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BWilliam James: habit
formation as the simplest
form of learning

M (habituation: same for inhibition)




mathematics of the memory trace

Tu(z,t) = —u(x,t)+h+S(x, t)
+ /dﬂfl w(r —x') o(u(x"))
Tmem Umem (T,1) =  —Umem (T, 1)

+- /dx’ Wiem (T — 2o (u(x', t))

® memory trace only evolves while activation is
excited

® potentially different growth and decay rates
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memory trace
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memory trace reflects history of
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categories may emerge ...
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categories
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Mbased on categorical
memory trace and
boost-driven detectio
instability

B => field responds
categorically

[Wilimzig, Schoner, 2006]

o

activation u(x)

specific input + boost

) in different conditions
K m
1500
0\
loooéé\
m 500
mete,; X preshape

0

NN

0 / " t iboosv:

parameter, X

/

parameter, X

4

—
X
S’

v



studying selection decisions in the
laboratory

® using an imperative signal...



reaction time (RT) paradigm
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task set

Bthat is the critical factor in most studies of
selection!

Bfor example, the classical Hick law, that the number of choices affects
RT, is based on the task set specifying a number of choices

M (although the form in which the imperative signal is
given is varied as well...)

Bhow do neuronal representations reflect the task
set!



notion of preshape

time

preshaped

activation

I

iyl
i s\\\\\\\\\\\
l \\S\ y

t

t
E
inpu

preshaped
field =——>
&
< o
fbﬁq’((\
specific inpu
arrives
0.0
specific

movement parameter



specific input + boost
in different conditions

weak preshape
in selection
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using preshape to account for
classical RT data
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metric effect
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experiment:

metric effect
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preshaped activation field

maixmal activation

same metrics, different probability

different metrics, same probability
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specific input + boost
in different conditions

weak preshape
in selection
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strong
preshape
dominates
selection

[Wilimzig, Schoner, 2006]

specific input + boost
in different conditions

o

activation u(x)

parameter, X

% 0
1
-10 |
220 . :

parameter, X



distance effect

Bcommon in categorical tasks

Be.g., decide which of two sticks is longer... RT is larger when sticks are
more similar in length



interaction metrics-probability

same metrics, different probability  different metrics, same probability
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Behavioral evidence for preshape

B movement preparation is graded and continuous in time
starting out from preshaped representations

timed movement
initiation paradigm

imperative stimulus
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[Ghez and colleagues, 1988 to 1990’s]



Behavioral evidence for preshape
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Behavioral evidence for preshape

Experimental results of Henig et al
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Dynamic Field Theory (DFT)

Etheoretical account: movement parameters are
represented in dynamic neural activation fields

theoretical account for Henig et al. Experimental results of Henig et al

60 — 60
200} 1 200¢ 1 Zero 401 1 40+ 1
SR short
100} {100} {0
interval 20! 1 20l I SR
0 0 interval
0 0
200} 1 200} 1 short @
60 60
SR 5
s % 1 | interval -
= § 40 1 40 medium
o 0 0 o
5 5 SR
2 s 20 10 interval
2 200 1 200 1 medium 3 . .
100} {100} ] _SR g
interval 60 . 60
0 : 0
‘ aol | 40l short
200} 1 200 1 long SR
SR 20} 1 20 interval
100} 1 100t { .
interval
‘ 0 0 ‘
0 K 0 X 1b5 25 125 75
Amplitude value
Peak Force (N)

[Erlhagen, Schoner. 2002, Psychological Review 109, 545-572 (2002)]



behavioral evidence for preshape
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Number of trials

behavioral evidence for preshape
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Piaget’s A not B paradigm:“out-of-sight
-- out of mind”

A trial B trial

A not B error

B ' ‘ A B v
_ delay A B _ delay B




Toyless variant of A not B task

[Smith, Thelen et al.: Psychological Review (1999)]



Toyless variant of A not B task

reveals that A not B is essentially a

decision task!
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[Smith, Thelen et al.: Psychological Review (1999)]




activation field

A location

B location
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DFT of infant perseverative reac
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DFT of infant perseverative reachin
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DFT of infant perseverative reaching
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DFT of infant perseverative reaching
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DFT of infant perseverative reaching
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DFT of infant perseverative reaching
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DFT is a neural process model

mthat makes the decisions in each individual trial, by
amplifying small differences into a macroscopic stable
state

mand that’s how decisions leave traces, have consequences
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summary: instabilities

M detection: forming and kK~ "\ A trial
Initiating a movement

goal
M selection: making sensori- '
A B

motor decisions

B boost-driven detection:

initiating the the action "
L Y
M learning: memory trace

M working memory:

sustaining a dela
& 4 Toyless version of A not B

(Smith, Thelen, et al., 1999)



Conclusions

M action, perception, and embodied cognition
takes place in continuous spaces. peaks = units
of representation are attractors of the neural
dynamics

®neural fields link neural representations to these
continua

®stable activation peaks are the units of neural
representation

M peaks arise and disappear through instabilities
through which elementary cognitive functions
(e.g. detection, selection, memory) emerge



The conceptual framework of DFT

DST/DFT
DST/DFT < DFT models for > Robotic DST/DFT
human factors experiment: demonstrations approaches to
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experimental models autonomous
results i \ ¢ / robotics
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neural < »of experimental
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