
of 0.13 m s−1. If the motor velocity is set to negative values, the robot moves
backwards.

Each motor is equipped with an encoder that counts the pulses sent to
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1.2 Infrared sensors 1 E-PUCKS
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Figure 2: Top-view schematic of the e-puck robot showing the positions of
infrared sensors.

the wheel. Accessing the encoder values enables us to compute the distance
covered by each wheel. However, this method is not always accurate as the
actual wheel velocity often deviates from the one specified due to various
perturbing influences.

1.2 Infrared sensors

The robot is equipped with eight infrared sensors that can both emit and
register infrared light, a type of light at a wavelength just below the spectrum
visible to humans. The eight infrared sensors are attached to the e-puck robot
at directions of ±13◦, ±45◦, ±90◦ and ±135◦ (from the front of the robot).
They are numbered clockwise, starting with the sensor to the right of the
front at −13◦ (see Figure 2). Each infrared sensor consists of an emitter
(a light emitting diode; LED), and a receiver (a semiconductor transducer).
The receiver can be used on its own to detect ambient light, or in conjunction
with the emitter to measure distances to surrounding objects.
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1 E-PUCKS 1.3 Controlling the e-puck in Matlab

1.2.1 Measuring ambient light

By measuring the intensity of ambient light, it is possible to detect light
sources (such as light bulbs), since the values from the sensors directed at
the light source will differ from those in other directions. Measuring ambient
light requires the use of the infrared receivers only, not the emitters.

Ambient light values returned by the sensors range from 0 to 4096, with
values increasing for decreasing light intensity. They are influenced by the
type and color of the light source as well as the distance from it. Please note
that cold light, such as emitted from LEDs, will only evoke a small response
from the infrared sensors.

1.2.2 Measuring distance

One way of detecting obstacles around the e-puck is by continuously mea-
suring the distance of the robot to its surrounding environment. Distance
can be measured using the infrared emitters and receivers in conjunction.
The emitter of each sensor sends a brief pulse of light, which is reflected
from obstacles and is detected by the corresponding infrared receiver. The
values of the infrared receivers, again in the range from 0 to 4096, indicate
the difference of light intensity with and without light emission. If an object
is closer to the sensor, more light is reflected, yielding a higher difference in
light intensity and larger values from the sensor.

The response of the sensor does not depend linearly on the distance from
the object. The response function varies depending both on the color, sur-
face structure, and material of the object, as well as individual differences
between sensors. This means that by default, the sensors do not produce an
accurate measure of distance. The accuracy can be increased by calibrating
the sensors, approximating the function that maps sensor readings to dis-
tances. The interval between two measuring points can be interpolated by
a linear function. Since the calibration is a tedious effort, we will use an
approximation of the function that we have determined heuristically.

Please note that measuring distances is particularly problematic in the
presence of interfering light sources or when measuring the distance to ob-
stacles whose surface absorbes infrared light (e.g., black coarse fabrics) or is
translucent (e.g., glass).

1.3 Controlling the e-puck in Matlab

The following functions are available to control the e-puck robots in Matlab.
h denotes the handle for the robot that is created when the connection is
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2 KINEMATICS AND ODOMETRY

established.

h=kOpenPort opens the serial port and returns a handle h
to the robot

kClose(h) stops the robot and closes the serial port

kSetSpeed(h,l,r) sets the velocity for the left (l) and right (r)
motor (both in pulses/s)

kStop(h) stops the robot

kGetSpeed(h) returns a vector [left, right] with the velocities
of both wheels (in pulses/s)

kGetEncoders(h) returns a vector [left, right] with the values of
the wheel encoders (in pulses)

kSetEncoders(h,l,r) sets the encoders to the given values;
kSetEncoders(h) sets both encoders to zero

kProximity(h) returns a vector with distance measurements
for the eight infrared sensors [d(0), . . . , d(7)]

kAmbient(h) returns a vector with ambient light mea-
surements for the eight infrared sensors
[a(0), . . . , a(7)]

kSetCameraParameters(h,

mode,width,height,z)

sets parameters for the VGA camera; mode is
either 0 (gray level images) or 1 (color images);
the product of width and height should not
exceed 1600, the zoom factor z may be 1, 4, or
8 (the default is 8; zoom increases with smaller
values)

kGetImage(h) returns a single camera image; requires that
kSetCameraParameters has been called with
valid arguments

kGetMicrophones(h) returns the sound amplitudes from the three
microphones

2 Kinematics and Odometry

The e-puck robot does not have any prior knowledge about the world. With-
out sensors and additional programming, it does not have any information

4



2 KINEMATICS AND ODOMETRY 2.1 Coordinate frames

about the location of objects or target positions; it does not even know where
in the world it is situated or how it is oriented. However, this information is
required to navigate to targets and avoid obstacles on the way.

