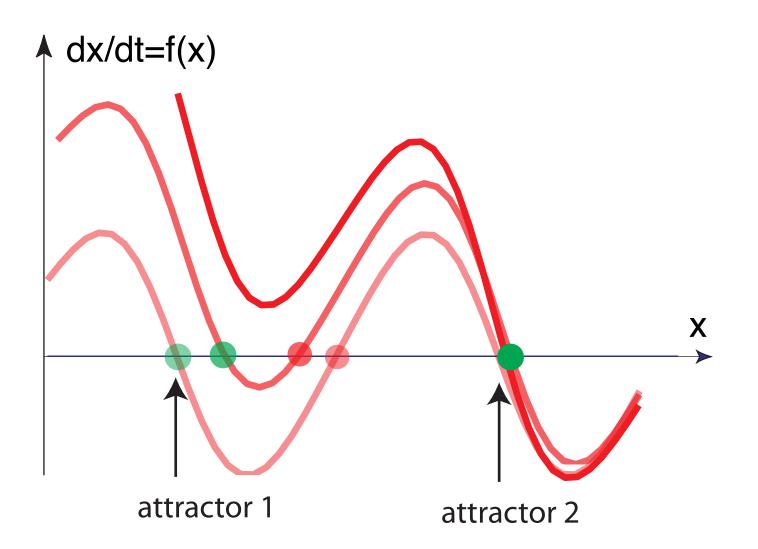
Dynamical systems tutorial

Gregor Schöner, INI, RUB

bifurcations

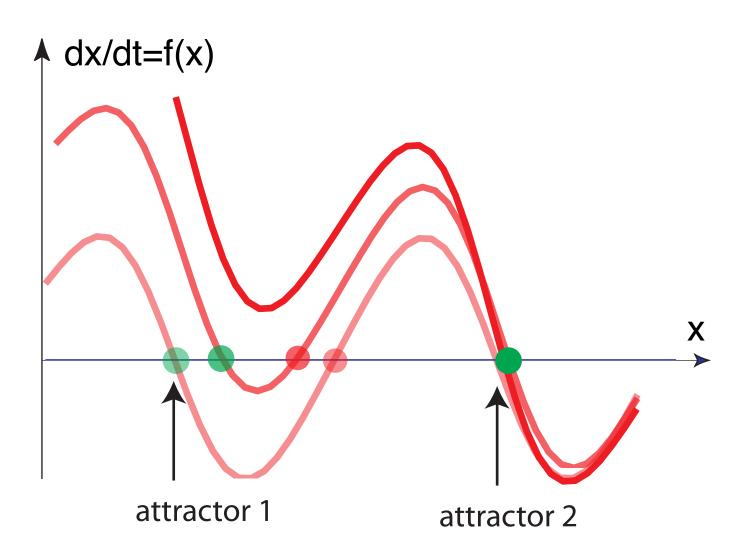
- look now at families of dynamical systems, which depend (smoothly) on parameters
- ask: as the parameters change (smoothly), how do the solutions change (smoothly?)
 - smoothly: topological equivalence of the dynamical systems at neighboring parameter values
 - bifurcation: dynamical systems NOT topological equivalent as parameter changes infinitesimally

bifurcation



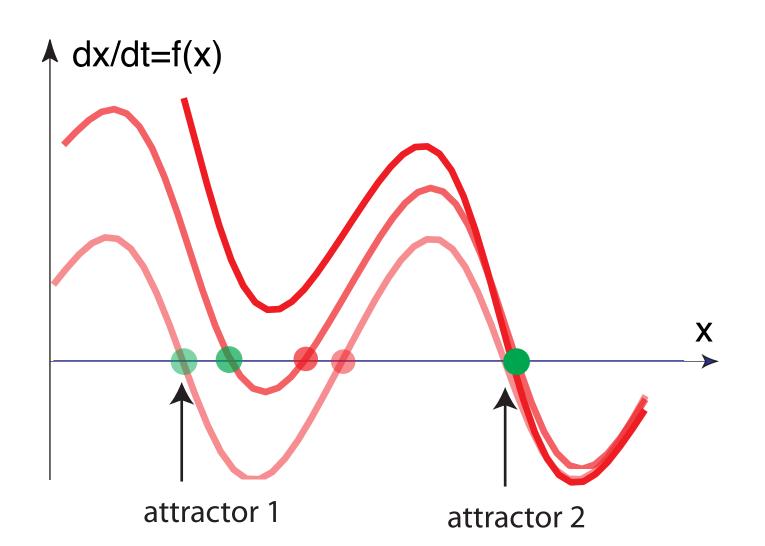
bifurcation

bifurcation=qualitative change of dynamics (change in number, nature, or stability of fixed points) as the dynamics changes smoothly

