Dynamic Field Theory: Part 4:

Gregor Schöner gregor.schoener@ini.rub.de

boost-induced detection instability

simplest form of learning: the memory trace

 William James: habit formation as the simplest form of learning

(habituation: same for inhibition)

mathematics of the memory trace

$$\tau \dot{u}(x,t) = -u(x,t) + h + S(x,t) + u_{mem}(x,t) + \int dx' \ w(x-x') \ \sigma(u(x'))$$

$$\tau_{\text{mem}} \dot{u}_{\text{mem}}(x,t) = -u_{\text{mem}}(x,t) + \int dx' w_{\text{mem}}(x-x')\sigma(u(x',t))$$

memory trace only evolves while activation is excited

potentially different growth and decay rates

memory trace reflects history of decisions formation

categories may emerge ...

categories emerge ...

- based on categorical memory trace and boost-driven detection instability
 - Field responds categorically

categories emerge ...

- based on categorical memory trace and boost-driven detectio instability
- Field responds categorically

[Wilimzig, Schöner, 2006]

studying selection decisions in the laboratory

using an imperative signal...

reaction time (RT) paradigm

task set

- that is the critical factor in most studies of selection!
 - for example, the classical Hick law, that the number of choices affects RT, is based on the task set specifying a number of choices
- (although the form in which the imperative signal is given is varied as well...)
- how do neuronal representations reflect the task set?

notion of preshape

movement parameter

weak preshape in selection

specific (imperative) input dominates and drives detection instability

[Wilimzig, Schöner, 2006]

parameter, x

using preshape to account for classical RT data

metric effect

predict faster response times for metrically close than for metrically far choices

[from Schöner, Kopecz, Erlhagen, 1997]

experiment: metric effect

[McDowell, Jeka, Schöner]

[from Erlhagen, Schöner: Psych. Rev. 2002]

[from McDowell, Jeka, Schöner, Hatfield, 2002]

weak preshape in selection

specific (imperative) input dominates and drives detection instability

[Wilimzig, Schöner, 2006]

parameter, x

strong preshape dominates selection

[Wilimzig, Schöner, 2006]

distance effect

common in categorical tasks

e.g., decide which of two sticks is longer... RT is larger when sticks are more similar in length

interaction metrics-probability

opposite to that predicted for input-driven detection instabilities:

metrically close choices show larger effect of probability

Wilimzig, Schöner, 2006

Behavioral evidence for preshape

movement preparation is graded and continuous in time starting out from preshaped representations

timed movement initiation paradigm

[Ghez and colleagues, 1988 to 1990's]

Behavioral evidence for preshape

[Favilla et al. 1989]

Behavioral evidence for preshape

Experimental results of Henig et al

Dynamic Field Theory (DFT)

theoretical account: movement parameters are represented in dynamic neural activation fields

Peak Force (N)

Experimental results of Henig et al

[Erlhagen, Schöner. 2002, Psychological Review 109, 545–572 (2002)]

behavioral evidence for preshape

behavioral evidence for preshape

Piaget's A not B paradigm: "out-of-sight -- out of mind"

Toyless variant of A not B task

[Smith, Thelen et al.: Psychological Review (1999)]

Toyless variant of A not B task reveals that A not B is essentially a decision task!

[Smith, Thelen et al.: Psychological Review (1999)]

[Thelen, et al., BBS (2001)]

Instabilities

- detection: forming and initiating a movement goal
- selection: making sensorimotor decisions
- (learning: memory trace)
- boost-driven detection: initiating the action
- memory instability: old infants sustain during the delay, young

Instabilities

- detection: forming and initiating a movement goal
- selection: making sensorimotor decisions
- (learning: memory trace)
- boost-driven detection: initiating the action
- memory instability: old infants sustain during the delay, young

movement parameter

Instabilities

- detection: forming and initiating a movement goal
- selection: making sensorimotor decisions
- (learning: memory trace)
- boost-driven detection: initiating the action
- memory instability: old infants sustain during the delay, young

in spotaneous errors, activation arises at B on an A trial

 which leads to correct reaching on B trial

that is because reaches to B on A trials leave memory trace at B

DFT is a neural process model

that makes the decisions in each individual trial, by amplifying small differences into a macroscopic stable state

and that's how decisions leave traces, have consequences

summary: instabilities

- detection: forming and initiating a movement goal
- selection: making sensorimotor decisions
- boost-driven detection: initiating the the action
- learning: memory trace
- working memory: sustaining a delay

Toyless version of A not B (Smith, Thelen, et al., 1999)

Conclusions

- action, perception, and embodied cognition takes place in continuous spaces. peaks = units of representation are attractors of the neural dynamics
- neural fields link neural representations to these continua
- stable activation peaks are the units of neural representation
- peaks arise and disappear through instabilities through which elementary cognitive functions (e.g. detection, selection, memory) emerge

The conceptual framework of DFT