This section will focus on how to infer the robot’s position in the world
based on the data from the wheel encoders. Analogously, we will look at how
to generate appropriate velocities for the wheels to turn the robot to certain
orientations. Both computations will build on our knowledge of the e-puck’s
physical measurements.

2.1 Coordinate frames

The position and orientation of the robot in the world can be uniquely de-
scribed by only three parameters: its x- and y-position and its orientation φ
(assuming that the robot is standing right-side-up on a table). Such a de-
scription is relative to a coordinate frame and it is important that you know
for every parameter which coordinate frame it is relative to.

In this context, we distinguish between two types of coordinate frames.
They differ in the position of the origin and the way they behave when the
robot moves. The ego-centric (or local) coordinate frame has its origin in the
center of the robot. The x-axis is always facing straight ahead into the head-
ing direction of the robot, while the y-axis is always facing orthogonally to
that toward the left. See Figure 3 for an example of an ego-centric coordinate
frame (the gray, tilted coordinate system). This means that the coordinate
frame moves around with the robot. It can for instance be used to express
the position of the target or of obstacles relative to the robot.

The allo-centric (or global) coordinate frame has its origin at an arbi-
trary but fixed position in the world. This can for instance be a prominent
landmark in the world or the corner of a piece of paper. The orientation of
the coordinate frame is also arbitrary but can be aligned with whatever feels
natural. See Figure 3 for a diagram that includes both an allo-centric and
an ego-centric coordinate frame. The important thing is that the allo-centric
coordinate frame does not move with the robot but stays fixed. It can for
instance be used to express the position of the robot or the position of a
target position. Please note that you can define the allo-centric coordinate
frame to be exactly the same as the ego-centric coordinate frame before the
robot begins to move. Once it moves, the allo-centric frame will stay at the
starting position while the ego-centric frame will move away with the robot.

5



2.2 Inverse kinematics 2 KINEMATICS AND ODOMETRY

Figure 3: With an allo-centric coordinate frame (black coordinate system)
it is possible to describe the global position (xallo, yallo) and orientation φallo

of the robot. In the egocentric coordinate frame (tilted, gray coordinate
system), the robot is located in the center and its forward direction is aligned
with the local zero orientation. The position of a point P can be given
either in global coordinates (xalloP , yalloP ) or in local coordinates of the robot
as (xegoP , yegoP ). The direction of the point from the robot is φego

P .

2.2 Inverse kinematics

Directing the robot to given coordinates in the world, possibly even with a
given final orientation, can be a hard problem to solve. There are infinitely
many routes the robot could drive. Some may seem like the routes a human
would drive with a car, others may look choppy or completely random. Se-
lecting one of these routes requires setting up constraints on what makes a
‘good’ route. This problem is analogous to what is usually referred to as in-
verse kinematics in problems involving arm movements: figuring out a good
trajectory of the arm to a target given that there are many joints to move in
various directions. Since this is such a hard problem to solve, we will sidestep
it in this lab class.

We will focus instead on computing how much to turn the wheels to rotate
on the spot around a given angle. For instance, having the robot face toward
0◦ in global coordinates, we want to know how to move the wheels so that
the robot faces toward 90◦. To direct the robot toward a certain position in
the world, we can thus first rotate on the spot and then drive a straight line
to the target. This may not produce the most natural movements for the
robot but it is easy enough to compute and will produce short routes.