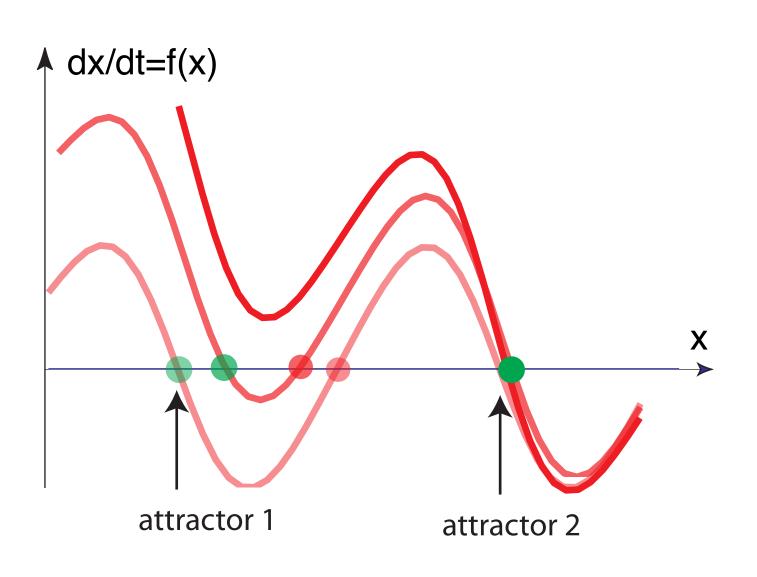


tangent bifurcation

the simplest bifurcation (co-dimension 0): an attractor collides with a repellor and the two annihilate

