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bifurcations

B ook now at families of dynamical systems, which
depend (smoothly) on parameters

M ask: as the parameters change (smoothly), how do
the solutions change (smoothly?)

B smoothly: topological equivalence of the dynamical systems at
neighboring parameter values

B bifurcation: dynamical systems NOT topological equivalent as
parameter changes infinitesimally



bifurcation
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bifurcation

B bifurcation=qualitative change of dynamics (change in
number, nature, or stability of fixed points) as the
dynamics changes smoothly
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tangent bifurcation

B the simplest bifurcation (co-dimension 0): an attractor collides
with a repellor and the two annihilate
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local bifurcation
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reverse bifurcation

B changing the dynamics in the opposite direction
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bifurcations are instabilities

B that is, an attractor becomes unstable before
disappearing

B (or the attractor appears with reduced stability)

B formally: a zero-real part is a necessary condition
for a bifurcation to occur



tangent bifurcation

B normal form of tangent bifurcation
T = — 1

B (=simplest polynomial equation whose flow is
topologically equivalent to the bifurcation)
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bifurcations are instabilities
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measures of stability: fluctuations
A = —a(A—\g)+noise
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bifurcations are instabilities
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transcritical bifurcation

B nhormal form T = ar —
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pitchfork bifurcation

B hormal form
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Hopf theorem

B when a single (or pair of complex conjugate)

eigenvalue crosses the imaginary axis, one of four
bifurcations occur

B tangent bifurcation
B transcritical bifurcation
B pitchfork bifurcation

B Hopf bifurcation



tangent bifurcation

B normal form of tangent bifurcation
T = — 1

B (=simplest polynomial equation whose flow is
topologically equivalent to the bifurcation)
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transcritical bifurcation

B nhormal form T = ar —
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pitchfork bifurcation

B hormal form
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Hopf: need higher dimensions



2D dynamical system:
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t1 = fi(z1, x9)
T = fo(w1,22)
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fixed point, stability, attractor

t1 = fi(z1, x9)
T = fo(w1,22)
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Hopf bifurcation

3

r=aQr —r

B hormal form .
®=w

A dr/dt
X
A
stable o
nstable

y




higher bifurcations

Be.g., degenerate (non-linear terms
simultaneously zero with real-part of an
eigenvalue)

Me.g. higher co-dimension ...



the center manifold

M at bifurcation: real part of one

eigenvalue=0 }*Ll l v

B corresponding eigenvector: critical direction

M near bifurcation: real part of one /1 4

B cigenvalue close to zero

. attractor about
B => Center manifold theorem y to become unstable




center manifold

B = manifold which is locally
tangent to eigenvector of
zero real part eigenvalue

B CM theorem: dynamics
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original dynamics

B => enormous dimensional
reduction
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center manifold

B => the 4 elementary bifurcations are “fair”
representatives of any dynamical system with
the same qualitative flow



forward dynamics

Mgiven known equation, determined fixed points /
limit cycles and their stability

B more generally: determine invariant solutions (stable, unstable
and center manifolds)

B use CMF to simplify dynamics



inverse dynamics

Mgiven classification of solutions (stable states)
and their dependence on parameters,
determine the dynamical system! That’s the
modeler’s job

M practical approach

B identify the class of dynamical systems using the 4 elementary
bifurcations

B and use normal form to provide an exemplary representative
of the equivalence class of dynamics