To turn on the spot, we turn one wheel in one direction and the other
wheel into the opposite direction by the same amount. In doing so, the

6



2 KINEMATICS AND ODOMETRY 2.3 Forward kinematics

wheels will drive along circular arcs. The length b of a circular arc can be
computed with the formula

b = ∆φ · r, (1)

where ∆φ is the change in orientation of the robot and r is the radius of the
circle.1 Since the arcs of the wheels are forming a circle around the center of
the robot, the radius of the circle is half of the distance l between the wheels,
giving us

b = ∆φ · l
2
. (2)

To cover this distance b, the wheels will have to travel with a speed v for
the time interval ∆t:

b = v ·∆t (3)

⇔ v =
b

∆t
(4)

If we were to write units on the equations above, we would recognize that
the speed v has the unit mm s−1. We now have to use our knowledge of the
physical measurements of the robot to convert that speed into units that the
robot can use for its motors (pulse/s). Refer to section 1 for this information.
Please remember that, for rotations on the spot, the two wheels have to turn
into opposite directions. You will have to define that the velocity for the left
wheel is multiplied by −1. This conforms with the mathematical convention
that rotations around a positive angle are counter-clockwise.

2.3 Forward kinematics

As the robot moves around in the world, it needs to know its own location and
orientation in order to be reactive to the environment and replan afterward.
We can compute the new position of the robot in local coordinates after it
has moved based on the readings of the encoders. This is commonly referred
to as forward kinematics, the inverse computation of the inverse kinematics.

The robot moves by rotation of its two wheels. If both wheels turn at
different speeds, the robot will drive along a circular arc. Over longer peri-
ods of time, the movement of the robot can thus be described as a sequence
of circular arcs. Straight movements and rotations on the spot can be con-
sidered as special cases of a circular arc (with infinite radius or radius of
zero, respectively). While the following equations only hold for arcs of a true
circle, the forward kinematics for the two special cases can be derived easily.

1This is the same equation that gives the well-known formula b = 2π · r for computing
the circumference b of a circle with radius r. The angle of a full circle is 2π.
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2.3 Forward kinematics 2 KINEMATICS AND ODOMETRY

Figure 4: Locally the robot moves along the arc of a circle (left). Its two
wheels describe arcs with different radii. The arcs that the wheels drive have
different lengths (right), the difference of which can be used to compute the
robot’s change in orientation.

Let us assume that we initialize the robot in a certain position and orien-
tation and we remember its encoder values. It then moves for a short amount
of time along the arc of a circle and stops again. We can now determine its
new position as follows: First, note that as the robot moves along the arc of
the circle, its two wheels drive along circular arcs as well, with different radii
(see Figure 4 for a diagram). The left wheels describes a circle of radius r− l

2

and the right wheel a circle of radius r + l
2
, where l is the distance between

the wheels. We can determine the length bL, bR of these two arcs based on
the differences eL, eR between the new and old encoder values (for the left
and right wheel, respectively) and our knowledge of how much distance each
motor pulse moves the robot forward (see section 1). Computing the mean
of the lengths bL and bR gives us the length b of the arc that the center of
the robot is moving on

b =
1

2
· (bR + bL). (5)

Refer to Figure 4 if this is unclear. Furthermore, we can figure out the
radius r of the circle by establishing that the following equation holds

r

b
=

l

bR − bL
, (6)

that is, the length of the radius r is to the length b of the arc what the
distance l between the wheels is to the difference bR − bL. Refer to Fig-
ure 4 (right) and compare the large and the small triangle to verify this.
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2 KINEMATICS AND ODOMETRY 2.4 Odometry

Rearranging the equation and using Equation 5 we get

r = l · b · 1

bR − bL
, (7)

r =
1

2
· l ·
(
bR + bL
bR − bL

)
. (8)

Now that we can express both the radius r and the length of the arc b
purely in terms we already know, we can determine the robot’s change in
orientation ∆φ by using the equation b = ∆φ · r that we have already used
in the inverse kinematics (see Section 2.2)

∆φ =
b

r
. (9)

Knowing now the change in orientation ∆φ, we can also determine the
change of the robot position (∆x,∆y) in local coordinates. Since the local
coordinate system is always centered on the robot, the x-axis pointing in
its heading direction, it is always a tangent to the traversed circular arc.
Analogously, the y-axis is aways aligned with the radius of the arc. This
gives us the following equations for the change in position

∆x = r · sin(∆φ) (10)

∆y = r · (1− cos(∆φ)) . (11)

Please note that we will only obtain a good approximation of the robot’s
position if its trajectory really describes the arc of a circle with a fixed radius.
For longer periods of time this is obviously not the case since the trajectory
can take all kinds of forms. However, any smooth trajectory can be approxi-
mated in every point by the arc of a circle. We will thus use this approach to
approximate complex trajectories as sequences of circular arcs. This approx-
imation increases in accuracy the more we subdivide the circular arc. This
means that we have to strive for updating the estimation of the position as
fast as possible.