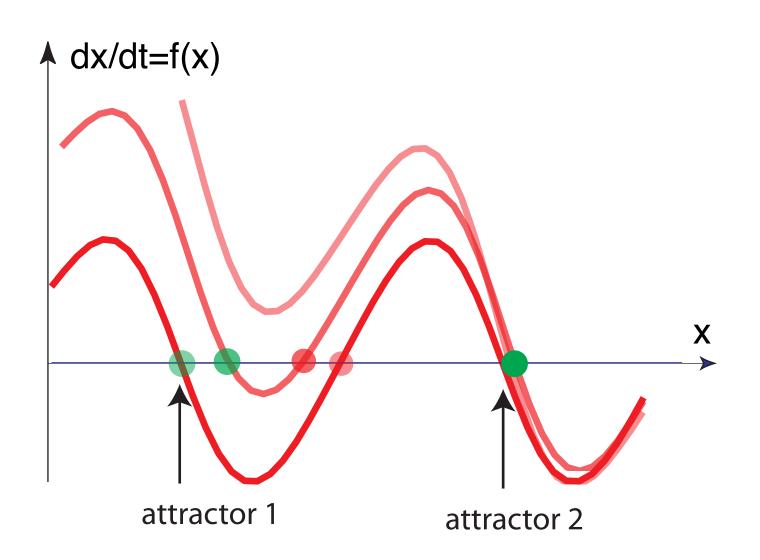


local bifurcation



reverse bifurcation

changing the dynamics in the opposite direction



bifurcations are instabilities

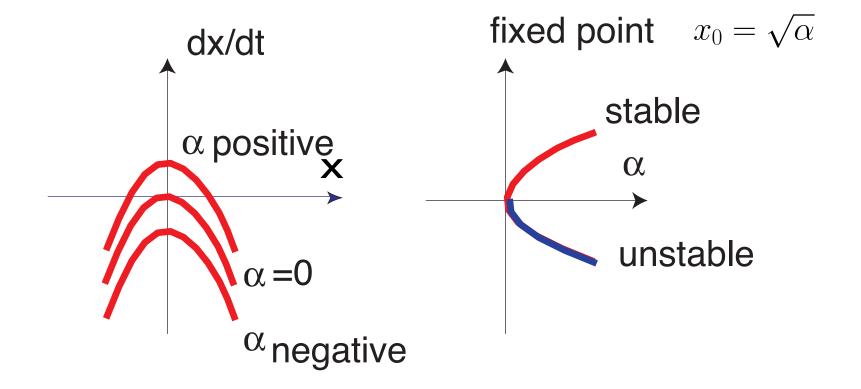
- that is, an attractor becomes unstable before disappearing
- (or the attractor appears with reduced stability)
- formally: a zero-real part is a necessary condition for a bifurcation to occur

tangent bifurcation

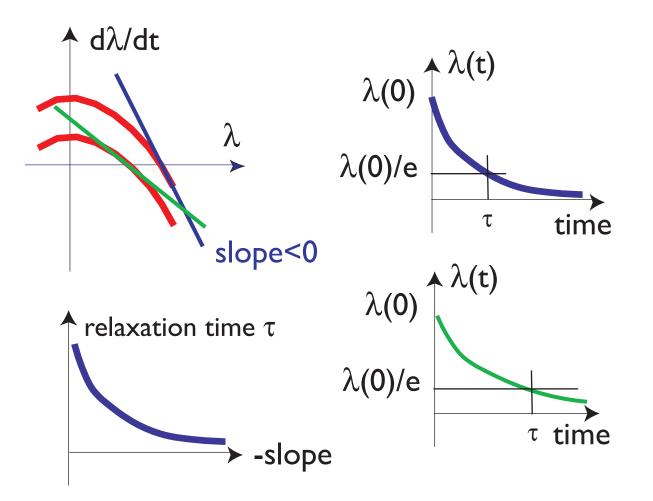
normal form of tangent bifurcation

 $\dot{x} = \alpha - x^2$

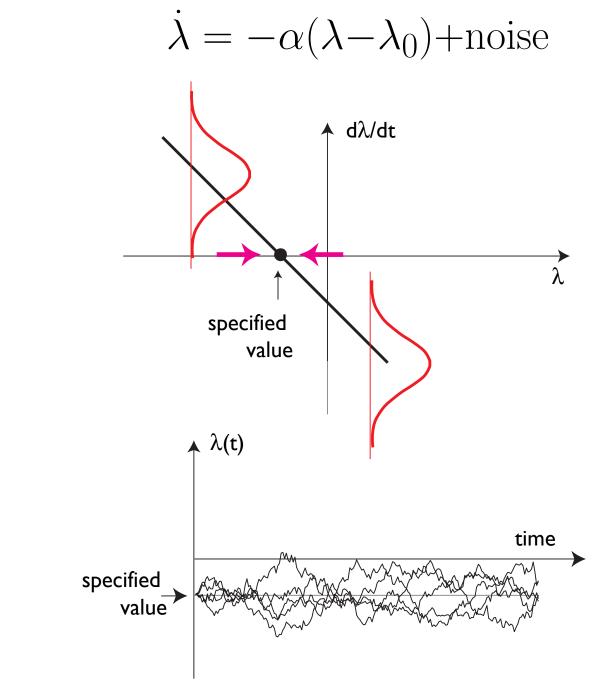
(=simplest polynomial equation whose flow is topologically equivalent to the bifurcation)



