Dynamical systems tutorial

Gregor Schöner, INI, RUB
Dynamical systems: Tutorial

- the word “dynamics”
 - time-varying measures
 - range of a quantity
 - forces causing/accounting for movement => dynamical systems

- dynamical systems are the universal language of science
 - physics, engineering, chemistry, theoretical biology, economics, quantitative sociology, ...
time-variation and rate of change

- variable $x(t)$;
- variable as function of time $x(t)$
- rate of change $\frac{dx}{dt}$
dynamical system

\[
dx/dt = f(x) \]
dynamical system: relationship between a variable and its rate of change
dynamical system: nonlinear

\[\frac{dx}{dt} = f(x) \]
notions

- variable, equation, solution
- function, functional equation, solution
dynamical system

- present determines the future
 - given initial condition
 - predict evolution (or predict the past)

\[
dx/dt = f(x)\]
dynamical systems

- x: spans the state space (or phase space)
- $f(x)$: is the “dynamics” of x (or vector-field)
- $x(t)$ is a solution of the dynamical systems to the initial condition x_0
 - if its rate of change = $f(x)$
 - and $x(0) = x_0$
notions

- simple examples of differential equations
- and their solutions
other functional equations

- delayed (functional) differential equations
- partial differential equations
- integro-differential equations
Sample time discretely

Compute solution by iterating through time

\[\dot{x} = f(x) \]

\[t_i = i \cdot \Delta t; \quad x_i = x(t_i) \]

\[\dot{x} = \frac{dx}{dt} \approx \frac{\Delta x}{\Delta t} = \frac{x_{i+1} - x_i}{\Delta t} \]

\[x_{i+1} = x_i + \Delta t \cdot f(x_i) \]

[forward Euler]
linear dynamics

=> simulation
outlook

- fixed points, stability, attractors
- instabilities
- inverse dynamics