2.4 Odometry—Integration of the traversed path

We would now like to track the position and orientation of the robot in global
coordinates. This requires that we know the starting position and orientation
in global coordinates. We can then continuously update the robot’s position
and orientation with the information we get from the forward kinematics.

However, since the forward kinematics yields change values in local coor-
dinates, we have to transform them into a global position change. This cor-
responds to rotating the vector that describes the robots position, depending

9



2.4 Odometry 2 KINEMATICS AND ODOMETRY

on the robot’s current orientation. First we update the global orientation of
the robot

φ′ = φ+ ∆φ, (12)

where φ and φ′ are the old and new orientations of the robot in global coor-
dinates, respectively. We then compute the change of global position of the
robot by

∆xallo = ∆xego · cos(φ′)−∆yego · sin(φ′),

∆yallo = ∆xego · sin(φ′) + ∆yego · cos(φ′).
(13)

The method we present here for estimating the position of a robot via
odometry is affected both by systematic and random errors, such as the
following.

• systematic errors

– unequal wheel diameters/gear transmission between the wheels

– deviation of the actual wheel diameter from the assumed values

– deviation of the actual wheel base from the assumed values

– deformation of wheels

– discretization errors due to finite encoder resolution

• random errors

– driving on uneven ground or over obstacles

– backlash in the gear system

– sliding on slick ground or at high acceleration

– wheelspin upon collision with obstacles

10



3 DYNAMICAL SYSTEMS

3 Dynamical systems approach to navigation

in autonomous robotics

The dynamical systems approach is geared toward local behavioral control
of a robot that can be applied for path planning in particular. Instead
of determining the entire path from an initial position to a target using a
map of obstacles and possible paths, it controls basic behavioral variables
(e.g., heading direction and forward speed) on the basis of local sensory
information. The necessary change of these behavioral variables depending
on its current value and the current sensory information is expressed as a
dynamical system.

In this section, we will briefly introduce the basics of dynamical systems.
As a simple example, we will then use a dynamical system to control the
heading direction of a robot in order for it to approach a given target. The
following section will extend this system with a behavior for obstacle avoid-
ance based on distance sensors.

3.1 Dynamical systems and differential equations

Dynamical systems describe the change of variables over time. This is com-
monly done in the form of differential equations. The notation

dx

dt
= f(x) (also written ẋ = f(x)) (14)

expresses the change of variable x over time t as a function f(x) of its own
current value. The solution of a differential equation is a function x(t), for
which ẋ(t) = f(x(t)) holds for every point of time. Please note that x(t)
is a fuction of time t, while f(x) defines the relationship between the value
of x and its derivative over time. It is generally hard to find an analytical
solution for a given differential equation. However, solutions exist for some
basic differential equations. For instance, the linear differential equation

ẋ = −αx,

that formalizes an exponential decay has the solution

x(t) = exp (−αt).

We can verify this by looking at the derivative of the equation at some
arbitrary point of time

ẋ(t) = −α · exp (−αt) = −αx(t).

11



3.2 Attractors and repellors 3 DYNAMICAL SYSTEMS

Please note that any function of the form x(t) = exp (−αt) + b will be a
solution for the differential equation. A unique solution can be found by
additionally specifying a starting value x0 = x(t0). Solving such a differential
problem is called an initial value problem.

A differential equation can be solved numerically by transforming it into
a difference equation. Since a derivative is a limit case of the inclination of
a secant, it can be approximated by the inclination of a secant with a fixed
size ∆t

ẋ(t0) = lim
t→t0

x(t)− x(t0)

t− t0
≈ x(t0 + ∆t)− x(t0)

∆t

If the system is at x0 at time t0, the next value can be computed by

x(t0 + ∆t) ≈ x(t0) + ∆t · ẋ(t0)

The numerical solution of a differential equation is a good approximation
as long as the inclination ẋ remains close to constant during a time step
∆t. This may not be the case if ∆t is too large, possibly leading to large
deviations between the actual value x(∆t) and the approximation x̂(∆t) =
x(0)+∆t·ẋ(0) (see Figure 5 for an illustration). The approximation improves
in accuracy the smaller the time step ∆t. However, smaller time steps also
lead to a higher computational burden.