bifurcations are instabilities

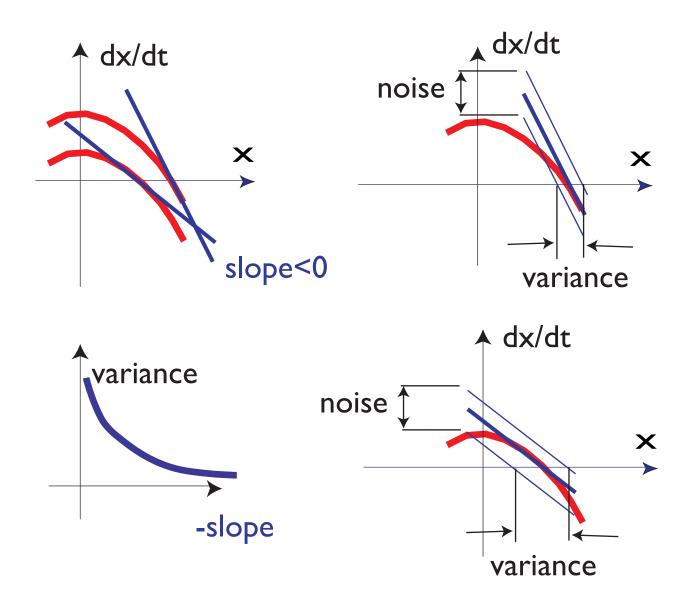


measures of stability: fluctuations

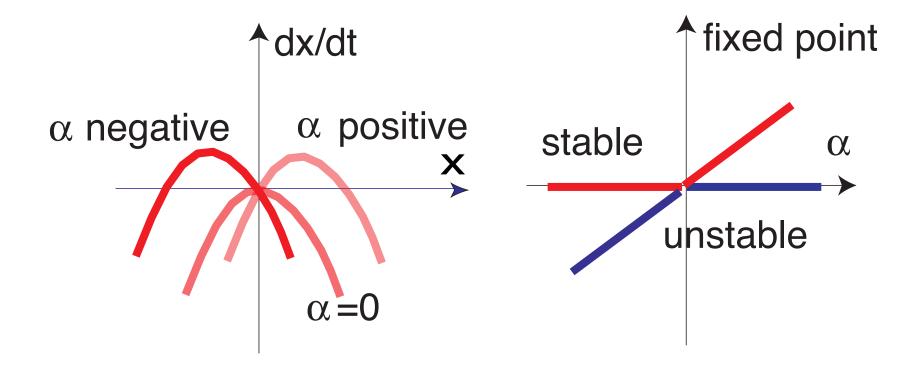


with stable
fixed-point
dynamics:
fluctuations
are
constrained

bifurcations are instabilities

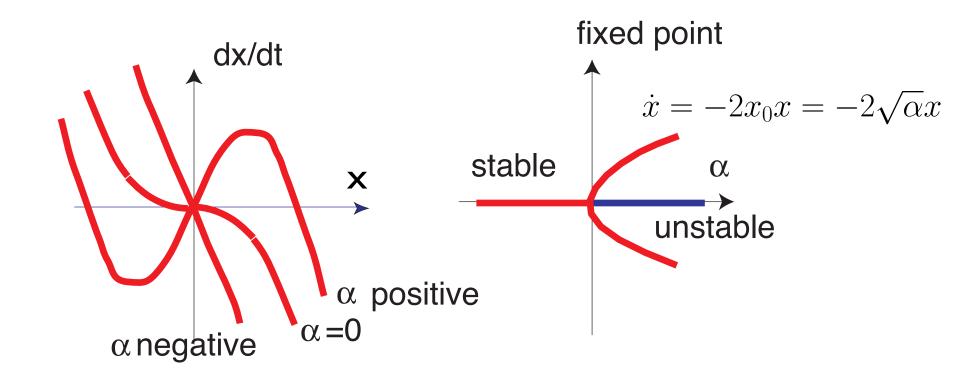


transcritical bifurcation



pitchfork bifurcation

normal form
$$\dot{x} = \alpha x - x^3$$



Hopf theorem

when a single (or pair of complex conjugate) eigenvalue crosses the imaginary axis, one of four bifurcations occur

