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Activation dynamics

activation, u(t), whose time course emerges from 
a neural dynamics

du(t)

dt
= u̇(t) = �u(t) + h (h < 0)

du/dt = f(u)
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Neural dynamics

has a stable fixed point (attractor) at all times

to which activation relaxes

⌧ u̇(t) = �u(t) + h

du/dt = f(u)
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Neuronal dynamics

inputs are contributions 
to the rate of change

positive: excitatory

negative: inhibitory

that shift the attractor

a shift which activation 
then tracks

⌧ u̇(t) = �u(t) + h + inputs(t)
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⇥ u̇(t) = �u(t) + h + S(t) + c�(u(t))

Neuronal dynamics with self-excitation
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⇥ u̇(t) = �u(t) + h + S(t) + c�(u(t))

Neuronal dynamics with self-excitation
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=> this is nonlinear dynamics!

Neuronal dynamics with self-excitation
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⇥ u̇(t) = �u(t) + h + S(t) + c�(u(t))



stimulus input

Neuronal dynamics with self-excitation
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⇥ u̇(t) = �u(t) + h + S(t) + c�(u(t))



at intermediate stimulus strength: bistable=> 
essential nonlinearity

Neuronal dynamics with self-excitation
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with varying input strength system goes through two 
instabilities: the detection and the reverse detection 
instability

Neuronal dynamics with self-excitation
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with varying input strength system goes through two 
instabilities: the detection and the reverse detection 
instability
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detection instability
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with varying input strength system goes through two 
instabilities: the detection and the reverse detection 
instability

Neuronal dynamics with self-excitation
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reverse detection instability
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signature of instabilities: hysteresis
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=> simulation



Neuronal dynamics with competition
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⌧ u̇1(t) = �u1(t) + h� �(u2(t)) + S1

⌧ u̇2(t) = �u2(t) + h� �(u1(t)) + S2



interaction: the rate of change of activation at one 
site depends on the level of activation at the other 
site

mutual inhibition

⌧ u̇1(t) = �u1(t) + h� �(u2(t)) + S1

⌧ u̇2(t) = �u2(t) + h� �(u1(t)) + S2

sigmoidal nonlinearity

Neuronal dynamics with competition



to visualize, assume that u_2 
has been activated by input 
to positive level

=> then u_1 is suppressed
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why would u_2 be positive 
before u_1 is? E.g., it grew 
faster than u_1 because its 
inputs are stronger/inputs 
match better

=> input advantage translates 
into time advantage which 
translates into competitive 
advantage
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vector-field in the 
absence of input
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vector-field (without 
interaction) when both 
neurons receive input
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only activated neurons participate in interaction!
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vector-field with strong
mutual inhibition: 

bistable
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Neuronal dynamics with competition
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=>biased competition
stronger input to site 1: 

attractor with activated u_1 stronger, 
attractor with activated u_2 weaker, may become unstable
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Neuronal dynamics with competition
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=> simulation



Outlook

Where do activation variables come from? How 
does an activation variable come to “stand” for a 
behavior or percept ?

How do discrete activation variables reflect 
continuous behaviors? 

=> DFT lecture