3.2 Attractors and repellors

To control a robot using a dynamical system, one has to construct a differ-
ential equation that produces the desired behavior, for instance to turn the
robot toward a target. Instead of specifying the desired change for every
possible state of the numerical value, we would like to specify more generic
properties of the system. Dynamical systems can be characterized by the
configuration of their attractors and repellors in particular. In the simplest
case, these are fixed points of the system.

A fixed point is a state of the dynamical system, in which the rate of
change ẋ is equal to zero. Once the system has reached such a state, it will
remain there unless it is driven out of the state by some external influence.
If you plot the rate of change ẋ of the system against the state variable x,
as we have done in Figure 6, the fixed points are the zero crossings in the
graph. This kind of plot is commonly referred to as a phase plot.

Let us first focus on the dynamical system shown in the left plot of Fig-
ure 6. At the position x0 it has a zero crossing with a negative slope. If the
system were in a state x1, where x1 < x0, the given change ẋ of the system
would be positive. The system would thus go to a state larger than x1, mov-
ing closer toward x0. However, if the system were in a state x2 > x0, the

12



3 DYNAMICAL SYSTEMS 3.2 Attractors and repellors

Figure 5: For values of ∆t that are too large, the approximation error can
become large. In the figure, x̂(∆t) strongly deviates from the analytically
calculated x(∆t).

Figure 6: Attractor (left) and repellor (right) of a dynamical system

13



3.3 Heading direction control 3 DYNAMICAL SYSTEMS

Figure 7: Control of the heading direction for approaching a target. The
current heading direction of the robot is φ, the direction of the target is ψ.
Both angles are defined relative to the zero-direction of a global coordinate
system.

change would be negative. The system would go toward a state smaller than
x3, also approaching x0. Were the system in state x0, the change would be
zero and it would remain in this state. Such a fixed point that attracts the
system when it is in its proximity is called an attractor.

The right plot of Figure 6, on the other hand, shows a repellor. The
inclination in the zero crossing is positive, such that the system will move
away from that point if it is close to it. However, please note that the system
would still remain at x0 if it ever exactly reached that position.

3.3 Controlling heading direction with a dynamical sys-
tem

To turn a robot toward a target, we now construct a dynamical system that
controls its heading direction φ. We construct the system in such a way that
it has an attractor at the orientation of the target. To do so, we represent
the position and orientation of the e-puck in a global coordinate system (see
Figure 7). To change the heading direction of the robot, we use the linear
dynamical system

φ̇ = −λ · (φ− ψ), λ > 0,

where ψ is the angle between the zero-orientation of the coordinate frame
and the target. The parameter λ has the unit s−1. Figure 8 shows a phase
plot of this dynamical system. The e-puck should turn on the spot and the
target should not move, making the angle ψ constant.

Since the system has an attractor in the direction of the target, it will
turn toward it. For φ < ψ the system has a positive change, turning the
robot counterclockwise toward the target; for φ > ψ, the change is negative,
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Figure 8: The linear dynamical system has an attractor at ψ, the direction
of the detected object.

turning the robot clockwise toward the target. If φ = ψ, the robot will not
turn.

3.4 Relaxation time

It is possible to solve the differential equation (Figure 3.3) analytically. The
solution is

φ(t) = ψ + (φ(0)− ψ) exp (−λt),

where φ(0) is the initial heading direction of the robot. The parameter λ
determines how fast the robot will turn toward the direction of the target.
After τ = 1

λ
much time, the angle between the heading direction of the robot

and the target direction will have dropped to 1
e

of its initial value.

φ(τ) = ψ + (φ(0)− ψ) exp (−λτ) = ψ + (φ(0)− ψ) exp (−1) (15)

See Figure 9 for an illustration. The value of τ is called time constant or
relaxation time of a dynamical system.