tangent bifurcation

transcritical bifurcation

pitchfork bifurcation

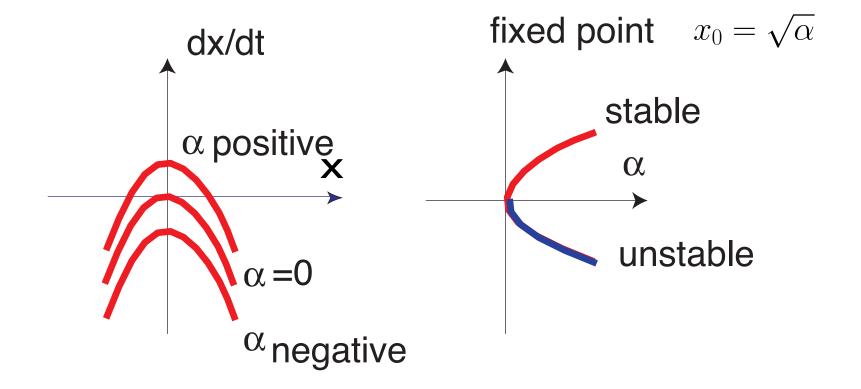
Hopf bifurcation

tangent bifurcation

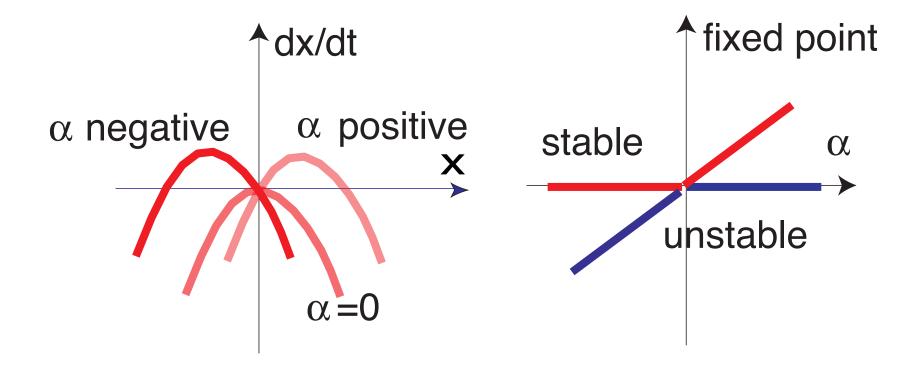
normal form of tangent bifurcation

 $\dot{x} = \alpha - x^2$

(=simplest polynomial equation whose flow is topologically equivalent to the bifurcation)

