Exercise 2, November 5, 2015, to be handed in November 12!

- 1. Plot the function $x(t) = x_0 \exp(-t/\tau)$ for one positive and for one negative value of x_0 . You can use specific values for both τ and x_0 to compute a few points on the curve and then interpolate, or you can use your understanding of the curve to make a qualitative plot. In either case, mark the time axis with actual units (e.g., seconds) and choose a value for τ in those units. Mark the levels of x_0 .
- 2. Compute the values of that function x(t) for t = 0, $t = \tau$, $t = 2\tau$, $t = 3\tau$. You can do this for the abstract parameter, x_0 , or by inserting an actual numerical value for x_0 , whichever you find more intuitive. Now write down in a table the ratios: $x(\tau)/x(0)$; $x(2\tau)/x(\tau)$; $x(3\tau)/x(2\tau)$. State what you notice about those ratios. Interpret that observation by a kind of "theorem" that you can state about the "exponential decay" function $\exp(-t/\tau)$
- 3. Do another plot of the function $x(t) = x_0 \exp(-t/\tau)$, but now for two values of τ . State what the significance of the parameter τ may be given how the functions vary with τ .
- 4. Compute the derivative $\dot{x}(t)$ of this same function, $x(t) = x_0 \exp(-t/\tau)$. (If you don't know how to do that, look it up in a book or on the internet). Plot that derivative in the same way for just one value of x_0 . Make sure the time axis has the same units as in the plots above, so you can compare across the plots of x and \dot{x} . Form pairs of values for $x(t_i)$ and $\dot{x}(t_i)$ for a few moments in time, t_i , (where i is 1, 2, 3, etc.) and plot these values against each other: \dot{x} against x. State what functional relationship you are guessing. Check that by computing analytically the ratio $\dot{x}(t)/x(t)$ and write down the differential equation that now follows.