3.5 Implementation

To implement a dynamical system, we implement a numerical solution that
computes the change in heading direction in discrete time steps. At this
point, an analytical solution would still be possible but it quickly becomes
impractical for more complex dynamical systems that deal with current sen-
sor values and a changing position of the target. The discretized equation is

∆φ = −∆t · λ · (φ− ψ). (16)

The implementation of such a system consists of a continuous loop, in
which the current heading direction of the robot φ is determined and the
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Figure 9: The time constant τ determines how fast a dynamical system
relaxes to an attractor.

desired change ∆φ is computed. The speed of the robot’s wheels are set to
reflect that desired change. Since the system runs on the robot in real time,
the length of the time step ∆t is determined by the duration of the loop.
However, that duration is not known before the loop ends. In practice, a
good approximation for the duration of the loop is the average of the last
ten iterations of the loop.

Since the time step cannot be chosen freely here, the discrete computation
of the heading direction can lead to problems, depending on the chosen value
of λ. For small values of λ, the resulting change in the heading direction is
very small and the robot will take a lot of time to turn. More importantly
though, the (discrete) wheel speeds may be rounded to zero near the end of
the turn, before the robot faces toward the target. For large values of λ, the
turn within a single time step can be so large that the robot turns beyond
the given orientation of the target.

3.6 Nonlinear dynamics

Instead of a linear system, it is more practical to use a sine curve (see Fig-
ure 10) for the dynamical system. On the one hand, it does not produce
increasingly large values for larger angles. On the other hand, due to the
periodic structure of the sine wave, the robot will always turn toward the
target using the shortest path.
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Figure 10: Controlling the heading direction with a sine dynamics.

4 Obstacle avoidance with infrared sensors

In the previous section, we investigated how a robot can reach a target using
dynamic systems. In the present section, we will extend this approach to
avoid obstacles while still driving towards the target. The obstacle detection
we develop here is a simplified version of that in Bicho et al. (2000). We will
use the infrared sensors of our E-puck robot. Despite their limited number
and accuracy, they provide sufficient information for successfully avoiding
obstacles.

4.1 Combining multiple influences

The key idea for building a dynamical system that reaches a target and
avoids obstacles on the way is to consider multiple influences on the robot as
contributions that “pull” the robot towards the target direction and “push”
it away from the directions of obstacles.

We already know how to realize a single such influence from the target
dynamics in Section 3.6. Here, the dynamical system

φ̇ = ftar(φ) = −λtar · sin(φ− ψtar) (17)

creates an attractor that orients the robot towards the target at angle ψtar.
We combine this dynamical system with a set of repelling influences, fobs,i,
which we will design to create repellors at the locations of obstacles in the
following sections. The full system then has the form

φ̇ = ftar(φ) +
∑
i

fobs,i(φ). (18)

4.2 Obstacle contributions

Let us first consider the contribution of an individual obstacle term in the
direction ψobs,i without the other influences (that is, without target and other
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robot

obstacle

(a) robot and obstacle (b) obstacle force-let

Figure 11: (a) shows a diagram of the robot and an obstacle with the relevant
angles marked. Here, φ is the heading direction of the robot and ψobs,i is the
direction of an obstacle, both relative to the global coordinate system. ∆ψ

represents the angular width of the obstacle. (b) shows a single obstacle force-
let centered around the direction of the obstacle. The repellor generated by
the force-let turns the robot away from this direction, as indicated by the
orange arrows.

obstacles). We want the robot to be repelled from the obstacle. Naively, we
can solve this by placing a single repellor at the direction of the obstacle:

fobs,i(φ) = φ− ψobs,i. (19)

However, using a linear function has two undesired consequences. First, since
the repellor acts across the entire angular space, the robot will always turn
away from the obstacle, even if the robot is facing away from the obstacle,
that is, the obstacle no longer lies in the robot’s path. This is unnecessary
and may even distract the robot from reaching its target. Second, combining
multiple linear functions additively for multiple obstacles would result in
another linear function with a single fixed point that generally lies somewhere
between the different obstacle directions.

We can address both these issues by restricting the angular range of the
obstacle contribution. We use the idea of the force-let from Bicho et al.
(2000), that is, we weight the contribution of individual linear functions by
a Gaussian with width σ, centered around the obstacle direction:

fobs,i(φ) = (φ− ψobs,i) · e−
(φ−ψobs,i)

2

2σ2 . (20)

Figure 11 shows such a force-let for a single obstacle.
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obstacle target

obstacle

Figure 12: The path of the robot is blocked by two obstacles that are situated
far apart from each other (left). The phase plot (right) shows the contribu-
tions from the two obstacles (orange line), the target (magenta line), and
the resulting overall dynamics (black line). Green dots represent attractors,
while red ones represent repellors.