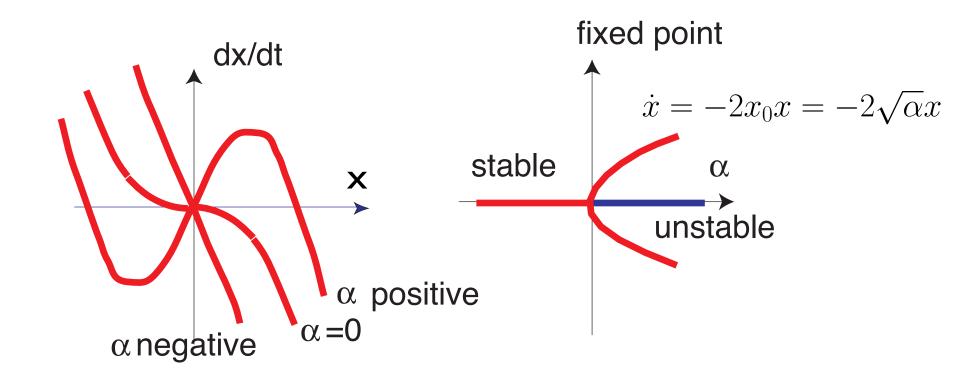


transcritical bifurcation



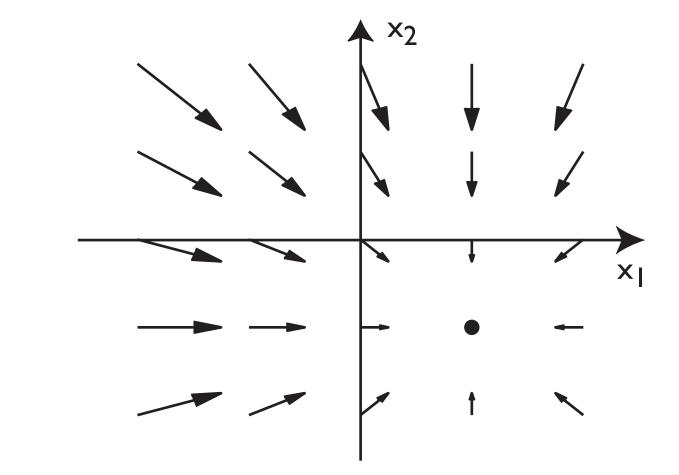
pitchfork bifurcation

normal form
$$\dot{x} = \alpha x - x^3$$



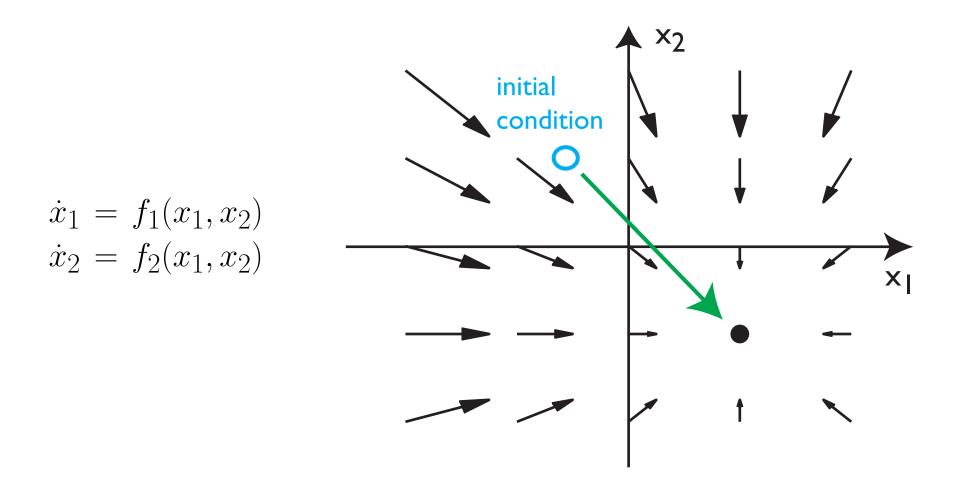
Hopf: need higher dimensions

2D dynamical system: vector-field

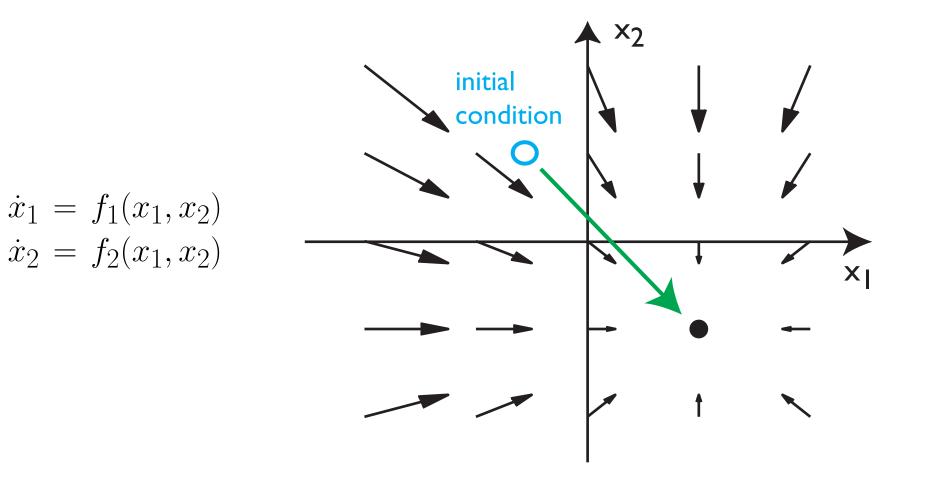


 $\dot{x}_1 = f_1(x_1, x_2)$ $\dot{x}_2 = f_2(x_1, x_2)$

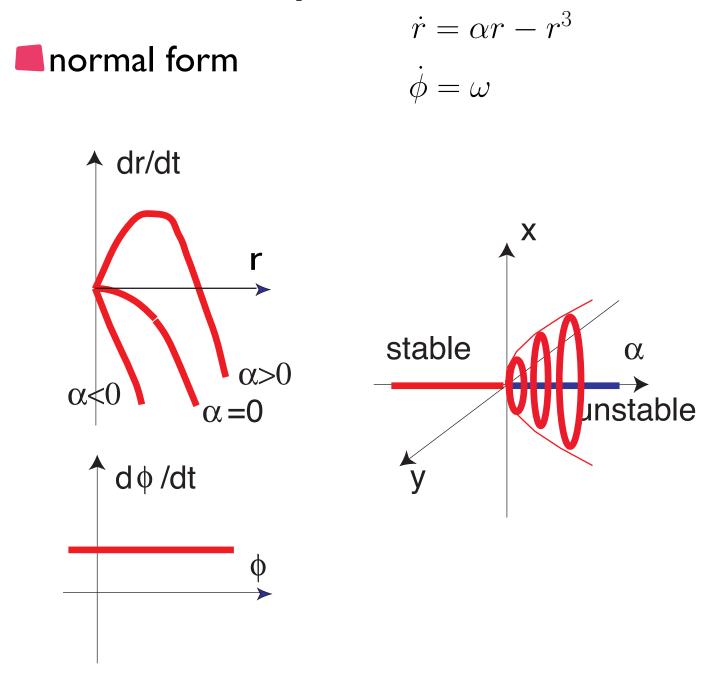
vector-field



fixed point, stability, attractor



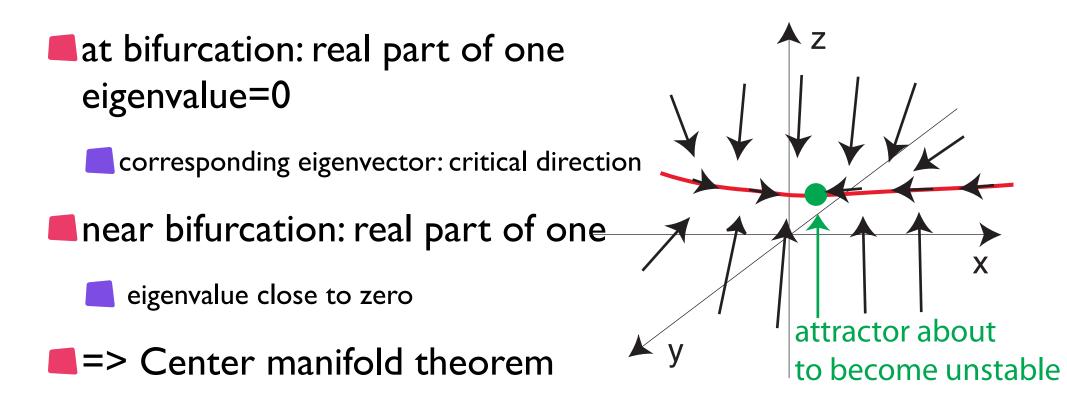
Hopf bifurcation



higher bifurcations

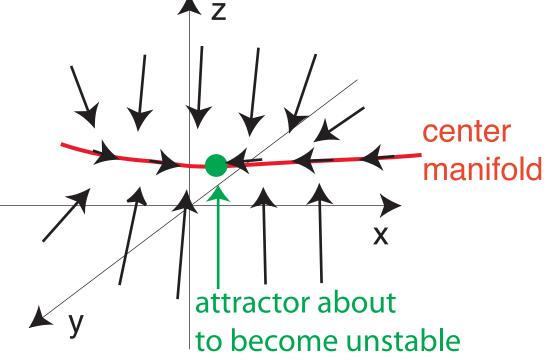
- e.g., degenerate (non-linear terms simultaneously zero with real-part of an eigenvalue)
- e.g. higher co-dimension ...

the center manifold



center manifold

- = manifold which is locally tangent to eigenvector of zero real part eigenvalue
- CM theorem: dynamics within the CM is – topologically equivalent to original dynamics



=> enormous dimensional reduction

center manifold

=> the 4 elementary bifurcations are "fair" representatives of any dynamical system with the same qualitative flow

forward dynamics

given known equation, determined fixed points / limit cycles and their stability

- more generally: determine invariant solutions (stable, unstable and center manifolds)
- use CMF to simplify dynamics

inverse dynamics

given classification of solutions (stable states) and their dependence on parameters, determine the dynamical system! That's the modeler's job

practical approach

- identify the class of dynamical systems using the 4 elementary bifurcations
- and use normal form to provide an exemplary representative of the equivalence class of dynamics