Another consideration is the distance of obstacles. We only want obstacles
that are close to the robot to have an influence on the robot’s trajectory,
whereas far obstacles should be ignored. We realize this by weighting the
force-let by another term, λobs,i, leading to

fobs,i(φ) = λobs,i · (φ− ψobs,i) · e−
(φ−ψobs,i)

2

2σ2 . (21)

The weight function is defined as

λobs,i(t) = β1 · e−
di(t)

β2 , (22)

where β1, β2 are positive constants, and di(t) is the distance of obstacle i at
the current time t.

4.3 Bifurcations and decisions

So far, we have only looked at an individual force-let. In the full approach, we
combine multiple such force-lets and a target contribution (see Equation 18).
It is this combination that leads to emergent behaviors in our vehicle. Here,
we show how even this fairly simple combination of functions endows our
vehicle with the capacity to make decisions.

Let us first consider the case shown in Figure 12. Two obstacles are far
enough apart for the robot to pass between them. This is reflected in the
dynamics: the individual force-lets (orange lines) have relatively little over-
lap. In the overall dynamics (black line), this leads to the emergence of two
repellors (red dot), each close to one of the obstacles. The target contribu-
tion (magenta) creates an attractor (green dot) between the obstacles. If the
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obstacle target

obstacle

Figure 13: The path of the robot is blocked by two obstacles that are situated
close to each other (left). The phase plot (right) is analogous to the one in
Figure 12.

robot is within the range of influence of this attractor, it will pass between
the obstacles. Two more attractors are created on the outskirts of the force-
lets due to the combination with the target contribution. These correspond
to the robot going around the obstacles on the left or right hand side.

As the obstacles move closer together, the situation changes. As we can
see in Figure 13, the obstacle force-lets overlap in such a manner that a single
repellor emerges, centered between the two obstacles. The attractor in the
target direction is canceled out by the repellor. However, the two attractors
that correspond to the robot circumnavigating the obstacles on the left or
right hand side are still present.

There is a critical distance between the obstacles at which the attractor
between the obstacles vanishes. Such a point where the number of fixed
points or their stability changes is called a bifurcation. We can visualize how
and when this happens by drawing a bifurcation diagram, where we plot the
fixed points and their stability over the bifurcation parameter which, in our
case, is the distance between obstacles. Figure 14 shows such a plot for our
scenario.

4.4 Implementation

When implementing the target approach with obstacle avoidance, the nature
of the robot’s sensors poses some issues. First, they do not deliver a discrete
set of obstacles, but rather distance measurements to the closest surface in
the direction of the sensor. Second, the values delivered from the sensors do
not correspond to actual distances, but are an measure that grows inversely
proportional with the distance, following a nonlinear function.

We address the first issue by making a simplifying assumption. Each
sensor is said to point in the direction of an obstacle. Since the sensors are
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repellor

repellor

attractor

attractor

attractor

bifurcation

distance between obstacles
Figure 14: Bifurcation diagram for the target approach with obstacle avoid-
ance dynamics.

fixed on the robot, the directions of these virtual obstacles are given by

ψobs,i = φcur + θi, (23)

where φcur is the current heading direction of the robot, and θi is the angle
at which sensor i is mounted, relative to the robot’s forward direction.

For measuring the distance, we must first find a function that determines
the distance from an infrared value obtained from one of the robot’s sensors.
Formally, for an object placed at a distance d(t), the sensors deliver an IR
value

ir(t) = f(d(t)), (24)

with an unknown function f that depends on factors such as the material of
the object, but also the sensor itself.

Our goal, then, is to find the inverse relationship. That is, given an
infrared value ir(t), we want to determine the corresponding distance

d(t) = f−1(ir(t)). (25)

Since our dynamics are robust to noise and other minor errors, we can use
an approximation for this inverse. One possible approach is measuring mean
infrared values for obstacles placed at certain distances and linearly interpo-
lating between them to obtain a distance. This approach is fairly accurate,
but measuring is also time-consuming, tedious work. An alternative is to very
roughly approximate the function f , and to then invert this approximation,
or to simply determine a good function for the inverse empirically.
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